CN101254916B - Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite - Google Patents
Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite Download PDFInfo
- Publication number
- CN101254916B CN101254916B CN2008101038068A CN200810103806A CN101254916B CN 101254916 B CN101254916 B CN 101254916B CN 2008101038068 A CN2008101038068 A CN 2008101038068A CN 200810103806 A CN200810103806 A CN 200810103806A CN 101254916 B CN101254916 B CN 101254916B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotubes
- carbon nanotube
- suspension
- nanotube composite
- phthalocyanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 78
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 78
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 title claims description 25
- 239000002184 metal Substances 0.000 title claims description 25
- 230000015572 biosynthetic process Effects 0.000 title description 5
- 238000003786 synthesis reaction Methods 0.000 title description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000725 suspension Substances 0.000 claims abstract description 24
- 239000000047 product Substances 0.000 claims abstract description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000706 filtrate Substances 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 9
- 239000003960 organic solvent Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 5
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims description 14
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 claims description 13
- 239000002048 multi walled nanotube Substances 0.000 claims description 11
- 238000000227 grinding Methods 0.000 claims description 10
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- -1 carbon nanotube compound Chemical class 0.000 claims description 4
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 claims description 3
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 claims description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 3
- 239000011833 salt mixture Substances 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 238000003756 stirring Methods 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 2
- 239000013081 microcrystal Substances 0.000 abstract description 2
- IYZPEGVSBUNMBE-UHFFFAOYSA-N 2-[[5-[1-[3-[[carboxylatomethyl(carboxymethyl)azaniumyl]methyl]-4-hydroxy-5-methylphenyl]-3-oxo-2-benzofuran-1-yl]-2-hydroxy-3-methylphenyl]methyl-(carboxymethyl)azaniumyl]acetate Chemical compound OC(=O)CN(CC(O)=O)CC1=C(O)C(C)=CC(C2(C3=CC=CC=C3C(=O)O2)C=2C=C(CN(CC(O)=O)CC(O)=O)C(O)=C(C)C=2)=C1 IYZPEGVSBUNMBE-UHFFFAOYSA-N 0.000 abstract 2
- 238000010189 synthetic method Methods 0.000 abstract 2
- 238000009828 non-uniform distribution Methods 0.000 abstract 1
- 238000001291 vacuum drying Methods 0.000 abstract 1
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000001663 electronic absorption spectrum Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- FAAXSAZENACQBT-UHFFFAOYSA-N benzene-1,2,4,5-tetracarbonitrile Chemical compound N#CC1=CC(C#N)=C(C#N)C=C1C#N FAAXSAZENACQBT-UHFFFAOYSA-N 0.000 description 1
- WDEQGLDWZMIMJM-UHFFFAOYSA-N benzyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate Chemical compound OCC1CC(O)CN1C(=O)OCC1=CC=CC=C1 WDEQGLDWZMIMJM-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于无机/有机纳米复合材料研究领域,具体涉及一种基于原位合成金属酞菁/碳纳米管复合物的方法。The invention belongs to the research field of inorganic/organic nanocomposite materials, and specifically relates to a method based on in-situ synthesis of metal phthalocyanine/carbon nanotube composites.
背景技术Background technique
碳纳米管(CNT)是一种由碳原子以六边形排列单层或多层的同轴圆管,径向尺寸为纳米量级,轴向尺寸为微米量级的准一维量子材料,因而具有非常独特的电学和力学性质,近些年已经迅速成为物理、化学、材料甚至生物学等基础科学的研究热点,作为制备纳米尺寸器件极具潜力的候选材料在许多高科技领域中有着广阔的应用景。Carbon nanotube (CNT) is a quasi-one-dimensional quantum material in which carbon atoms are arranged in a hexagonal single-layer or multi-layer coaxial tube, the radial dimension is on the order of nanometers, and the axial dimension is on the order of micrometers. Therefore, it has very unique electrical and mechanical properties. In recent years, it has rapidly become a research hotspot in basic sciences such as physics, chemistry, materials and even biology. application scene.
目前,各种特定性能的碳纳米管逐渐引起人们的兴趣,碳纳米管表面用有机、无机或生物分子修饰使碳纳米管的物理、化学性能发生显著改变而赋予其更多新的性能,其中,制备各种具有功能有机分子/碳纳米管复合物,并对其开展应用研究是一个极其重要的研究方向。到目前为止碳纳米管有机化学修饰主要通过两种途径来实现,一种是碳纳米管端基或碳管侧壁共价键化学修饰;另一种是非共价键修饰,如物理包覆、表面活化剂功能化、聚合物功能化、内腔功能化等。At present, carbon nanotubes with various specific properties are gradually attracting people's interest. The surface of carbon nanotubes is modified with organic, inorganic or biomolecules to significantly change the physical and chemical properties of carbon nanotubes and endow them with more new properties. , preparation of various functional organic molecules/carbon nanotube composites, and its application research is an extremely important research direction. So far, the organic chemical modification of carbon nanotubes is mainly realized through two ways, one is the covalent bond chemical modification of carbon nanotube end groups or carbon tube side walls; the other is non-covalent bond modification, such as physical coating, Surfactant functionalization, polymer functionalization, lumen functionalization, etc.
酞菁类化合物具有高的共轭结构和化学稳定性,是一类有机功能染料,因其具有很好的光、热及化学稳定性,优异的光、电性质,以及分子结构的可调变性使其在光导、光存储、光电催化、化学传感器、光伏打电池、非线性光学、电致变色显示等高新技术领域具有广阔的应用前景。Phthalocyanine compounds have a high conjugated structure and chemical stability, and are a class of organic functional dyes, because they have good light, heat and chemical stability, excellent optical and electrical properties, and adjustable molecular structure. It has broad application prospects in high-tech fields such as photoconductivity, optical storage, photoelectric catalysis, chemical sensors, photovoltaic batteries, nonlinear optics, and electrochromic displays.
已有文献报道采用物理共混法制备金属酞菁/碳纳米管复合物,此方法虽然比较简单,但酞菁分子与碳纳米管之间结合不紧密容易脱落,并且较难控制分子在碳纳米管表面的均匀分布。It has been reported in the literature that metal phthalocyanine/carbon nanotube composites are prepared by physical blending method. Although this method is relatively simple, the combination between phthalocyanine molecules and carbon nanotubes is not tight and easy to fall off, and it is difficult to control the molecules in carbon nanotubes. Uniform distribution on the tube surface.
发明内容Contents of the invention
本发明的目的在于利用原位合成的方法将金属酞菁类大环配合物包覆在碳纳米管表面,形成稳定的具有微晶结构的金属酞菁/碳纳米管复合物。The purpose of the present invention is to coat the metal phthalocyanine macrocyclic complex on the surface of carbon nanotubes by means of in-situ synthesis to form a stable metal phthalocyanine/carbon nanotube composite with a microcrystalline structure.
本发明所提供的原位合成金属酞菁/碳纳米管的方法,通过在适当的有机溶剂中,将碳纳米管和合成金属酞菁配合物所需的相应前驱体,金属盐混和,前驱体分子以金属离子为模板在碳纳米管外壁表面环合生成相应的金属酞菁配合物,最终形成稳定的具有微晶结构的金属酞菁/碳纳米管复合物。The method for in-situ synthesis of metal phthalocyanine/carbon nanotubes provided by the present invention is to mix carbon nanotubes with the corresponding precursors and metal salts required for the synthesis of metal phthalocyanine complexes in an appropriate organic solvent, and the precursors Molecules use metal ions as templates to form corresponding metal phthalocyanine complexes on the surface of the outer wall of carbon nanotubes, and finally form a stable metal phthalocyanine/carbon nanotube complex with a microcrystalline structure.
具体步骤如下:Specific steps are as follows:
1)将碳纳米管加入到有机溶剂中,加入量为2~20mg碳纳米管/ml有机溶剂,超声波震荡分散10~40min,得到碳纳米管悬浊液;1) Add carbon nanotubes to an organic solvent in an amount of 2 to 20 mg carbon nanotubes/ml organic solvent, disperse with ultrasonic vibration for 10 to 40 minutes, and obtain a carbon nanotube suspension;
2)将前驱体和金属盐按摩尔比3~8∶1研磨混合后,加入到步骤1)中的碳纳米管悬浊液中,前驱体和金属盐混合物与碳纳米管的质量比为3~11∶1,在氮气保护下,于160~240℃搅拌反应1~6h,产物经过滤、无水乙醇淋洗至滤液为无色后,再于50~100℃真空干燥5~30h,得到黑色粉末状产物,即金属酞菁/碳纳米管复合物。2) Grinding and mixing the precursor and the metal salt at a molar ratio of 3 to 8:1, then adding it to the carbon nanotube suspension in step 1), the mass ratio of the precursor and the metal salt mixture to the carbon nanotube is 3 ~11:1, under the protection of nitrogen, stirred and reacted at 160~240°C for 1~6h, the product was filtered and rinsed with absolute ethanol until the filtrate was colorless, and then vacuum dried at 50~100°C for 5~30h to obtain The black powdery product is metal phthalocyanine/carbon nanotube composite.
其中,所述的碳纳米管为多壁碳纳米管,直径为50~200nm,长度为2~20μm;步骤1)中所述的有机溶剂选自喹啉、硝基苯、氯萘或三氯苯中的一种;步骤2)中所述的前驱体为邻二腈基苯或邻二腈基苯与1,2,4,5-苯四甲腈按摩尔比为3~6∶1的混合物;步骤2)中所述的金属盐为FeCl2·4H2O、CoCl2·6H2O、CuCl2·2H2O、ZnCl2·2H2O、NiCl2·6H2O或MnCl2·4H2O中的一种。Wherein, the carbon nanotubes are multi-walled carbon nanotubes with a diameter of 50-200 nm and a length of 2-20 μm; the organic solvent described in step 1) is selected from quinoline, nitrobenzene, chloronaphthalene or trichloro A kind of in benzene; The precursor described in step 2) is o-dicyanobenzene or o-dicyanobenzene and 1,2,4,5-benzene tetracarbonitrile molar ratio is 3~6:1 mixture; the metal salt described in step 2) is FeCl 2 .4H 2 O, CoCl 2 .6H 2 O, CuCl 2 .2H 2 O, ZnCl 2 .2H 2 O, NiCl 2 .6H 2 O or MnCl 2 . One of 4H 2 O.
与现有技术相比较,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明所制的备金属酞菁/碳纳米管复合物中酞菁分子与碳纳米管之间结合牢固;而且酞菁分子可以在碳管外壁均匀生长形成微晶。1) The combination between the phthalocyanine molecules and the carbon nanotubes in the metal phthalocyanine/carbon nanotube composite prepared by the present invention is firm; and the phthalocyanine molecules can grow uniformly on the outer wall of the carbon tubes to form microcrystals.
2)本发明所制备金属酞菁/碳纳米管复合物可用于氢气存储、光电催化、化学传感器等领域。2) The metal phthalocyanine/carbon nanotube composite prepared in the present invention can be used in fields such as hydrogen storage, photoelectric catalysis, and chemical sensors.
附图说明Description of drawings
图1、实施例1制备的金属酞菁/碳纳米管复合物在二甲基亚砜(DMSO)中的电子吸收光谱。Fig. 1, the electronic absorption spectrum of the metal phthalocyanine/carbon nanotube composite prepared in Example 1 in dimethyl sulfoxide (DMSO).
图2、实施例2制备的金属酞菁/碳纳米管复合物透射电镜照片。Fig. 2, transmission electron micrograph of the metal phthalocyanine/carbon nanotube composite prepared in Example 2.
图3、实施例3制备的金属酞菁/碳纳米管复合物透射电镜照片。Fig. 3, transmission electron micrograph of the metal phthalocyanine/carbon nanotube composite prepared in Example 3.
图4、实施例4制备的金属酞菁/碳纳米管复合物电子衍射照片。Fig. 4, electron diffraction photo of the metal phthalocyanine/carbon nanotube composite prepared in Example 4.
以下结合附图及具体实施方式对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
具体实施方式Detailed ways
实施例1Example 1
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为20μm,加入40ml硝基苯中,在超声波下震荡分散20min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 20 μm, add them to 40 ml of nitrobenzene, oscillate and disperse under ultrasonic waves for 20 minutes, and obtain a suspension of carbon nanotubes;
2)将0.76g邻二腈基苯,0.18g l,2,4,5-苯四甲腈和0.22g FeCl2·4H2O研磨混合后,加入步骤1)中的碳纳米管悬浊液中,在氮气保护下,于200℃搅拌反应4h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到双核酞菁铁/碳纳米管复合物,附图1为双核酞菁铁/碳纳米管复合物在DMSO中的电子吸收光谱,出现双核酞菁铁Q带最大吸收峰出现在684nm处。2) Grinding and mixing 0.76g of o-dicyanobenzene, 0.18g of 1,2,4,5-pyrenetetracarbonitrile and 0.22g of FeCl 2 .4H 2 O, and adding them to the carbon nanotube suspension in step 1) , under the protection of nitrogen, stirred and reacted at 200°C for 4h, the product was filtered and rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 80°C for 24h to obtain a dual-nuclear iron phthalocyanine/carbon nanotube composite. 1 is the electronic absorption spectrum of the dinuclear iron phthalocyanine/carbon nanotube composite in DMSO, and the Q-band maximum absorption peak of the dinuclear iron phthalocyanine appears at 684nm.
实施例2Example 2
1)取0.20g多壁碳纳米管,直径为50~70nm,长度为20μm,加入40ml硝基苯,在超声波下震荡分散20min,得到碳纳米管悬浊液;1) Take 0.20 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 20 μm, add 40 ml of nitrobenzene, oscillate and disperse under ultrasonic waves for 20 minutes, and obtain a suspension of carbon nanotubes;
2)将0.64g邻二腈基苯,0.18g l,2,4,5-苯四甲腈和0.22g FeCl2·4H2O研磨混合后,加入步骤1)中的碳纳米管悬浊液中,在氮气保护下,在200℃搅拌反应4h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到双核酞菁铁/碳纳米管复合物,从附图2双核酞菁铁/碳纳米管复合物透射电镜照片表明双核酞菁铁均匀包覆在碳纳米管的表面。2) Grinding and mixing 0.64g of o-dicyanobenzene, 0.18g of 1,2,4,5-pyrenetetracarbonitrile and 0.22g of FeCl 2 .4H 2 O, and adding them to the carbon nanotube suspension in step 1) , under the protection of nitrogen, stirred and reacted at 200°C for 4h, filtered the product and rinsed it with absolute ethanol until the filtrate was colorless, dried the product in vacuum at 80°C for 24h to obtain a dinuclear iron phthalocyanine/carbon nanotube composite, obtained from the attached Fig. 2 The transmission electron micrograph of the dinuclear iron phthalocyanine/carbon nanotube composite shows that the dinuclear iron phthalocyanine is uniformly coated on the surface of the carbon nanotubes.
实施例3Example 3
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为20μm,加入40ml硝基苯,在超声波下震荡分散40min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 20 μm, add 40 ml of nitrobenzene, oscillate and disperse under ultrasonic waves for 40 minutes, and obtain a suspension of carbon nanotubes;
2)将0.50g邻二腈基苯,0.18g l,2,4,5-苯四甲腈,0.22g FeCl2·4H2O研磨混合后,加入步骤1)中的碳纳米管悬浊液中,在氮气保护下,在200℃搅拌反应4h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到双核酞菁铁/碳纳米管复合物,附图3为双核酞菁铁/碳纳米管复合物高分辨透射电镜照片,照片中出现明显的晶格条纹,表明双核酞菁铁在碳纳米管表面形成有序的微晶结构。2) Grind and mix 0.50g o-dicyanobenzene, 0.18g l,2,4,5-pyrenetetracarbonitrile, 0.22g FeCl 2 4H 2 O, and add to the carbon nanotube suspension in step 1) , under the protection of nitrogen, stirred and reacted at 200°C for 4h, the product was filtered and rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 80°C for 24h to obtain a dual-nuclear iron phthalocyanine/carbon nanotube composite. 3 is a high-resolution transmission electron microscope photo of the dinuclear iron phthalocyanine/carbon nanotube composite, and obvious lattice fringes appear in the photo, indicating that the dinuclear iron phthalocyanine forms an ordered microcrystalline structure on the surface of the carbon nanotubes.
实施例4Example 4
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为20μm,加入40ml硝基苯,在超声波下震荡分散30min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 20 μm, add 40 ml of nitrobenzene, oscillate and disperse under ultrasonic waves for 30 minutes, and obtain a suspension of carbon nanotubes;
2)将0.38g邻二腈基苯,0.18g l,2,4,5-苯四甲腈,0.22g FeCl2·4H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在200℃搅拌反应4h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在100℃真空干燥5h得到双核酞菁铁/碳纳米管复合物。附图4为双核酞菁铁/碳纳米管复合物电子衍射照片。2) Grinding and mixing 0.38g o-dicyanobenzene, 0.18g l,2,4,5-pyrenetetracarbonitrile and 0.22g FeCl 2 4H 2 O, then adding the carbon nanotube suspension in step 1) , under the protection of nitrogen, stirred and reacted at 200°C for 4h, the product was filtered and rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 100°C for 5h to obtain a binuclear iron phthalocyanine/carbon nanotube composite. Accompanying drawing 4 is the electron diffraction photograph of binuclear iron phthalocyanine/carbon nanotube composite.
实施例5Example 5
1)取0.80g多壁碳纳米管,直径为70~100nm,长度为2~5μm,加入40ml硝基苯,在超声波下震荡分散30min,得到碳纳米管悬浊液;1) Take 0.80 g of multi-walled carbon nanotubes with a diameter of 70-100 nm and a length of 2-5 μm, add 40 ml of nitrobenzene, oscillate and disperse under ultrasonic waves for 30 minutes, and obtain a suspension of carbon nanotubes;
2)将1.5g邻二腈基苯,0.50g CoCl2·6H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在160℃搅拌反应6h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到酞菁钴/碳纳米管复合物。2) Grinding and mixing 1.5 g of o-dicyanobenzene and 0.50 g of CoCl 2 ·6H 2 O, adding them to the suspension of carbon nanotubes in step 1), stirring and reacting at 160° C. for 6 h under the protection of nitrogen, After the product was filtered, it was rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 80° C. for 24 hours to obtain a cobalt phthalocyanine/carbon nanotube composite.
实施例6Example 6
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为2~5μm,加入40ml三氯苯,在超声波下震荡分散30min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 2-5 μm, add 40 ml of trichlorobenzene, oscillate and disperse under ultrasonic waves for 30 minutes, and obtain a suspension of carbon nanotubes;
2)将0.50g邻二腈基苯,0.20g CuCl2·2H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在180℃搅拌反应2h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在50℃真空干燥30h得到酞菁铜/碳纳米管复合物。2) Grinding and mixing 0.50 g of o-dicyanobenzene and 0.20 g of CuCl 2 ·2H 2 O, adding to the suspension of carbon nanotubes in step 1), stirring and reacting at 180° C. for 2 h under the protection of nitrogen, After the product was filtered, it was rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 50° C. for 30 h to obtain a copper phthalocyanine/carbon nanotube composite.
实施例7Example 7
1)取0.50g多壁碳纳米管,直径为150~200nm,长度为20μm,加入100ml氯萘,在超声波下震荡分散40min,得到碳纳米管悬浊液;1) Take 0.50 g of multi-walled carbon nanotubes with a diameter of 150-200 nm and a length of 20 μm, add 100 ml of chloronaphthalene, oscillate and disperse for 40 minutes under ultrasonic waves, and obtain a carbon nanotube suspension;
2)将1.0g邻二腈基苯,0.17g ZnCl2·2H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在240℃搅拌反应1h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到酞菁锌/碳纳米管复合物。2) Grinding and mixing 1.0 g of o-dicyanobenzene and 0.17 g of ZnCl 2 ·2H 2 O, adding to the suspension of carbon nanotubes in step 1), stirring and reacting at 240° C. for 1 h under the protection of nitrogen, After the product was filtered, it was rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 80° C. for 24 hours to obtain a zinc phthalocyanine/carbon nanotube composite.
实施例8Example 8
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为2~5μm,加入50ml三氯苯,在超声波下震荡分散30min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 2-5 μm, add 50 ml of trichlorobenzene, oscillate and disperse under ultrasonic waves for 30 minutes, and obtain a suspension of carbon nanotubes;
2)将0.17g邻二腈基苯,0.10g NiCl2·6H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在180℃搅拌反应3h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在80℃真空干燥24h得到酞菁镍/碳纳米管复合物。2) Grinding and mixing 0.17g of o-dicyanobenzene and 0.10g of NiCl 2 ·6H 2 O, adding to the suspension of carbon nanotubes in step 1), stirring and reacting at 180°C for 3h under the protection of nitrogen, After the product was filtered, it was rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 80° C. for 24 hours to obtain a nickel phthalocyanine/carbon nanotube composite.
实施例9Example 9
1)取0.10g多壁碳纳米管,直径为50~70nm,长度为2~5μm,加入40ml喹啉,在超声波下震荡分散10min,得到碳纳米管悬浊液;1) Take 0.10 g of multi-walled carbon nanotubes with a diameter of 50-70 nm and a length of 2-5 μm, add 40 ml of quinoline, oscillate and disperse under ultrasonic waves for 10 minutes, and obtain a suspension of carbon nanotubes;
2)将0.50g邻二腈基苯0.20g MnCl2·4H2O研磨混合后,加入步骤1)中的碳纳米管的悬浊液中,在氮气保护下,在180℃搅拌反应4h,产物过滤后经无水乙醇淋洗至滤液为无色,将产物在70℃真空干燥30h得到酞菁锰/碳纳米管复合物。2) Grinding and mixing 0.50 g of o-dicyanobenzene and 0.20 g of MnCl 2 ·4H 2 O, adding to the suspension of carbon nanotubes in step 1), stirring and reacting at 180° C. for 4 h under the protection of nitrogen, the product After filtration, it was rinsed with absolute ethanol until the filtrate was colorless, and the product was vacuum-dried at 70° C. for 30 h to obtain a manganese phthalocyanine/carbon nanotube composite.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101038068A CN101254916B (en) | 2008-04-11 | 2008-04-11 | Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101038068A CN101254916B (en) | 2008-04-11 | 2008-04-11 | Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101254916A CN101254916A (en) | 2008-09-03 |
CN101254916B true CN101254916B (en) | 2010-04-07 |
Family
ID=39890091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101038068A Expired - Fee Related CN101254916B (en) | 2008-04-11 | 2008-04-11 | Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101254916B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102181179B (en) * | 2011-03-15 | 2013-06-26 | 同济大学 | Method for preparing soluble substituted phthalocyanine-carbon nanotube composite photosensitive material by click chemistry |
CN102323318B (en) * | 2011-05-26 | 2014-02-19 | 首都师范大学 | An enzyme electrode for detecting hydrogen peroxide and its preparation method |
CN102313768A (en) * | 2011-07-21 | 2012-01-11 | 首都师范大学 | Modified glassy carbon electrode (GCE) capable of simultaneously determining dopamine and uric acid in presence of ascorbic acid as well as preparation method and application thereof |
CN102336759A (en) * | 2011-07-21 | 2012-02-01 | 首都师范大学 | Preparation method of planar binuclear metal phthalocyanine coordination compound |
CN103293822B (en) * | 2013-05-16 | 2015-10-28 | 中北大学 | The preparation method of a kind of nonlinear optics carbon nano-particle and phthalocyanine-like compound hybrid material |
CN103787302B (en) * | 2014-01-23 | 2015-06-10 | 黑龙江大学 | Preparation method of tetrafluoropropoxy-substituted metal phthalocyanine/carbon nanotube composite material |
CN103992327B (en) * | 2014-04-08 | 2016-06-01 | 许昌学院 | Solvent thermal reaction one step prepares the method for manganese phthalocyanine crystal |
CN104176726B (en) * | 2014-09-05 | 2016-02-03 | 黑龙江大学 | The preparation method of N, N-dialkyl group substituted metal phthalocyanine/carbon nano tube compound material |
CN107722357A (en) * | 2017-10-19 | 2018-02-23 | 云南江磷集团股份有限公司 | Phthalocyanine microencapsulation Red Phosphorus Flame Retardant product and preparation method |
CN109232906A (en) * | 2018-09-20 | 2019-01-18 | 福建师范大学 | Polyfluoroalkyl axial substituted silicon (IV) phthalocyanine-carbon nanotube supramolecular system and the preparation method and application thereof |
CN114904531B (en) * | 2022-05-23 | 2024-01-19 | 天津大学 | Supported non-noble metal single atom catalyst for oxidative dehydrogenation coupling reaction and its preparation method and application |
CN115896861A (en) * | 2022-09-27 | 2023-04-04 | 浙江工业大学 | Preparation method and application of monatomic cobalt polymer mixed nitrogen-doped carbon electrocatalyst |
CN116024601A (en) * | 2022-12-28 | 2023-04-28 | 大连理工大学 | A carbon nanotube-based porous hollow fiber electrode for electrocatalytic reduction reaction and its application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1512540A (en) * | 2002-12-30 | 2004-07-14 | 中国科学院化学研究所 | Carbon nanotube/carbon nitride nanotube with nano-junction and its preparation method and application |
US6808746B1 (en) * | 1999-04-16 | 2004-10-26 | Commonwealth Scientific and Industrial Research Organisation Campell | Multilayer carbon nanotube films and method of making the same |
CN1816552A (en) * | 2003-07-02 | 2006-08-09 | 兰爱克谢斯德国有限责任公司 | Method for producing alkoxy-substituted phthalocyanins |
CN1994625A (en) * | 2006-12-29 | 2007-07-11 | 浙江大学 | Nano Au particle evenly coated carbon nanotube compound in-situ solution preparation method |
CN101100563A (en) * | 2007-05-24 | 2008-01-09 | 同济大学 | A kind of asymmetric phthalocyanine and carbon nanotube nanocomposite material and preparation method thereof |
-
2008
- 2008-04-11 CN CN2008101038068A patent/CN101254916B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6808746B1 (en) * | 1999-04-16 | 2004-10-26 | Commonwealth Scientific and Industrial Research Organisation Campell | Multilayer carbon nanotube films and method of making the same |
CN1512540A (en) * | 2002-12-30 | 2004-07-14 | 中国科学院化学研究所 | Carbon nanotube/carbon nitride nanotube with nano-junction and its preparation method and application |
CN1816552A (en) * | 2003-07-02 | 2006-08-09 | 兰爱克谢斯德国有限责任公司 | Method for producing alkoxy-substituted phthalocyanins |
CN1994625A (en) * | 2006-12-29 | 2007-07-11 | 浙江大学 | Nano Au particle evenly coated carbon nanotube compound in-situ solution preparation method |
CN101100563A (en) * | 2007-05-24 | 2008-01-09 | 同济大学 | A kind of asymmetric phthalocyanine and carbon nanotube nanocomposite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101254916A (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101254916B (en) | Method for In Situ Synthesis of Metal Phthalocyanine/Carbon Nanotube Composite | |
JP7489694B2 (en) | Small molecule-based free-standing films and hybrid materials | |
Wang et al. | Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance | |
JP5254608B2 (en) | Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials | |
Wang et al. | Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol | |
KR101638049B1 (en) | Nanocomposites with core-shell structure comprising carbon nanoparticles and metal-organic frameworks, a preparation method thereof and a composition for absorbing gas comprising the same | |
Lee et al. | Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite | |
US9266738B2 (en) | Organometallic chemistry of extended periodic II-electron systems | |
Prabhavathi et al. | Synthesis, characterization and photoluminescence properties of tetra (aminophenyl) porphyrin covalently linked to multi-walled carbon nanotubes | |
Lee et al. | Polypyrrole-carbon nanotube composite films synthesized through gas-phase polymerization | |
Cui et al. | Doped polyaniline/multiwalled carbon nanotube composites: Preparation and characterization | |
Nosek et al. | 2, 2′-bipyridine-functionalized single-walled carbon nanotubes: the formation of transition metal complexes and their charge transfer effects | |
Xu et al. | Synthesis and characterization of HCl doped polyaniline grafted multi-walled carbon nanotubes core-shell nano-composite | |
Martis et al. | Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes | |
Yao et al. | Preparation and characterization of soluble and DBSA doped polyaniline grafted multi-walled carbon nanotubes nano-composite | |
Yeh et al. | Noncovalent interaction between gold nanoparticles and multiwalled carbon nanotubes via an intermediatory | |
Selvam et al. | Synthesis of carbon allotropes in nanoscale regime | |
Forati-Nezhad et al. | Affecting the morphology of silver deposition on carbon nanotube surface: From nanoparticles to dendritic (tree-like) nanostructures | |
KR20100134479A (en) | Carbon nanotube powder coated with metal nanoparticles and method for manufacturing same | |
Choi et al. | Immobilization of platinum nanoparticles on 3, 4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity | |
Kędzierski et al. | Single-Wall Carbon Nanohorn Langmuir–Schaefer Films | |
Basiuk et al. | Solvent-free functionalization of carbon nanomaterials | |
Yang et al. | Facile preparation of asymmetric phthalocyanine/multi-walled carbon nanotube hybrid material by in situ click chemistry | |
Morelos-Gómez et al. | Modified carbon nanotubes | |
Goh et al. | Influence of dispersed carbon nanotubes on the optical and structural properties of a conjugated polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100407 Termination date: 20130411 |