CN101254484A - An efficient and clean beneficiation method for complex sulfide ores - Google Patents
An efficient and clean beneficiation method for complex sulfide ores Download PDFInfo
- Publication number
- CN101254484A CN101254484A CNA2007100354824A CN200710035482A CN101254484A CN 101254484 A CN101254484 A CN 101254484A CN A2007100354824 A CNA2007100354824 A CN A2007100354824A CN 200710035482 A CN200710035482 A CN 200710035482A CN 101254484 A CN101254484 A CN 101254484A
- Authority
- CN
- China
- Prior art keywords
- ton
- addition
- ammonium
- amount
- ferrous sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 18
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 52
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 52
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 52
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 52
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000001099 ammonium carbonate Substances 0.000 claims abstract description 42
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 25
- 239000011593 sulfur Substances 0.000 claims abstract description 25
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims abstract description 24
- 235000011130 ammonium sulphate Nutrition 0.000 claims abstract description 24
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims abstract description 21
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims abstract description 21
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 235000012501 ammonium carbonate Nutrition 0.000 claims abstract description 21
- 239000012141 concentrate Substances 0.000 claims abstract description 17
- 239000003814 drug Substances 0.000 claims abstract description 16
- 238000005188 flotation Methods 0.000 claims abstract description 15
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 12
- 235000010755 mineral Nutrition 0.000 claims abstract description 12
- 239000011707 mineral Substances 0.000 claims abstract description 12
- 229910052569 sulfide mineral Inorganic materials 0.000 claims abstract description 8
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012991 xanthate Substances 0.000 claims abstract description 7
- 239000012190 activator Substances 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229940010514 ammonium ferrous sulfate Drugs 0.000 claims description 6
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 5
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 5
- 229940116411 terpineol Drugs 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 6
- 238000004140 cleaning Methods 0.000 claims 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims 1
- 229910052952 pyrrhotite Inorganic materials 0.000 abstract description 15
- 229910052683 pyrite Inorganic materials 0.000 abstract description 5
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 abstract description 5
- 239000011028 pyrite Substances 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 3
- 231100000956 nontoxicity Toxicity 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- TUZCOAQWCRRVIP-UHFFFAOYSA-N butoxymethanedithioic acid Chemical compound CCCCOC(S)=S TUZCOAQWCRRVIP-UHFFFAOYSA-N 0.000 description 7
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 7
- 229910052951 chalcopyrite Inorganic materials 0.000 description 6
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-O butylazanium Chemical compound CCCC[NH3+] HQABUPZFAYXKJW-UHFFFAOYSA-O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910001608 iron mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000001612 separation test Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种复杂硫化矿的高效清洁选矿方法。其步骤是:用草酸、碳酸铵、碳酸氢铵、硫酸铵、硫酸氢铵、硫酸亚铁的一种或几种组合作活化剂,再用黄药、黑药、白药、硫氨酯等硫化矿捕收剂捕收,加入BC搅拌均匀后进行硫化矿浮选,得到硫精矿。本发明的选矿方法具有选别指标高,清洁无毒的特点,适用于浮选复杂的硫化矿,特别是矿物嵌布粒度较细,含磁黄铁矿和黄铁矿的复杂硫化矿物的浮选。The invention discloses an efficient and clean beneficiation method for complex sulfide ores. The steps are: use one or more combinations of oxalic acid, ammonium carbonate, ammonium bicarbonate, ammonium sulfate, ammonium bisulfate, and ferrous sulfate as an activator, and then vulcanize with xanthate, black medicine, white medicine, sulfurethane, etc. Collect ore collector, add BC and stir evenly, then carry out sulfide ore flotation to obtain sulfur concentrate. The ore dressing method of the present invention has the characteristics of high sorting index, cleanness and non-toxicity, and is suitable for flotation of complex sulfide ores, especially for flotation of complex sulfide minerals containing pyrrhotite and pyrite with finer mineral embedded particle size. select.
Description
技术领域 technical field
本发明涉及复杂硫化矿物浮选领域,特别涉及一种复杂硫化矿的高效清洁选矿方法。The invention relates to the field of flotation of complex sulfide minerals, in particular to an efficient and clean beneficiation method for complex sulfide minerals.
背景技术 Background technique
传统硫化矿的活化剂一般为硫酸和硫酸铜,由于硫酸既作pH调整剂,又作为硫化矿物的活化剂,因此用量比较高,导致浮选过程中有大量硫化氢等有害气体产生,恶化了现场操作环境,对安全生产非常不利。The activators of traditional sulfide minerals are generally sulfuric acid and copper sulfate. Since sulfuric acid is used not only as a pH regulator, but also as an activator of sulfide minerals, the dosage is relatively high, resulting in the generation of a large amount of harmful gases such as hydrogen sulfide during the flotation process, which deteriorates the The on-site operating environment is very unfavorable to safe production.
发明内容 Contents of the invention
为了解决现有硫化矿浮选过程会产生大量硫化氢等有害气体的技术问题,本发明提供一种工艺简单、高效无毒的复杂硫化矿的高效清洁选矿方法。In order to solve the technical problem that the existing sulfide ore flotation process will produce a large amount of harmful gases such as hydrogen sulfide, the present invention provides a simple, efficient and non-toxic complex sulfide ore efficient and clean beneficiation method.
本发明解决上述技术问题的技术方案包括以下步骤:The technical scheme that the present invention solves the problems of the technologies described above comprises the following steps:
a、将硫化矿物碎磨至-0.045mm占90%,加水调浆;a. Grind the sulfide minerals to -0.045mm to account for 90%, add water to adjust the slurry;
b、加草酸、碳酸铵、碳酸氢铵、硫酸铵、硫酸氢铵中的任一种,或草酸和硫酸亚铁、碳酸氢铵和硫酸亚铁、碳酸铵和硫酸亚铁、硫酸氢铵和硫酸亚铁中的任一组合,或碳酸氢铵和硫酸亚铁、碳酸铵和硫酸亚铁、硫酸氢铵和硫酸亚铁、硫酸铵和硫酸亚铁中的任一种和草酸组合,或加碳酸铵、碳酸氢铵、硫酸亚铁的组合,或加硫酸铵、硫酸氢铵和硫酸亚铁的组合为活化剂,并搅拌均匀;b. Add any one of oxalic acid, ammonium carbonate, ammonium bicarbonate, ammonium sulfate, ammonium bisulfate, or oxalic acid and ferrous sulfate, ammonium bicarbonate and ferrous sulfate, ammonium carbonate and ferrous sulfate, ammonium bisulfate and Any combination of ferrous sulfate, or any combination of ammonium bicarbonate and ferrous sulfate, ammonium carbonate and ferrous sulfate, ammonium bisulfate and ferrous sulfate, ammonium sulfate and ferrous sulfate and oxalic acid, or The combination of ammonium carbonate, ammonium bicarbonate and ferrous sulfate, or the combination of ammonium sulfate, ammonium bisulfate and ferrous sulfate is used as the activator and stirred evenly;
c、加黄药、黑药、白药、硫铵酯中的一种或几种组合作为药剂;c. Add one or more combinations of xanthate, black medicine, white medicine and ammonium sulfate as medicament;
d、加松醇油或2#油,搅拌均匀后进行硫化矿浮选,得到的泡沫产品为硫精矿。d. Add terpineol oil or 2# oil, stir evenly and carry out sulfide ore flotation, and the foam product obtained is sulfur concentrate.
上述的复杂硫化矿的高效清洁选矿方法中,所述步骤a中加水调浆至矿浆浓度为30%。In the above-mentioned high-efficiency clean beneficiation method for complex sulfide ores, in the step a, water is added to adjust the pulp to a pulp concentration of 30%.
上述的复杂硫化矿的高效清洁选矿方法中,所述步骤b中草酸的加入量为500-8000克/吨;碳酸铵加入量为600-8000克/吨;碳酸氢铵加入量为600-8000克/吨;硫酸铵加入量为300-6000克/吨;硫酸氢铵加入量为300-6000克/吨;草酸加入量为500-8000克/吨、硫酸亚铁加入量为300-3000克/吨;碳酸氢铵加入量为600-8000克/吨、硫酸亚铁加入量为300-3000克/吨;碳酸铵加入量为600-8000克/吨、硫酸亚铁加入量为300-3000克/吨;硫酸氢铵加入量为300-6000克/吨、硫酸亚铁加入量为300-3000克/吨;草酸加入量为500-8000克/吨、碳酸氢铵加入量为600-8000克/吨、硫酸亚铁加入量为300-1500克/吨;草酸加入量为500-8000克/吨、碳酸铵加入量为600-8000克/吨、硫酸亚铁加入量为300-1500克/吨;草酸加入量为500-8000克/吨、硫酸氢铵加入量为300-6000克/吨、硫酸亚铁加入量为300-1500克/吨;草酸加入量为500-8000克/吨、硫酸铵加入量为300-6000克/吨、硫酸亚铁加入量为300-1500克/吨;碳酸铵加入量为600-8000克/吨、碳酸氢铵加入量为600-8000克/吨、硫酸亚铁加入量为300-1500克/吨;硫酸铵加入量为300-6000克/吨、硫酸氢铵加入量为300-6000克/吨、硫酸亚铁加入量为300-1500克/吨。In the above-mentioned high-efficiency clean beneficiation method for complex sulfide ores, the addition of oxalic acid in the step b is 500-8000 g/ton; the addition of ammonium carbonate is 600-8000 grams/ton; the addition of ammonium bicarbonate is 600-8000 g/ton; the amount of ammonium sulfate is 300-6000 g/ton; the amount of ammonium bisulfate is 300-6000 g/ton; the amount of oxalic acid is 500-8000 g/ton; /ton; the amount of ammonium bicarbonate added is 600-8000 g/ton, the amount of ferrous sulfate added is 300-3000 g/ton; the amount of ammonium carbonate added is 600-8000 g/ton, the amount of ferrous sulfate added is 300-3000 gram/ton; the amount of ammonium bisulfate added is 300-6000 g/ton, the amount of ferrous sulfate added is 300-3000 g/ton; the amount of oxalic acid added is 500-8000 g/ton, the amount of ammonium bicarbonate added is 600-8000 gram/ton, the amount of ferrous sulfate added is 300-1500 g/ton; the amount of oxalic acid added is 500-8000 g/ton, the amount of ammonium carbonate added is 600-8000 g/ton, and the amount of ferrous sulfate added is 300-1500 g / ton; the amount of oxalic acid added is 500-8000 g/ton, the amount of ammonium bisulfate added is 300-6000 g/ton, the amount of ferrous sulfate added is 300-1500 g/ton; the amount of oxalic acid added is 500-8000 g/ton The amount of ammonium sulfate added is 300-6000 g/ton, the amount of ferrous sulfate added is 300-1500 g/ton; the amount of ammonium carbonate added is 600-8000 g/ton, and the amount of ammonium bicarbonate added is 600-8000 g/ton The amount of ferrous sulfate added is 300-1500 g/ton; the amount of ammonium sulfate added is 300-6000 g/ton; the amount of ammonium bisulfate added is 300-6000 g/ton; Ton.
上述的复杂硫化矿的高效清洁选矿方法中,所述步骤c中黄药加入量为40-300克/吨;黑药加入量为20-300克/吨;白药加入量为10-200克/吨;硫铵酯加入量为15-100克/吨。In the above-mentioned high-efficiency clean beneficiation method for complex sulfide ores, the addition of xanthate in the step c is 40-300 g/ton; the addition of black medicine is 20-300 grams/ton; the addition of white medicine is 10-200 grams/ton tons; the addition of ammonium sulfate is 15-100 g/ton.
上述的复杂硫化矿的高效清洁选矿方法中,所述步骤d中松醇油或者2#油的加入量为60-120克/吨。In the above-mentioned high-efficiency clean beneficiation method for complex sulfide ores, the amount of terpineol oil or 2# oil added in the step d is 60-120 g/ton.
本发明的技术效果在于:本发明具有对硫化矿活化效果好,选别指标高,清洁无毒的优点。适用于复杂硫化矿,特别是含磁黄铁矿、黄铁矿高,矿物嵌布粒度微细的复杂硫化矿的活化浮选。The technical effect of the present invention is that: the present invention has the advantages of good activation effect on sulfide ore, high sorting index, clean and non-toxic. It is suitable for the activation flotation of complex sulfide ores, especially complex sulfide ores containing pyrrhotite and high pyrite, and fine-grained mineral distribution.
下面附图和具体实施例对发明作进一步的说明。The following drawings and specific embodiments further illustrate the invention.
附图说明 Description of drawings
图1为本发明实施例1的流程图。Fig. 1 is a flowchart of Embodiment 1 of the present invention.
图2为本发明实施例2的流程图。Fig. 2 is a flowchart of Embodiment 2 of the present invention.
图3为本发明实施例3的流程图。Fig. 3 is a flow chart of Embodiment 3 of the present invention.
具体实施方式 Detailed ways
实施例1Example 1
采用本发明所述的高效清洁选硫方法,对某矿山的铜尾选硫进行了小型试验和工业试验,取得了较好的选别指标。该矿石中的硫元素主要以黄铜矿、磁黄铁矿和黄铁矿三种形式存在。黄铜矿与脉石关系密切,以中、细粒嵌布为主的粗、中、细微粒极不均匀嵌布。黄铁矿嵌布粒度相对比较粗。磁铁矿与磁黄铁矿嵌布粒度较细。总之,其矿石属细粒嵌布的难选多金属矿,其中含铜1.07%、硫18.13%、铁32.61%的原矿,经滑石浮选、铜部分优先浮选、铜硫混合浮选、混合粗选精矿及铜精矿I尾矿再磨至-0.045mm占90%、铜硫分离浮选,分离尾矿做为选硫的给矿。对硫浮选浓度只有15-25%的现场样浓缩到30%,加入表1所列的药剂配方,经一粗一精一扫小型闭路试验(流程图见图1),获得了含硫品位为35%以上,回收率超过87%的硫精矿。By adopting the high-efficiency and clean sulfur separation method described in the present invention, a small-scale test and an industrial test were carried out on copper tailing sulfur separation in a certain mine, and a good separation index was obtained. The sulfur element in this ore mainly exists in three forms: chalcopyrite, pyrrhotite and pyrite. Chalcopyrite is closely related to gangue, and the coarse, medium and fine particles mainly distributed in medium and fine particles are extremely unevenly distributed. The particle size of pyrite embedding is relatively coarse. The distribution of magnetite and pyrrhotite is finer. In short, its ore is a refractory polymetallic ore with fine particles embedded in it. The raw ore containing 1.07% copper, 18.13% sulfur, and 32.61% iron has undergone talc flotation, copper partial flotation, copper-sulfur mixed flotation, mixed The roughing concentrate and copper concentrate I tailings are then ground to -0.045mm, accounting for 90%, copper and sulfur separation and flotation, and the separated tailings are used as ore feed for sulfur separation. Concentrate the on-site sample with only 15-25% sulfur flotation concentration to 30%, add the medicament formula listed in Table 1, and obtain the sulfur-containing grade through a small-scale closed-circuit test (flow chart shown in Figure 1) The sulfur concentrate is more than 35% and the recovery rate is more than 87%.
实施例2Example 2
某铜矿原矿含硫低,硫铜比为2∶1,可回收的有效硫仅为1%左右。磁黄铁矿(Fe5S6)是矿石中的主要硫化矿物之一。主要呈不规则状嵌布于脉石矿物中或磁铁矿与脉石矿物间隙中,胶结交代磁铁矿,二者关系密切,其次沿脉石矿物裂隙或间隙充填呈网脉状。磁黄铁矿与黄铜矿的嵌布关系也极为密切,在磁黄铁矿间隙中常可见黄铜矿充填,在磁黄铁矿中,有黄铜矿的微细包裹体。磁黄铁矿的粒度嵌布不均匀,主要在20~295μm之间,较黄铜矿粒度粗些。由于磁黄铁矿多为胶结交代磁铁矿的嵌布特征,细粒磁黄铁矿和磁铁矿不容易单体分离,再加上磁黄铁矿和磁铁矿都是亚铁磁性矿物,具有强磁性,二者在选别过程中互相干扰。另外,磁黄铁矿分子及晶体结构决定其可浮性差、表面易氧化及性脆易泥化等特性。采用本发明所述方法,对混合铜硫分离的铜尾矿进行了一次粗选、一次精选、两次扫选的小型闭路选硫试验(流程见图2)。将-0.074mm占85%的矿浆浓缩至30%,加入8000克/吨草酸、300克/吨硫酸氢铵、1500克/吨硫酸亚铁活化调浆后,用300克/吨的丁黄药和50克/吨丁铵黑药进行捕收,经一粗一精两扫小型闭路试验可以得到品位和回收率分别为36.12%和85.83%的硫精矿。The raw ore of a copper mine has low sulfur content, the ratio of sulfur to copper is 2:1, and the recoverable effective sulfur is only about 1%. Pyrrhotite (Fe 5 S 6 ) is one of the main sulfide minerals in the ore. It is mainly irregularly embedded in gangue minerals or in the gap between magnetite and gangue minerals, cementing and replacing magnetite, and the two are closely related, and secondly, it is filled in network veins along the gangue mineral cracks or gaps. The intercalation relationship between pyrrhotite and chalcopyrite is also very close, and chalcopyrite filling is often seen in the pyrrhotite gap, and there are fine inclusions of chalcopyrite in pyrrhotite. The particle size distribution of pyrrhotite is uneven, mainly between 20 and 295 μm, which is coarser than that of chalcopyrite. Since pyrrhotite is mostly embedded in cemented metasomatous magnetite, fine-grained pyrrhotite and magnetite are not easy to separate as monomers, and both pyrrhotite and magnetite are ferrimagnetic minerals , has strong magnetism, and the two interfere with each other during the sorting process. In addition, the molecular and crystal structure of pyrrhotite determine its characteristics such as poor buoyancy, easy oxidation on the surface, and brittleness and easy muddying. Using the method of the present invention, a small-scale closed-circuit sulfur separation test of one roughing, one beneficiation, and two scavenging was carried out on the copper tailings separated by mixed copper and sulfur (see Figure 2 for the flow chart). Concentrate the -0.074mm ore pulp accounting for 85% to 30%, add 8000g/ton oxalic acid, 300g/ton ammonium bisulfate, 1500g/ton ferrous sulfate to activate the slurry, and use 300g/ton butyl xanthate Collect with 50 g/ton butylammonium black medicine, and through a small closed-circuit test with one coarse one fine two sweeps, the sulfur concentrate with grade and recovery rate of 36.12% and 85.83% can be obtained respectively.
实施例3Example 3
新疆某矿铁矿石全铁含量为50.76%,硫含量为10.07%,矿石中铁矿物以磁铁矿为主,硫主要以磁黄铁矿和黄铁矿的形式存在。将原矿磨至-0.074mm占85%,进行了一粗两精弱磁选试验,获得了铁品位为64.07%、铁回收率为86.40%的铁精矿。但是由于磁性较强的磁黄铁矿在磁选过程中也富集于铁精矿中,致使铁精矿的硫含量升至10.47%,无法利用。为此,采用本发明所述方法,添加2000克/吨碳酸铵、1000克/吨碳酸氢铵和800克/吨硫酸亚铁活化后,用240克/吨丁黄药对该铁精矿进行一粗二精一扫反浮选脱硫。使铁精矿中硫含量降至0.25%,铁品位也提高至68%以上,得到了品位和回收率分别为36.52%和84.13%硫精矿。The total iron content of an iron ore in Xinjiang is 50.76%, and the sulfur content is 10.07%. The iron minerals in the ore are mainly magnetite, and the sulfur mainly exists in the form of pyrrhotite and pyrite. The raw ore was ground to -0.074mm to account for 85%, and a rough magnetic separation test was carried out, and an iron concentrate with an iron grade of 64.07% and an iron recovery rate of 86.40% was obtained. However, since the pyrrhotite with strong magnetism is also enriched in the iron concentrate during the magnetic separation process, the sulfur content of the iron concentrate rises to 10.47%, which cannot be utilized. For this reason, adopt method of the present invention, after adding 2000 grams/ton ammonium carbonate, 1000 grams/ton ammonium bicarbonate and 800 grams/ton ferrous sulfate activation, carry out this iron concentrate with 240 grams/ton butyl xanthate One crude, two fine, one sweep, reverse flotation desulfurization. The sulfur content in the iron concentrate is reduced to 0.25%, the iron grade is also increased to over 68%, and the grade and recovery rate are respectively 36.52% and 84.13% sulfur concentrate.
表1Table 1
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100354824A CN101254484A (en) | 2007-07-31 | 2007-07-31 | An efficient and clean beneficiation method for complex sulfide ores |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100354824A CN101254484A (en) | 2007-07-31 | 2007-07-31 | An efficient and clean beneficiation method for complex sulfide ores |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101254484A true CN101254484A (en) | 2008-09-03 |
Family
ID=39889788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100354824A Pending CN101254484A (en) | 2007-07-31 | 2007-07-31 | An efficient and clean beneficiation method for complex sulfide ores |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101254484A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850296A (en) * | 2010-06-03 | 2010-10-06 | 广西现代职业技术学院 | Copper-separating process of high-sulfur copper ore containing higher silicate minerals of speckstone and like |
CN101972711A (en) * | 2010-10-18 | 2011-02-16 | 中蓝连海设计研究院 | Flotation process for charcoal clay-containing pyrite |
CN102652927A (en) * | 2012-03-21 | 2012-09-05 | 南京银茂铅锌矿业有限公司 | Beneficiation method of iron pyrite in lead-zinc flotation tailings |
CN103143446A (en) * | 2011-12-06 | 2013-06-12 | 广东省大宝山矿业有限公司 | Method for separating sulfur mineral in gangue after copper separation of copper and sulfur ores and in gangue after lead and zinc separation of lead and zinc ores |
CN103143434A (en) * | 2011-12-06 | 2013-06-12 | 广东省大宝山矿业有限公司 | Method for producing high-quality sulfur concentrate by pyrrhotite-containing tailing obtained by copper-sulfur ore copper separating pyrrhotite |
CN103316775A (en) * | 2013-05-21 | 2013-09-25 | 内蒙古科技大学 | High-sulfur magnetite concentrate efficient activated flotation desulfuration method |
CN104069937A (en) * | 2014-05-16 | 2014-10-01 | 马钢集团设计研究院有限责任公司 | Ore dressing method for removing pyrrhotite from iron ore |
CN104209192A (en) * | 2014-07-24 | 2014-12-17 | 昆明理工大学 | Mineral separation process for gangue mineral comprising calcium and magnesium |
CN104624380A (en) * | 2015-01-05 | 2015-05-20 | 云南铜业胜威化工有限公司 | Sulphur dressing method adopting titanium dioxide production waste water as activating agents |
CN105363564A (en) * | 2015-12-10 | 2016-03-02 | 内蒙古科技大学 | Desulfurization reagent for removing pyrrhotite in iron concentrate containing high sulphur by flotation method |
US9475067B2 (en) | 2013-11-26 | 2016-10-25 | North China University Of Science And Technology | Chalcopyrite ore beneficiation process and method |
CN106040420A (en) * | 2016-06-30 | 2016-10-26 | 云南澜沧铅矿有限公司 | Technology for recovering pyrite from flotation tailings of lead-zinc ore |
CN106964493A (en) * | 2017-05-03 | 2017-07-21 | 西安建筑科技大学 | The intensifying method of magnetic iron ore floatability and its application in a kind of high calcium water body |
CN107138287A (en) * | 2017-07-07 | 2017-09-08 | 沈阳有色金属研究院 | A kind of sulfide flotation combined capturing and collecting agent and purposes |
EP3015558A4 (en) * | 2013-06-27 | 2017-11-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Production method for low-sulfur iron ore |
US9885095B2 (en) | 2014-01-31 | 2018-02-06 | Goldcorp Inc. | Process for separation of at least one metal sulfide from a mixed sulfide ore or concentrate |
CN108144744A (en) * | 2016-12-06 | 2018-06-12 | 南京梅山冶金发展有限公司 | The method for floating of sulphur in a kind of association troilite |
CN108311292A (en) * | 2018-02-08 | 2018-07-24 | 高志 | A kind of sulfide flotation activator and preparation method thereof |
CN109261371A (en) * | 2018-08-01 | 2019-01-25 | 昆明理工大学 | A kind of pyritic activation method |
CN109701736A (en) * | 2019-02-27 | 2019-05-03 | 铜陵化工集团新桥矿业有限公司 | Complex ore ore-dressing technique containing magnetic iron ore and magnetic iron ore |
CN109954591A (en) * | 2019-04-23 | 2019-07-02 | 中南大学 | A flotation method for reducing sulfur content in magnetic iron concentrate |
CN109954589A (en) * | 2019-04-23 | 2019-07-02 | 中南大学 | A method for flotation recovery of sulfur concentrate from high alkali lead-zinc tailings |
CN110201798A (en) * | 2019-04-19 | 2019-09-06 | 铜陵有色金属集团股份有限公司 | A kind of DC activator and the acidless craft for sorting the sulphur, iron mineral that are inhibited by high-alkali and high calcium |
CN110394238A (en) * | 2019-07-08 | 2019-11-01 | 中国矿业大学(北京) | Copper, lead, zinc polymetal sulphide ore homogeneity active flotation method |
CN111495601A (en) * | 2020-04-20 | 2020-08-07 | 武汉理工大学 | A combined collector and method for removing pyrite and pyrrhotite from high pyrite concentrate |
CN112354659A (en) * | 2020-10-15 | 2021-02-12 | 湖南柿竹园有色金属有限责任公司 | Beneficiation method for high-sulfur refractory fine iron ore |
CN112827659A (en) * | 2021-01-03 | 2021-05-25 | 中南大学 | Agent and method for selective flotation separation of galena and sphalerite |
-
2007
- 2007-07-31 CN CNA2007100354824A patent/CN101254484A/en active Pending
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850296A (en) * | 2010-06-03 | 2010-10-06 | 广西现代职业技术学院 | Copper-separating process of high-sulfur copper ore containing higher silicate minerals of speckstone and like |
CN101972711B (en) * | 2010-10-18 | 2013-03-20 | 中蓝连海设计研究院 | Flotation process for charcoal clay-containing pyrite |
CN101972711A (en) * | 2010-10-18 | 2011-02-16 | 中蓝连海设计研究院 | Flotation process for charcoal clay-containing pyrite |
CN103143446A (en) * | 2011-12-06 | 2013-06-12 | 广东省大宝山矿业有限公司 | Method for separating sulfur mineral in gangue after copper separation of copper and sulfur ores and in gangue after lead and zinc separation of lead and zinc ores |
CN103143434A (en) * | 2011-12-06 | 2013-06-12 | 广东省大宝山矿业有限公司 | Method for producing high-quality sulfur concentrate by pyrrhotite-containing tailing obtained by copper-sulfur ore copper separating pyrrhotite |
CN102652927A (en) * | 2012-03-21 | 2012-09-05 | 南京银茂铅锌矿业有限公司 | Beneficiation method of iron pyrite in lead-zinc flotation tailings |
CN103316775A (en) * | 2013-05-21 | 2013-09-25 | 内蒙古科技大学 | High-sulfur magnetite concentrate efficient activated flotation desulfuration method |
CN103316775B (en) * | 2013-05-21 | 2014-09-03 | 内蒙古科技大学 | High-sulfur magnetite concentrate efficient activated flotation desulfuration method |
US10596578B2 (en) * | 2013-06-27 | 2020-03-24 | Kobe Steel, Ltd. | Production method for low-sulfur iron ore |
EP3015558A4 (en) * | 2013-06-27 | 2017-11-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Production method for low-sulfur iron ore |
US9475067B2 (en) | 2013-11-26 | 2016-10-25 | North China University Of Science And Technology | Chalcopyrite ore beneficiation process and method |
US11124857B2 (en) | 2014-01-31 | 2021-09-21 | Goldcorp Inc. | Process for separation of antimony and arsenic from a leach solution |
US10370739B2 (en) | 2014-01-31 | 2019-08-06 | Goldcorp, Inc. | Stabilization process for an arsenic solution |
US9885095B2 (en) | 2014-01-31 | 2018-02-06 | Goldcorp Inc. | Process for separation of at least one metal sulfide from a mixed sulfide ore or concentrate |
CN104069937A (en) * | 2014-05-16 | 2014-10-01 | 马钢集团设计研究院有限责任公司 | Ore dressing method for removing pyrrhotite from iron ore |
CN104209192A (en) * | 2014-07-24 | 2014-12-17 | 昆明理工大学 | Mineral separation process for gangue mineral comprising calcium and magnesium |
CN104624380A (en) * | 2015-01-05 | 2015-05-20 | 云南铜业胜威化工有限公司 | Sulphur dressing method adopting titanium dioxide production waste water as activating agents |
CN105363564A (en) * | 2015-12-10 | 2016-03-02 | 内蒙古科技大学 | Desulfurization reagent for removing pyrrhotite in iron concentrate containing high sulphur by flotation method |
CN105363564B (en) * | 2015-12-10 | 2017-10-13 | 内蒙古科技大学 | The desulfurization medicament of magnetic iron ore in flotation removing iron concentrate containing high sulphur |
CN106040420A (en) * | 2016-06-30 | 2016-10-26 | 云南澜沧铅矿有限公司 | Technology for recovering pyrite from flotation tailings of lead-zinc ore |
CN108144744A (en) * | 2016-12-06 | 2018-06-12 | 南京梅山冶金发展有限公司 | The method for floating of sulphur in a kind of association troilite |
CN106964493A (en) * | 2017-05-03 | 2017-07-21 | 西安建筑科技大学 | The intensifying method of magnetic iron ore floatability and its application in a kind of high calcium water body |
CN107138287B (en) * | 2017-07-07 | 2020-03-24 | 沈阳有色金属研究院 | Sulfide ore flotation combined collecting agent and application |
CN107138287A (en) * | 2017-07-07 | 2017-09-08 | 沈阳有色金属研究院 | A kind of sulfide flotation combined capturing and collecting agent and purposes |
CN108311292A (en) * | 2018-02-08 | 2018-07-24 | 高志 | A kind of sulfide flotation activator and preparation method thereof |
CN109261371A (en) * | 2018-08-01 | 2019-01-25 | 昆明理工大学 | A kind of pyritic activation method |
CN109701736A (en) * | 2019-02-27 | 2019-05-03 | 铜陵化工集团新桥矿业有限公司 | Complex ore ore-dressing technique containing magnetic iron ore and magnetic iron ore |
CN110201798A (en) * | 2019-04-19 | 2019-09-06 | 铜陵有色金属集团股份有限公司 | A kind of DC activator and the acidless craft for sorting the sulphur, iron mineral that are inhibited by high-alkali and high calcium |
CN110201798B (en) * | 2019-04-19 | 2021-11-26 | 铜陵有色金属集团股份有限公司 | DC activator and acid-free process for sorting sulfur and iron minerals inhibited by high alkali and high calcium |
CN109954589A (en) * | 2019-04-23 | 2019-07-02 | 中南大学 | A method for flotation recovery of sulfur concentrate from high alkali lead-zinc tailings |
CN109954591A (en) * | 2019-04-23 | 2019-07-02 | 中南大学 | A flotation method for reducing sulfur content in magnetic iron concentrate |
CN110394238A (en) * | 2019-07-08 | 2019-11-01 | 中国矿业大学(北京) | Copper, lead, zinc polymetal sulphide ore homogeneity active flotation method |
CN110394238B (en) * | 2019-07-08 | 2020-09-04 | 中国矿业大学(北京) | Homogeneous activation flotation method for copper-lead-zinc multi-metal sulfide ore |
CN111495601A (en) * | 2020-04-20 | 2020-08-07 | 武汉理工大学 | A combined collector and method for removing pyrite and pyrrhotite from high pyrite concentrate |
CN112354659A (en) * | 2020-10-15 | 2021-02-12 | 湖南柿竹园有色金属有限责任公司 | Beneficiation method for high-sulfur refractory fine iron ore |
CN112827659A (en) * | 2021-01-03 | 2021-05-25 | 中南大学 | Agent and method for selective flotation separation of galena and sphalerite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101254484A (en) | An efficient and clean beneficiation method for complex sulfide ores | |
CN101585017B (en) | Ore-selecting method of difficultly-selected copper zinc sulphur ore | |
CN100537042C (en) | Flotation method of iron-bearing sphalerite and pyrrhotite type complex lead-zinc-silver sulfide ores | |
CN109174459B (en) | Beneficiation method for high-sulfur lead-zinc ore in high-temperature environment | |
CN106170343B (en) | A kind of beneficiation method of chalcopyrite | |
CN102423728A (en) | Flotation method for copper-containing nickel sulfide ore | |
CN105797868B (en) | The beneficiation method of low-grade zinc oxide ore is recycled from lead-zinc ore floating tailing | |
CN110586337A (en) | Low-alkali flotation-followed-magnetism-based beneficiation method for pyrite containing magnetism | |
CN105214837B (en) | A kind of copper sulphur ore deposit beneficiation method rich in magnetic iron ore and pyrite | |
CN107252731A (en) | One kind contains marmatite, magnetic iron ore fine grain teeth cloth type lead zinc sulphur ore beneficiation method | |
CN101537388A (en) | Separation method for bismuth-molybdenum-copper-sulfide mixed concentrate | |
CN101733194B (en) | Ore dressing method of low-grade manganese carbonate ore | |
KR20220033518A (en) | Beneficiation method of pyrite by flotation after linear magnetism of low alkali | |
CN102151607A (en) | Joint magnetic flotation sorting method for complex magnetic pyrite copper-containing pyrite ore | |
CN101985113A (en) | Beneficiation method for copper nickel sulfide ore | |
CN101134180A (en) | Flotation method of high-iron muddy molybdenum-lead ore | |
CN103480500A (en) | Flotation method for carbonaceous matter copper-cobalt ore | |
CN107243409A (en) | A kind of high-sulfur magnetic iron ore puies forward the beneficiation method of iron sulfur reduction | |
CN104138807A (en) | Beneficiation method for copper-nickel sulfide ore containing layered easy-to-float silicate gangue | |
CN104259013A (en) | Inhibitor for separating blue chalcocite from pyrite and beneficiation method thereof | |
CN106391318A (en) | A kind of separation method of copper oxide lead polymetallic ore with high mud | |
CN102274797A (en) | Sorting process capable of improving sorting indexes of siderite-containing ore | |
CN101524669A (en) | Ore-separating method for copper mineral existing in halide mode | |
CN101797534B (en) | Method for desulphurizing cassiterite polymetallic sulphide ore tailing by flotation step by step | |
CN103008115A (en) | Inhibitor of pyrite and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080903 |