CN101249461B - Method for detecting service life of resin in ion exchange resin tower - Google Patents
Method for detecting service life of resin in ion exchange resin tower Download PDFInfo
- Publication number
- CN101249461B CN101249461B CN2007101964362A CN200710196436A CN101249461B CN 101249461 B CN101249461 B CN 101249461B CN 2007101964362 A CN2007101964362 A CN 2007101964362A CN 200710196436 A CN200710196436 A CN 200710196436A CN 101249461 B CN101249461 B CN 101249461B
- Authority
- CN
- China
- Prior art keywords
- exchange resin
- ion exchange
- liquid
- detection method
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 91
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000011347 resin Substances 0.000 title abstract description 47
- 229920005989 resin Polymers 0.000 title abstract description 47
- 238000005070 sampling Methods 0.000 claims abstract description 76
- 239000007788 liquid Substances 0.000 claims abstract description 67
- 238000001514 detection method Methods 0.000 claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229920006395 saturated elastomer Polymers 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- -1 particulates Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种水质检测装置及其使用寿命的检测方法,尤其涉及离子交换树脂塔及其树脂的使用寿命的检测方法和检测系统。The invention relates to a water quality detection device and a detection method for its service life, in particular to an ion exchange resin tower and a detection method and a detection system for the service life of its resin.
背景技术Background technique
纯水系统能去除水中的不纯物,包括悬浮物、微粒子、有机物、微生物、电解质及气体等,借此将纯水的电阻值提高至极限程度,以确保水质的高纯度。一般来说,纯水的电阻值在18MΩ.以上,阻值越高表示水中离子越少,即水质越好。The pure water system can remove impurities in water, including suspended solids, particulates, organic matter, microorganisms, electrolytes and gases, etc., thereby increasing the resistance value of pure water to the limit to ensure high purity of water quality. Generally speaking, the resistance value of pure water is above 18MΩ. The higher the resistance value, the fewer ions in the water, that is, the better the water quality.
离子交换树脂塔是纯水系统中能有效去除水中离子的单元。以阳离子交换树脂为例,其以阳离子官能基来交换水中的钙镁等阳离子,借此来降低水源内的钙镁离子的浓度。在离子交换的过程中,树脂会逐渐吸附水中钙镁等阳离子,累积至一定量达到饱和就无法再进行离子交换,此时,需要对树脂进行更换。The ion exchange resin tower is a unit that can effectively remove ions in water in the pure water system. Taking cation exchange resin as an example, it uses cationic functional groups to exchange cations such as calcium and magnesium in water, thereby reducing the concentration of calcium and magnesium ions in the water source. In the process of ion exchange, the resin will gradually absorb cations such as calcium and magnesium in water, and the ion exchange will no longer be possible when the accumulated amount reaches saturation. At this time, the resin needs to be replaced.
影响树脂使用寿命的因素相当多,如前面处理的水质状况、树脂水流量等,因此,如果参照厂商所建议的使用寿命来进行树脂的更换,往往在树脂没有达到饱和前,就进行更换,造成成本的增加。因此,如果能得知树脂达到饱和的确切时间,将有助于成本的节约。There are many factors that affect the service life of the resin, such as the water quality of the previous treatment, the flow rate of the resin water, etc. Therefore, if the resin is replaced according to the service life recommended by the manufacturer, it is often replaced before the resin reaches saturation, resulting in cost increase. Therefore, knowing the exact time when the resin reaches saturation will help save costs.
关于测量树脂饱和度的方式,现有技术揭露了一种利用设置于槽体中的探针来测量树脂饱和度的方法,这种方法是利用探针能检测周围水的电阻值,当此电阻值低于某一设定值时,表示树脂已饱和而失去与水进行离子交换的能力,因此,需要对树脂进行更换。Regarding the method of measuring resin saturation, the prior art discloses a method of measuring resin saturation by using a probe arranged in a tank. This method uses the probe to detect the resistance value of the surrounding water. When the resistance When the value is lower than a certain set value, it means that the resin is saturated and loses the ability to exchange ions with water, so the resin needs to be replaced.
然而,由于上述的探针位于槽体中,因此,仅能借助水的电阻值来判断树脂的饱和度,而无法进行水的取样以进一步分析其它化学性质或物理性质,因此,当水中的污染物(contamination)无法被探针所检测出时,现有的方法便无法检测出由于这些污染物所造成的水质恶化。Yet, because above-mentioned probe is positioned at tank body, therefore, can only judge the saturation degree of resin by the electric resistance value of water, and can't carry out the sampling of water to further analyze other chemical property or physical property, therefore, when the pollution in water When the contamination cannot be detected by the probe, the existing methods cannot detect the deterioration of water quality caused by these pollutants.
发明内容Contents of the invention
本发明的一个目的在于提供一种离子交换树脂塔,其具有取样管,以方便液体流经离子交换树脂的同时,对液体进行取样。An object of the present invention is to provide an ion exchange resin tower, which has a sampling tube, so as to facilitate sampling of the liquid while the liquid flows through the ion exchange resin.
本发明的另一个目的在于提供一种检测系统,其能检测取样管中的液体,以确保水质。Another object of the present invention is to provide a detection system which can detect the liquid in the sampling pipe to ensure the water quality.
本发明的再一个目的在于提供一种检测方法,其能根据取样管所取样的液体,分析树脂塔中离子交换树脂的使用寿命(或剩余寿命)。Another object of the present invention is to provide a detection method, which can analyze the service life (or remaining life) of the ion exchange resin in the resin tower according to the liquid sampled by the sampling tube.
为解决本发明的上述目的,本发明提供了一种离子交换树脂塔,用于对一液体进行处理,该离子交换树脂塔包括一槽体、一供给管路、一输出管路以及多个取样管。其中,槽体具有一离子交换树脂,以吸附液体中的离子。供给管路与槽体的一顶部连接,以将液体导入槽体。输出管路则与槽体的一底部连接,以将处理后的液体从槽体导出。至于多个取样管则设置于槽体的一侧壁上,且各取样管分别设置在不同的水平高度上,以对离子交换树脂中的液体进行取样。To solve the above object of the present invention, the present invention provides an ion exchange resin tower for processing a liquid, the ion exchange resin tower includes a tank body, a supply pipeline, an output pipeline and a plurality of sampling Tube. Wherein, the tank body has an ion exchange resin to absorb ions in the liquid. The supply pipe is connected to a top of the tank to introduce liquid into the tank. The output pipeline is connected with a bottom of the tank to lead the treated liquid out of the tank. As for a plurality of sampling tubes, they are arranged on the side wall of the tank body, and each sampling tube is respectively arranged on different levels, so as to sample the liquid in the ion exchange resin.
在本发明的实施例中,上述的液体包括水。In an embodiment of the present invention, the aforementioned liquid includes water.
在本发明的实施例中,上述的离子交换树脂塔,还包括多个与供给管路连接的分配管,位于离子交换树脂与供给管路之间。In an embodiment of the present invention, the above-mentioned ion exchange resin tower further includes a plurality of distribution pipes connected to the supply pipeline, located between the ion exchange resin and the supply pipeline.
在本发明的实施例中,上述的离子交换树脂塔,还包括多个与输出管路连接的集水管,位于离子交换树脂与输出管路之间。In an embodiment of the present invention, the above-mentioned ion exchange resin tower further includes a plurality of water collecting pipes connected to the output pipeline, located between the ion exchange resin and the output pipeline.
在本发明的实施例中,上述的取样管实质上分布于同一条垂直线上。In an embodiment of the present invention, the above-mentioned sampling tubes are substantially distributed on the same vertical line.
在本发明的实施例中,上述的取样管实质上分布于不同条垂直线上。In an embodiment of the present invention, the aforementioned sampling tubes are substantially distributed on different vertical lines.
在本发明的实施例中,上述的取样管之间的水平高度差异实质上相同。In an embodiment of the present invention, the above-mentioned level differences between the sampling tubes are substantially the same.
在本发明的实施例中,上述的取样管可自槽体的侧壁取离。In an embodiment of the present invention, the above-mentioned sampling tube can be removed from the side wall of the tank.
在本发明的实施例中,上述的离子交换树脂塔还包括一末端取样管,对应于输出管路与槽体的连接点。In an embodiment of the present invention, the above-mentioned ion exchange resin tower further includes an end sampling pipe corresponding to the connection point between the output pipeline and the tank body.
为解决本发明的上述目的,本发明还提供一种检测系统,该检测系统包括上述的离子交换树脂塔与一检测单元。检测单元用于检测离子交换树脂塔中取样管所取样的液体。To solve the above object of the present invention, the present invention also provides a detection system, which includes the above-mentioned ion exchange resin tower and a detection unit. The detection unit is used for detecting the liquid sampled by the sampling pipe in the ion exchange resin tower.
在本发明的实施例中,所述的检测单元包括探针电极。In an embodiment of the present invention, the detection unit includes probe electrodes.
为解决本发明的上述目的,本发明还提供一种检测方法,用于计算上述离子交换树脂塔中的离子交换树脂的使用寿命(或剩余寿命),此检测方式包括两个步骤。首先,根据各取样管所取出的液体来判断离子交换树脂在不同水平高度上是否达到饱和。然后,依据槽体内液体的流动方向,依序对剩余的取样管所取出的液体进行离子交换树脂是否饱和的判断,并计算已饱和离子交换树脂所对应的各取样管的时间差,以对槽体内剩余的离子交换树脂的寿命进行评估。In order to solve the above object of the present invention, the present invention also provides a detection method for calculating the service life (or remaining life) of the ion exchange resin in the above ion exchange resin tower, and this detection method includes two steps. First, judge whether the ion exchange resin is saturated at different levels according to the liquid taken out by each sampling tube. Then, according to the flow direction of the liquid in the tank, the liquid taken out by the remaining sampling tubes is sequentially judged whether the ion exchange resin is saturated, and the time difference of each sampling tube corresponding to the saturated ion exchange resin is calculated, so as to determine whether the ion exchange resin in the tank is saturated. The lifetime of the remaining ion exchange resin was evaluated.
在本发明的实施例中,上述的判断离子交换树脂是否饱和的方法包括量测液体的电阻值是否超过一监控设定值。In an embodiment of the present invention, the above-mentioned method for judging whether the ion exchange resin is saturated includes measuring whether the resistance value of the liquid exceeds a monitoring set value.
在本发明的实施例中,上述的监控设定值为18M-Ohm。In the embodiment of the present invention, the above monitoring setting value is 18M-Ohm.
根据本发明的实施例所述,上述离子交换树脂塔具有取样管以进行液体的取样,一方面能实时监控水质,另一方面又能对液体做进一步的精密分析。再者,利用于不同高度所取样的液体,可分析不同高度的树脂是否达到饱和,并进一步估算出树脂的使用寿命(或剩余寿命),以便作为更换树脂的依据。因此,本发明的离子交换树脂塔及其检测系统能监控水质有助于成本的节约。According to the embodiments of the present invention, the above-mentioned ion exchange resin tower has a sampling tube for liquid sampling. On the one hand, it can monitor the water quality in real time, and on the other hand, it can perform further precise analysis on the liquid. Furthermore, by using the liquids sampled at different heights, it is possible to analyze whether the resins at different heights are saturated, and further estimate the service life (or remaining life) of the resin, so as to serve as a basis for replacing the resin. Therefore, the ion exchange resin tower and its detection system of the present invention can monitor water quality and contribute to cost saving.
附图说明Description of drawings
图1是本发明第一实施例的离子交换树脂塔的示意图。Fig. 1 is a schematic diagram of an ion exchange resin column according to a first embodiment of the present invention.
图2是本发明第二实施例的离子交换树脂塔的示意图。Fig. 2 is a schematic diagram of an ion exchange resin column according to a second embodiment of the present invention.
图3是本发明第三实施例的检测系统的示意图。Fig. 3 is a schematic diagram of a detection system according to a third embodiment of the present invention.
图4是本发明的检测方法的流程图。Fig. 4 is a flow chart of the detection method of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100、100’:离子交换树脂塔100, 100': ion exchange resin tower
101:槽体101: tank body
102:供给管路102: Supply pipeline
103:输出管路103: output pipeline
104、104a、104b、104c、104d、104’:取样管104, 104a, 104b, 104c, 104d, 104': sampling tubes
105、105a、105b、105c、105d:离子交换树脂105, 105a, 105b, 105c, 105d: ion exchange resin
106:分配管106: distribution pipe
107:集水管107: water collection pipe
120:检测单元120: detection unit
200:检测系统200: detection system
V1、V2:垂直线V1, V2: vertical lines
S401:步骤S401: step
S402:步骤S402: step
S403:步骤S403: step
具体实施方式Detailed ways
为了让本发明的上述特征和优点能更明显易懂,下文特列举较佳实施例,并配合附图,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments are enumerated below and described in detail with accompanying drawings.
图1是本发明第一实施例的离子交换树脂塔的示意图。图2是本发明第二实施例的离子交换树脂塔的示意图。Fig. 1 is a schematic diagram of an ion exchange resin column according to a first embodiment of the present invention. Fig. 2 is a schematic diagram of an ion exchange resin column according to a second embodiment of the present invention.
请参照图1,本实施例的离子交换树脂塔100适用于对液体进行处理,所述液体可以以水为例。所述离子交换树脂塔100包括槽体101、供给管路102、输出管路103以及多个取样管104a、104b、104c、104d。槽体101中有离子交换树脂105,用于吸附液体中的离子,离子交换树脂105可以是胶体、多孔胶体或巨孔洞形式(macroporous)的阳离子交换树脂或阴离子交换树脂。供给管路102与槽体101的顶部连接,而输出管路103与槽体101的底部连接。同时,供给管路102和离子交换树脂105之间例如是有多个与供给管路102连接的分配管106,而离子交换树脂105与输出管路103之间例如是有多个与输出管路103连接的集水管107。取样管104a、104b、104c、104d则设置在槽体101的侧壁上,且分别设置于不同水平高度,以对在不同高度的离子交换树脂105中的液体进行取样。Please refer to FIG. 1 , the ion
在本实施例中,取样管104a、104b、104c、104d以等距h配置在槽体101侧壁的同一垂直线上,其中,取样管104a与离子交换树脂105顶部的距离也为h,而取样管104d位于对应于离子交换树脂的底部的水平线上。In this embodiment, the
但本发明的取样管的配置并不局限于此,在第二实施例中,如图2所示,取样管104’可以是配置在不同条垂直线V1、V2(如虚线所示)上。此外,在其它实施例中,离子交换树脂塔具有末端的取样管,其位于对应于输出管路与槽体的接连点。同时,本领域的普通技术人员还可以依其需求对取样管、分配管以及集水管的数目进行调整。But the configuration of the sampling tubes of the present invention is not limited thereto. In the second embodiment, as shown in FIG. 2 , the sampling tubes 104' can be arranged on different vertical lines V1, V2 (as shown by dotted lines). In addition, in other embodiments, the ion exchange resin column has a sampling pipe at the end, which is located at a connection point corresponding to the output pipeline and the tank body. At the same time, those skilled in the art can also adjust the number of sampling pipes, distribution pipes and water collection pipes according to their needs.
请参照图1,在第一实施例中,液体由供给管路102导入槽体101后,会流经分配管106,进入高度例如为4h的离子交换树脂105中进行离子交换。进行离子交换后的液体会离开离子交换树脂105,这些离开的液体通过集水管107收集,再由输出管路103导出,而离开离子交换树脂塔100。处理过后的液体可以是再进入其它处理单元或是直接运用。值得一提的是,液体流经槽体101的同时,取样管104a、104b、104c、104d能对流经其所在高度的离子交换树脂105中的液体进行取样。而这些取样管104a、104b、104c、104d例如可以是从槽体101的侧壁取离,因而能将取样管104a、104b、104c、104d中的液体移载至其他地方作进一步的分析。Please refer to FIG. 1 , in the first embodiment, after the liquid is introduced into the
图3是依照本发明第三实施例的检测系统的示意图。FIG. 3 is a schematic diagram of a detection system according to a third embodiment of the present invention.
请参照图3,此检测系统200包括检测单元120和第一实施例所述的离子交换树脂塔100,此检测单元120用于检测取样管104所取样的液体。值得注意的是,取样管104的取样液体能被移载到检测单元120,移载的方法可以是管线上的连接,或者是将取样管自槽体抽离并以人工的方式输送。此检测单元120可以是探针电极、钠离子检测仪器、硼检测仪器以及树脂检测仪器,因此可以以液体中的电阻值、钠离子浓度、硼离子浓度以及树脂含量等作为监测水质的依据。值得一提的是,由于取样管104中的液体无须进行回收,因此检测单元120可对此取样液体进行如破坏性或须较长时间的精密分析,以进一步了解水质的状况。Referring to FIG. 3 , the
本发明还提出了一种检测方法,图4是本发明的检测方法的流程图。该检测方法能够检测第一实施例所述的离子交换树脂塔100中离子交换树脂105的使用寿命。需要特别说明的是,为了能清楚地说明离子交换树脂的使用寿命,将离子交换树脂105划分成高度都为h的离子交换树脂105a、离子交换树脂105b、离子交换树脂105c以及离子交换树脂105d。请同时参照图1与图4,首先,进行步骤S401,根据不同高度的取样管104a、104b、104c、104d所取出来的液体,来判断与此取样管104a、104b、104c、104d位于同水平高度的离子交换树脂是否饱和,举例来说,取样管104a的液体可判断树脂105a是否达到饱和。判断树脂饱和的方法可以是测量取样管104a、104b、104c、104d中液体的电阻值是否超过监控设定值,而监控设定值可以是18M-Ohm,也就是当取样管104a的液体的电阻值小于18M-Ohm时,即认定树脂105a已饱和,不具有与液体进行离子交换的能力。The present invention also proposes a detection method, and FIG. 4 is a flowchart of the detection method of the present invention. This detection method can detect the service life of the
然后,进行步骤S402,依照液体在槽体101内的流动方向,依序对剩余的取样管所取出的液体进行离子交换树脂是否饱和的判断。举例来说,通过取样管104a中的液体判断出离子交换树脂105a达到饱和,接下来,以取样管104b、取样管104c以及取样管104d的顺序,判断离子交换树脂105b、离子交换树脂105c以及离子交换树脂105d是否达到饱和。Then, proceed to step S402 , according to the flow direction of the liquid in the
接着,进行步骤S403,计算出取样管104a、104b、104c、104d所对应的离子交换树脂105a、105b、105c、105d达到饱和的时间差,以对槽体101内剩余的离子交换树脂的寿命进行估计。Next, proceed to step S403, calculate the time difference for the
以第四实施例来说明上述的检测方法,请参照图1,当离子交换树脂塔100开始运转后,以实时或定时的方式检测取样管104a、104b、104c、104d中液体的电阻值。在此树脂塔100运转一段时间T1后,发现取样管104a的液体的电阻值小于18M-Ohm,而其余取样管104b、104c、104d的液体的电阻值仍大于18M-Ohm,表示树脂105a已达到饱和,也就是这段高度为h的树脂105a使用寿命为T1。由于剩余的树脂105b、105c、105d高度总合为3h,因此可推估树脂的剩余寿命约为3T1,即该树脂塔100再运转3T1的时间后,整个离子交换树脂105应进行更新。The above detection method is described with the fourth embodiment. Please refer to FIG. 1. After the ion
然而,为了使该方法计算离子交换树脂105的使用寿命(或剩余寿命)更为准确,可继续纪录取样管104b中液体的电阻值小于18M-Ohm的时间点。例如是在T1时间点后,继续运转历时T2时,取样管104b之液体的电阻值始小于18M-Ohm,而其余取样管104c、104d之液体的电阻值仍大于18M-Ohm,表示高度为h的树脂105b使用寿命为T2。此时,经T2的修正,可假设高度为h的树脂使用寿命约为(T1+T2)/2,由于剩余的树脂105c、105d高度总合为2h,推估树脂的剩余寿命约为T1+T2。同理,如再经过T3后,发现取样管104c之液体的电阻值小于18M-Ohm,可再次修正高度为h的树脂使用寿命为(T1+T2+T3)/3,而由于剩余的树脂105d高度为h,推估此树脂塔100再运转(T1+T2+T3)/3的时间后,须进行树脂105的更换。因此,能在发现取样管104c之液体的电阻值小于18M-Ohm后,以充裕的时间着手树脂更新的准备。再者,本次计算出的树脂使用寿命,可作为下一次使用同一种树脂时,其使用寿命的参考值。However, in order to make the method for calculating the service life (or remaining life) of the
值得一提的是,本发明并不局限于具有等距配置的取样管的离子交换树脂塔。当取样管的配置是不等距时,则依照取样管在水平高度差的比例以及其对应树脂达到饱和的时间差,来推估树脂的使用寿命(或剩余寿命)。It is worth mentioning that the present invention is not limited to ion exchange resin columns with equally spaced sampling tubes. When the configuration of the sampling tubes is not equidistant, the service life (or remaining life) of the resin is estimated according to the ratio of the sampling tube to the level difference and the corresponding time difference of the resin reaching saturation.
综上所述,本发明的离子交换树脂塔具有取样管,一方面,能通过检测取样管中的液体,达到实时监控水质的目的,另一方面,能进一步对液体进行破坏性或较耗时的精密性分析,确保液体的稳定度。再者,能通过对不同高度的取样,估算出离子交换树脂塔中离子交换树脂的使用寿命(或剩余寿命),作为更换树脂的依据,避免更换未达到饱和的树脂。因此,本发明能监控水质及有效地降低成本。In summary, the ion exchange resin tower of the present invention has a sampling tube. On the one hand, the purpose of real-time monitoring of water quality can be achieved by detecting the liquid in the sampling tube; Precision analysis to ensure the stability of the liquid. Furthermore, the service life (or remaining life) of the ion exchange resin in the ion exchange resin tower can be estimated by sampling at different heights, which can be used as a basis for replacing the resin to avoid replacing resin that has not reached saturation. Therefore, the present invention can monitor water quality and reduce cost effectively.
以上所述的仅为本发明的较佳可行实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同变化,同理均应包含在本发明的专利保护范围。The above are only preferred feasible embodiments of the present invention, and the embodiments are not intended to limit the scope of patent protection of the present invention, so any equivalent changes made by using the description and accompanying drawings of the present invention shall be equally applied. Included in the patent protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101964362A CN101249461B (en) | 2007-12-03 | 2007-12-03 | Method for detecting service life of resin in ion exchange resin tower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101964362A CN101249461B (en) | 2007-12-03 | 2007-12-03 | Method for detecting service life of resin in ion exchange resin tower |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101249461A CN101249461A (en) | 2008-08-27 |
CN101249461B true CN101249461B (en) | 2010-06-02 |
Family
ID=39953160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101964362A Active CN101249461B (en) | 2007-12-03 | 2007-12-03 | Method for detecting service life of resin in ion exchange resin tower |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101249461B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11017344B2 (en) | 2016-09-12 | 2021-05-25 | Ecolab Usa Inc. | Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules |
JP6288319B1 (en) * | 2017-01-10 | 2018-03-07 | 栗田工業株式会社 | Operation method of water treatment equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1146977A (en) * | 1995-08-16 | 1997-04-09 | 夏普公司 | Water treatment method and apparatus for treating waste water by using ion exchange resin |
WO2005103650A2 (en) * | 2004-04-05 | 2005-11-03 | Real-Time Analyzers, Inc. | Simultaneous chemical separation and surface-enhanced raman spectral detection |
-
2007
- 2007-12-03 CN CN2007101964362A patent/CN101249461B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1146977A (en) * | 1995-08-16 | 1997-04-09 | 夏普公司 | Water treatment method and apparatus for treating waste water by using ion exchange resin |
WO2005103650A2 (en) * | 2004-04-05 | 2005-11-03 | Real-Time Analyzers, Inc. | Simultaneous chemical separation and surface-enhanced raman spectral detection |
Non-Patent Citations (2)
Title |
---|
杨伯和等.在连续逆流离子交换设备中用有机萃取剂解吸铀.离子交换与吸附5 3.1989,5(3),206-210. |
杨伯和等.在连续逆流离子交换设备中用有机萃取剂解吸铀.离子交换与吸附5 3.1989,5(3),206-210. * |
Also Published As
Publication number | Publication date |
---|---|
CN101249461A (en) | 2008-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105334309A (en) | Soil heavy metal migration and transformation simulating device | |
CN102298067B (en) | Full-automatic on-line monitoring system of COD (chemical oxygen demand) and monitoring method thereof | |
CN110487851A (en) | A kind of measuring system and method for the hydrogen conductivity that deaerates | |
CN105277393A (en) | Multi-parameter surface runoff sampling and measuring device | |
CN101249461B (en) | Method for detecting service life of resin in ion exchange resin tower | |
TWI356734B (en) | Ion exchange resin tower and detection method of l | |
CN110487850B (en) | Degassing conductivity measurement system and method | |
CN204422516U (en) | A kind of water quality detection equipment | |
CN105319205A (en) | Automatic rapid detection method and automatic rapid detection system for chlorine ions in electric power plant water vapor, and applications thereof | |
CN110658025A (en) | Underground water low-speed automatic sampling device | |
CN1523347A (en) | Trace quantity sodium ion automatic rapid determination method and apparatus | |
CN102680544A (en) | Multi-parameter boiler water quality analysis method based on flow injection | |
CN211206333U (en) | Degassing conductivity measurement system | |
CN102305815B (en) | Conductivity measuring device and measuring method for soil column test | |
CN201016775Y (en) | Water level measuring cylinder for industrial water settling chamber | |
CN105319206A (en) | Water quality purification detection device and water quality purification detection method | |
CN204008474U (en) | Water quality purification pick-up unit | |
CN103817117B (en) | A kind of ship hydraulic pipeline-cleaning oil on-line cleaning method | |
JP6720241B2 (en) | Pure water production method | |
CN104391099A (en) | Water quality testing equipment | |
CN102095662B (en) | Elemental silicon determination method and device | |
CN201348580Y (en) | Chlorine gas Sampler | |
CN205015306U (en) | A 2. 5 dimension formation of image test device for underground water pollution dynamic monitoring | |
CN207571100U (en) | Defeated system scale deposit testing arrangement of collection | |
KR101441610B1 (en) | Method for evaluating of anion exchange resin performance and Online performance evaluation instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |