CN101247376A - OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising - Google Patents
OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising Download PDFInfo
- Publication number
- CN101247376A CN101247376A CNA2007100793450A CN200710079345A CN101247376A CN 101247376 A CN101247376 A CN 101247376A CN A2007100793450 A CNA2007100793450 A CN A2007100793450A CN 200710079345 A CN200710079345 A CN 200710079345A CN 101247376 A CN101247376 A CN 101247376A
- Authority
- CN
- China
- Prior art keywords
- channel
- frequency response
- wavelet
- threshold
- channel frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Noise Elimination (AREA)
Abstract
一种结合小波变换域去噪的OFDM信道估计方法,包括步骤:提取导频子载波上的信息,计算导频子载波处的信道频率响应;根据计算出的导频位置处的信道频率响应,在时间方向对信道频率响应进行插值;对时间方向插值的信道频率响应进行噪声和干扰去除;在频道方向对去除了噪声和干扰的信道频率响应进行频率方向的插值。由于噪声、子载波间干扰以及线性插值会在我们最后通过插值得到的信道频率响应值中引入误差,这些误差会造成OFDM(正交频分复用)接收机性能的下降。而采用上述基于小波变换域去噪的方法可以减小信道频率响应值中引入的误差,提高信道估计值的准确性,减小接收系统的误码率。
A method for estimating an OFDM channel in conjunction with wavelet transform domain denoising, comprising the steps of: extracting information on the pilot subcarrier, calculating the channel frequency response at the pilot subcarrier; according to the calculated channel frequency response at the pilot position, Interpolating the channel frequency response in the time direction; performing noise and interference removal on the interpolated channel frequency response in the time direction; performing interpolation in the frequency direction on the channel frequency response from which the noise and interference have been removed. Because noise, inter-subcarrier interference and linear interpolation will introduce errors into the channel frequency response value obtained by interpolation, these errors will cause the degradation of OFDM (Orthogonal Frequency Division Multiplexing) receiver performance. However, the above-mentioned method based on wavelet transform domain denoising can reduce the error introduced in the channel frequency response value, improve the accuracy of the channel estimation value, and reduce the bit error rate of the receiving system.
Description
技术领域 technical field
本发明涉及无线电广播系统,特别涉及结合小波变换域去噪的OFDM(正交频分复用)信道估计方法。The present invention relates to a radio broadcasting system, in particular to an OFDM (orthogonal frequency division multiplexing) channel estimation method combined with wavelet transform domain denoising.
背景技术 Background technique
DRM(数字无线电全球化)是短波、中波以及长波调幅广播频段的唯一的通用型非专利数字无线电广播系统。在同样的覆盖范围条件下,DRM(数字无线电全球化)发射机功率比传统的模拟发射机功率低6-9dB,数字广播比模拟广播的同邻频保护率低,抗多径干扰能力强,便于移动接收;音质可以达到CD(光盘)或调频立体声的质量;能够提供附加数据和多媒体信息;与DAB(数字音频广播)相比,它的接收机价格更容易被广大听众所接受。它的出现是30MHz以下频段广播复兴的标志,而且目前已经成为国际标准。DRM (Digital Radio Globalization) is the only universal non-proprietary digital radio broadcasting system for the shortwave, mediumwave and longwave AM broadcasting bands. Under the same coverage conditions, the power of the DRM (Digital Radio Globalization) transmitter is 6-9dB lower than that of the traditional analog transmitter, and the same-adjacent frequency protection rate of digital broadcasting is lower than that of analog broadcasting, and the ability to resist multipath interference is strong. It is convenient for mobile reception; the sound quality can reach the quality of CD (CD) or FM stereo; it can provide additional data and multimedia information; compared with DAB (Digital Audio Broadcasting), its receiver price is easier to be accepted by the audience. Its appearance is a sign of the revival of broadcasting in the frequency band below 30MHz, and it has now become an international standard.
在相干解调OFDM(正交频分复用)系统中,为了对接收到的信号进行均衡,接收机必须通过信道估计来获得信道的幅度和相位信息。但是,广播信道不仅遭受由于多径传播造成的频率选择性衰落,而且遭受多普勒频移或多普勒扩展带来的时间选择性衰落,为了保证接收机的接收质量和接收的实时性,要求接收机对广播信道进行及时准确的信道估计。根据DRM(数字无线电全球化)规范的要求,发射机在发送有用数据的同时,还同时发送导频数据,这样就可以采用基于导频的信道估计方案。首先,提取出导频位置的接收信号,利用接收机存储的本地导频,用最小二乘算法计算导频位置的信道频率响应,然后,用插值滤波器估计出数据子载波处的信道频率响应,最后,用单抽头的频域均衡器对接收收据进行均衡。当发送信号采用高阶调制时,比如16QAM(16星座点正交幅度调制)或者64QAM(64星座点正交幅度调制),为了获得更好接收机性能,需要更准确的信道估计。In a coherent demodulation OFDM (Orthogonal Frequency Division Multiplexing) system, in order to equalize the received signal, the receiver must obtain channel amplitude and phase information through channel estimation. However, the broadcast channel not only suffers from frequency-selective fading caused by multipath propagation, but also suffers from time-selective fading caused by Doppler frequency shift or Doppler spread. In order to ensure the receiving quality and real-time performance of the receiver, The receiver is required to perform timely and accurate channel estimation on the broadcast channel. According to the requirements of the DRM (Digital Radio Globalization) specification, the transmitter sends the pilot data at the same time as the useful data, so that a channel estimation scheme based on the pilot can be adopted. First, extract the received signal at the pilot position, use the local pilot stored in the receiver, use the least squares algorithm to calculate the channel frequency response of the pilot position, and then use the interpolation filter to estimate the channel frequency response at the data subcarrier , and finally, equalize the received receipt with a single-tap frequency-domain equalizer. When the transmitted signal adopts high-order modulation, such as 16QAM (16 constellation point quadrature amplitude modulation) or 64QAM (64 constellation point quadrature amplitude modulation), in order to obtain better receiver performance, more accurate channel estimation is required.
因为在双衰落信道条件下,也就是既有由多经传播造成的频率选择性衰落,又有由于多普勒频移或者多普勒扩展引起的时间选择性衰落的信道条件下,菱形的导频图案比块状导频图案或者梳妆导频图案具有更好的抗衰落特性,在DRM(数字无线电全球化)规范中便采用了这种时频二维的菱形导频图案,这种方案能够减少了在某些导频受到信道引起的严重影响的情况下接受机性能下降的程度。菱形导频图案分布图如图1所示。Because under the condition of double-fading channel, that is, under the channel condition of both frequency selective fading caused by multi-path propagation and time selective fading caused by Doppler frequency shift or Doppler spread, the rhombic derivative The frequency pattern has better anti-fading characteristics than the block pilot pattern or the comb pilot pattern. This kind of time-frequency two-dimensional diamond pilot pattern is adopted in the DRM (Digital Radio Globalization) specification. This scheme can Reduced receiver performance degradation in cases where some pilots are heavily influenced by the channel. The diamond-shaped pilot pattern distribution diagram is shown in Fig. 1 .
针对不同的信道条件,DRM(数字无线电全球化)标准中包含了四种不同的鲁棒模式,具体的描述见表1:For different channel conditions, the DRM (Digital Radio Globalization) standard includes four different robust modes, the specific description is shown in Table 1:
表1:鲁棒模式和相应的信道条件Table 1: Robust modes and corresponding channel conditions
不同的鲁棒模式在时间方向和频率方向上都具有不同的导频间隔,具体间隔的大小如表2所示:Different robust modes have different pilot intervals in the time direction and frequency direction, and the specific intervals are shown in Table 2:
表2:导频间隔大小Table 2: Pilot interval size
在表2中,NT和NF分别表示时间方向上的导频间隔以及频率方向上的导频间隔。In Table 2, NT and NF represent the pilot interval in the time direction and the pilot interval in the frequency direction, respectively.
前三种鲁棒模式可以满足大多数DRM(数字无线电全球化)广播的应用,对于模式A,由于较短的保护间隔和较窄的在子载波间隔使它不适用于短波广播。只有模式D适用于规范中的信道模型6,这个信道模型不仅具有很长的时延扩展,还具有很大的多普勒扩展,它是对赤道地区的短波传播的一种近似的模拟。The first three robust modes can satisfy most DRM (Digital Radio Globalization) broadcasting applications. For mode A, it is not suitable for short-wave broadcasting due to the shorter guard interval and narrower subcarrier spacing. Only mode D is applicable to channel model 6 in the specification. This channel model not only has a long time delay spread, but also has a large Doppler spread. It is an approximate simulation of shortwave propagation in the equatorial region.
众所周知,最小均方误差准则下的最佳信道估计器是二维维纳滤波器,但是二维维纳滤波器在实际工程应用中很不容易实现,但是当信道是广义平稳非相关散射信道时,两个级联的一维滤波器是一种不错的选择方案,可以先时间方向插值后频率方向插值,也可以先频率方向插值后时间方向插值。在图2中我们给出了两个级联的一维插值滤波器的框图(先时间方向后频率方向):As we all know, the best channel estimator under the minimum mean square error criterion is the two-dimensional Wiener filter, but the two-dimensional Wiener filter is not easy to implement in practical engineering applications, but when the channel is a generalized stationary non-correlated scattering channel , two cascaded one-dimensional filters are a good choice. Interpolation in the time direction can be performed first, followed by interpolation in the frequency direction, or interpolation in the frequency direction can be performed first, followed by interpolation in the time direction. In Figure 2 we give a block diagram of two cascaded one-dimensional interpolation filters (first in the time direction and then in the frequency direction):
对于基于导频辅助的OFDM(正交频分复用)系统,通常的信道估计方法是,首先用最小二乘算法得到导频位置的信道频率响应,然后采用两个级连一维滤波器对数据位置的信道频率响应进行估计,例如:首先在时间方向进行简单的线性插值,然后再在频率方向上进行线性插值。For pilot-assisted OFDM (Orthogonal Frequency Division Multiplexing) systems, the usual channel estimation method is to first use the least squares algorithm to obtain the channel frequency response of the pilot position, and then use two cascaded one-dimensional filters to The channel frequency response of the data position is estimated, for example: first simple linear interpolation in the time direction, and then linear interpolation in the frequency direction.
如何提高基于导频的时频二维方向上均采用线性插值的信道估计方法的性能。正如我们所知,由于噪声、子载波间干扰以及线性插值会在我们最后通过插值得到的信道频率响应值中引入误差,这些误差会造成OFDM(正交频分复用)接收机性能的下降。How to improve the performance of a pilot-based channel estimation method using linear interpolation in both time-frequency two-dimensional directions. As we know, due to noise, inter-subcarrier interference and linear interpolation, errors will be introduced in our final interpolated channel frequency response values, and these errors will cause performance degradation of OFDM (Orthogonal Frequency Division Multiplexing) receivers.
发明内容 Contents of the invention
本发明的目的是提供一种结合小波变换域去噪的OFDM信道估计方法。The purpose of the present invention is to provide an OFDM channel estimation method combined with wavelet transform domain denoising.
为实现上述目的,一种结合小波变换域去噪的OFDM信道估计方法,包括步骤:In order to achieve the above object, a kind of OFDM channel estimation method combined with wavelet transform domain denoising comprises steps:
a)提取导频子载波上的信息,计算导频子载波处的信道频率响应;a) extract the information on the pilot subcarrier, and calculate the channel frequency response at the pilot subcarrier;
b)根据计算出的导频位置处的信道频率响应,在时间方向对信道频率响应进行插值;b) interpolating the channel frequency response in the time direction according to the calculated channel frequency response at the pilot position;
c)对时间方向插值的信道频率响应进行噪声和干扰去除;c) performing noise and interference removal on the channel frequency response interpolated in the time direction;
d)在频道方向对去除了噪声和干扰的信道频率响应进行频率方向的插值。d) Perform interpolation in the frequency direction on the channel frequency response from which noise and interference have been removed in the channel direction.
由于噪声、子载波间干扰以及线性插值会在我们最后通过插值得到的信道频率响应值中引入误差,这些误差会造成OFDM(正交频分复用)接收机性能的下降。而采用上述基于小波变换域去噪的方法可以减小信道频率响应值中引入的误差,提高信道估计值的准确性,减小接收系统的误码率。Because noise, inter-subcarrier interference and linear interpolation will introduce errors into the channel frequency response value obtained by interpolation, these errors will cause the degradation of OFDM (Orthogonal Frequency Division Multiplexing) receiver performance. However, the above-mentioned method based on wavelet transform domain denoising can reduce the error introduced in the channel frequency response value, improve the accuracy of the channel estimation value, and reduce the bit error rate of the receiving system.
附图说明Description of drawings
图1是菱形导频图案分布图;Fig. 1 is a diamond-shaped pilot pattern distribution diagram;
图2是两个级联一维插值滤波器框图;Fig. 2 is a block diagram of two cascaded one-dimensional interpolation filters;
图3是带噪声去除的级连插值方法框图;Fig. 3 is a block diagram of the cascade interpolation method with noise removal;
图4是噪声去除过程框图;Fig. 4 is a block diagram of noise removal process;
图5是小波分解框图;Fig. 5 is a block diagram of wavelet decomposition;
图6是小波重构框图;Fig. 6 is a block diagram of wavelet reconstruction;
图7是信道3的误比特率特性;Fig. 7 is the bit error rate characteristic of
图8是信道4的误比特率特性。FIG. 8 shows the bit error rate characteristics of channel 4.
具体实施方式 Detailed ways
为了消除如上所述的噪声和干扰的影响,我们在时间方向上的插值之后,增加了一个噪声和干扰去除的过程,然后我们再进行频率方向上的插值,其框图如图3所示。由于噪声、子载波间干扰以及线性插值会在我们最后通过插值得到的信道频率响应值中引入误差,这些误差会造成OFDM(正交频分复用)接收机性能的下降。本发明在时间方向插值器与频率方向插值器之间引入了一个噪声去除过程,其基本原理是通过小波变换对时间方向插值得到的信道频率响应进行噪声去除,从而提高用于频率方向插值的准确性,打到减小信道估计误差,降低相同信噪比下接收机误码率的目的。图3中的噪声去除过程如图4所示。In order to eliminate the influence of noise and interference as mentioned above, we add a noise and interference removal process after the interpolation in the time direction, and then we perform interpolation in the frequency direction, the block diagram of which is shown in Figure 3. Because noise, inter-subcarrier interference and linear interpolation will introduce errors into the channel frequency response value obtained by interpolation, these errors will cause the degradation of OFDM (Orthogonal Frequency Division Multiplexing) receiver performance. The present invention introduces a noise removal process between the interpolator in the time direction and the interpolator in the frequency direction. The basic principle is to remove noise from the channel frequency response obtained by interpolation in the time direction through wavelet transform, thereby improving the accuracy of the interpolation in the frequency direction. To achieve the purpose of reducing the channel estimation error and reducing the bit error rate of the receiver under the same signal-to-noise ratio. The noise removal process in Figure 3 is shown in Figure 4.
对在导频子载波处的信道频率响应进行逆傅立叶变换之后,我们就得到了时域信道冲激响应的样值序列。我们可以注意到,除了有用的信道幅度和相位信息外,每个样值点同时也包含了噪声和相邻子载波的干扰。这些干扰和噪声会造成我们通过插值得到的信道频率响应和其真实值之间的误差。After the inverse Fourier transform is performed on the channel frequency response at the pilot subcarrier, we obtain the sample value sequence of the time-domain channel impulse response. We can notice that in addition to useful channel amplitude and phase information, each sample point also contains noise and interference from adjacent subcarriers. These interferences and noises will cause errors between the channel frequency response we get through interpolation and its true value.
为了提高DRM(数字无线电全球化)接收机的性能,我们用离散时间小波变换进行有用信道信息与噪声和干扰成分的分离。实际上,离散时间小波变换相当于一个滤波器组,包括高通滤波器和低通滤波器,输入序列和低通滤波器卷积之后的输出序列被称作尺度系数,而输入序列和高通滤波器卷积之后的输出则被称作小波系数。如果对小波系数进行阈值处理,而保持尺度系数不变,然后再通过重构滤波器组对经过阈值处理的小波系数和未处理的尺度系数进行重构,我们就可以得到消除了噪声和干扰的输入序列。最后,我们再对重构的输入序列进行傅立叶变换,得到去噪后的各导频子载波上的信道冲激响应,从而达到提高信道估计精度的目的。In order to improve the performance of DRM (Digital Radio Globalization) receiver, we use discrete-time wavelet transform to separate useful channel information from noise and interference components. In fact, discrete-time wavelet transform is equivalent to a filter bank, including high-pass filter and low-pass filter. The output sequence after the convolution of the input sequence and the low-pass filter is called the scale coefficient, and the input sequence and the high-pass filter The output after convolution is called wavelet coefficients. If we threshold the wavelet coefficients and keep the scale coefficients unchanged, and then reconstruct the thresholded wavelet coefficients and unprocessed scale coefficients through the reconstruction filter bank, we can get the noise and interference eliminated Enter the sequence. Finally, we perform Fourier transform on the reconstructed input sequence to obtain the channel impulse response on each pilot subcarrier after denoising, so as to achieve the purpose of improving the accuracy of channel estimation.
上面的噪声和干扰去除过程有五个步骤组成,具体描述如下:The above noise and interference removal process consists of five steps, which are described in detail as follows:
1)逆傅立叶变换1) Inverse Fourier transform
对导频子载波上的信道频率响应构成的序列进行逆傅立叶变换,得到时域上的信道冲激响应样值序列:Inverse Fourier transform is performed on the sequence formed by the channel frequency response on the pilot subcarrier to obtain the channel impulse response sample sequence in the time domain:
其中,M是一个OFDM(正交频分复用)符号中导频子载波的数目。Wherein, M is the number of pilot subcarriers in one OFDM (Orthogonal Frequency Division Multiplexing) symbol.
2)小波分解2) Wavelet decomposition
在这里,我们用Harr小波进行分解和重构,基于Harr小波的滤波器组由一个高通和一个低通组成,其低通滤波器系数为
其中,hk,l,0≤k<M表示信道冲激响应样值序列,M是需要处理的信道冲激响应样值序列的长度。Wherein, h k, l , 0≤k<M represents the channel impulse response sample sequence, and M is the length of the channel impulse response sample sequence to be processed.
小波分解如图5所示:The wavelet decomposition is shown in Figure 5:
3)阈值处理3) Thresholding
这个过程的主要目的就是将低于某一个阈值的小波系数全部置为零。因为经过小波分解后的小波系数中,比较大的小波系数包含的是有用信息,而较小的小波系数中主要是噪声和干扰成分,所以我们可以将低于某个阈值的小波系数置为零,从而达到去除噪声和干扰的目的。The main purpose of this process is to set all wavelet coefficients below a certain threshold to zero. Because among the wavelet coefficients after wavelet decomposition, the larger wavelet coefficients contain useful information, while the smaller wavelet coefficients mainly contain noise and interference components, so we can set the wavelet coefficients below a certain threshold to zero , so as to achieve the purpose of removing noise and interference.
常用的阈值方法主要有三种,它们是硬阈值法、软阈值法和非负阈值法,其定义如下:There are three main threshold methods commonly used, they are hard threshold method, soft threshold method and non-negative threshold method, which are defined as follows:
其中,λ表示阈值,并且λ≥0.Among them, λ represents the threshold, and λ≥0.
小波变换域去除噪声和干扰的方法与传统的基于低通滤波器的去噪方法不同,由于采用了对小波系数的阈值处理过程,所以它是非线性的。其中,阈值的选取是非常重要的,通常情况下,选择一个适当的阈值是保证良好的噪声和干扰去除效果的一个重要的前提。如果阈值选取得太大,那么有一部分重要得有用信息就会被滤除,反之,如果阈值选取得太小,在我们进行重构的时候就会包含比较多的干扰和噪声成分,从而达不到噪声和干扰去除的目的。Donoho提出的小波阈值的经验公式如下所示:The method of removing noise and interference in the wavelet transform domain is different from the traditional method of denoising based on low-pass filter, because it adopts the threshold value processing process of wavelet coefficients, so it is nonlinear. Among them, the selection of the threshold is very important. Usually, selecting an appropriate threshold is an important prerequisite to ensure good noise and interference removal effect. If the threshold value is selected too large, some important and useful information will be filtered out. On the contrary, if the threshold value is selected too small, more interference and noise components will be included when we reconstruct, thus failing to achieve to the purpose of noise and interference removal. The empirical formula of the wavelet threshold proposed by Donoho is as follows:
这只是一个经验公式,并不是对于所有的应用,按照这个公式选取的阈值都会具有很好的效果,通常情况下,对于不同的应用,需要我们重新选择适合本应用的阈值,但是上面的Donoho经验公式可以为我们提供一个基本的参考。This is just an empirical formula, not for all applications, the threshold selected according to this formula will have a good effect, usually, for different applications, we need to reselect the threshold suitable for this application, but the above Donoho experience The formula can provide us with a basic reference.
很多学者通过研究证实,通常情况下,硬阈值的方法会引入较大的方差,而软阈值的方法则会引入比较大的偏差。综合考虑了对方差和偏差的影响,有的学者还提出了软阈值和硬阈值相结合的方法。Many scholars have confirmed through research that, usually, the hard threshold method will introduce a large variance, while the soft threshold method will introduce a relatively large deviation. Considering the impact on variance and bias, some scholars also proposed a method combining soft threshold and hard threshold.
4)小波重构4) Wavelet reconstruction
小波重构的目的就是将经过阈值处理后的小波系数和未经过处理的尺度系数从小波变换域变换回时域。这种重构是通过重构滤波器组实现的,它包括一个高通和一个低通,低通滤波器和高通滤波器系数分别是
是对原始的带有噪声和干扰的信道冲激响应样值输入序列hk,l进行噪声和干扰去除之后的输出序列。和分别表示偶数和级数样点输出序列值。 is the output sequence after removing the noise and interference from the original channel impulse response sample input sequence h k, l with noise and interference. and Represents the output sequence values of even and progressive samples, respectively.
小波重构过程如图6所示。The wavelet reconstruction process is shown in Figure 6.
5)傅立叶变换5) Fourier transform
将经过噪声和干扰去除的信道冲激响应序列变换到频域:Transform the noise and interference-removed channel impulse response sequence to the frequency domain:
其中,M是一个OFDM(正交频分复用)符号中的导频子载波的数目,经过傅立叶变换后的输出序列可以用于频率方向上的插值。Wherein, M is the number of pilot subcarriers in an OFDM (Orthogonal Frequency Division Multiplexing) symbol, and the output sequence after Fourier transform can be used for interpolation in the frequency direction.
实施例Example
实际的DRM(数字无线电全球化)广播信道是既有多径引起的频率选择性,又有多普勒扩展或者频移引起的时间选择性的双衰落信道。其中多径传播主要是由于不同高度电离层的反射引起的,信道的最大时延扩展可以达到几个毫秒,多普勒扩展和频移主要由于电离层反射的频谱特性和接收机的移动引起的。以中纬度地区为例,时延扩展的最大值可以达到6ms,多普勒扩展则可以高达5Hz。通常情况下,时延扩展和多普勒扩展的典型值是2ms和1Hz,这也就是我们用到的信道模型4的参数值。The actual DRM (Digital Radio Globalization) broadcast channel is a double-fading channel with both frequency selectivity caused by multipath and time selectivity caused by Doppler spread or frequency shift. Among them, the multipath propagation is mainly caused by the reflection of the ionosphere at different heights. The maximum delay spread of the channel can reach several milliseconds. The Doppler spread and frequency shift are mainly caused by the spectral characteristics of the ionospheric reflection and the movement of the receiver. . Taking mid-latitude regions as an example, the maximum delay spread can reach 6ms, and the Doppler spread can reach 5Hz. Typically, the typical values of delay spread and Doppler spread are 2ms and 1Hz, which are the parameter values of the channel model 4 we use.
本着从实际出发的原则,我们考察了DRM(数字无线电全球化)规范中信道模型3和信道模型4的情况,其中信道模型3是针对于中频和高频的USConsortium(美国联合会)模型,信道模型4是针对于高频的标准CCIR(国际无线电委员会)模型。信道模型3和信道模型4的具体参数分别在表3和表4中给出:Based on the principle of proceeding from reality, we have investigated the situation of
同传统的线性插值方法(在时间方向和频率方向上均为线性插值)相比,结合小波变换域噪声和干扰去除的方法要比传统方法具有更好的误比特率特性,这一点可以从我们对信道模型3和信道模型4的仿真结果中可以看出来,而且结合软阈值方法的性能要比结合硬阈值方法的性能好。Compared with the traditional linear interpolation method (linear interpolation in the time direction and frequency direction), the method combined with wavelet transform domain noise and interference removal has better bit error rate characteristics than the traditional method, which can be obtained from our It can be seen from the simulation results of
表3:信道模型3的参数设置Table 3: Parameter settings for
表4:信道模型4的参数设置
在我们的DRM(数字无线电全球化)仿真器中,我们在时间方向采用同样的线性插值的基础上,考察了频率方向上采用传统线性插值方法和采用硬阈值以及软阈值小波噪声和干扰去除方法的性能。其中,硬阈值方法如公式(4)所示,软阈值方法是对公式(5)进行调整后的公式,由式(11)给出。具体的仿真参数如表5所示:In our DRM (Digital Radio Globalization) simulator, we examine the traditional linear interpolation method and the hard threshold and soft threshold wavelet noise and interference removal methods in the frequency direction based on the same linear interpolation in the time direction performance. Among them, the hard threshold method is shown in formula (4), and the soft threshold method is a formula after adjusting formula (5), which is given by formula (11). The specific simulation parameters are shown in Table 5:
表5:仿真参数设置Table 5: Simulation parameter settings
对信道模型3和信道模型4的仿真结果分别如图7和图8所示。从仿真结果我们可以看出,结合硬阈值小波域噪声和干扰去除的方法比传统线性插值的方法要好,而且结合软阈值小波域噪声和干扰去除的方法要比结合硬阈值的方法要好一些。The simulation results of
对于信道模型3来说,与传统线性插值方法相比,结合硬阈值的方法大概有0.3-0.4dB的增益,结合软阈值的方法大概有0.6-0.7dB的增益;对于信道模型4来说,与传统线性插值方法相比,结合硬阈值的方法大概有0.3dB的增益,结合软阈值的方法大概有0.5-0.6dB的增益。For
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100793450A CN101247376A (en) | 2007-02-15 | 2007-02-15 | OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100793450A CN101247376A (en) | 2007-02-15 | 2007-02-15 | OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101247376A true CN101247376A (en) | 2008-08-20 |
Family
ID=39947583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100793450A Pending CN101247376A (en) | 2007-02-15 | 2007-02-15 | OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101247376A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101442512B (en) * | 2008-12-19 | 2011-04-13 | 西安电子科技大学 | Method for recognizing OFDM signal |
CN102082754A (en) * | 2009-11-26 | 2011-06-01 | 中兴通讯股份有限公司 | OFDM (Orthogonal Frequency Division Multiplexing) channel estimation method and device |
CN102130871A (en) * | 2010-01-15 | 2011-07-20 | 无锡百阳科技有限公司 | Channel estimation method and device |
CN102594472A (en) * | 2012-03-22 | 2012-07-18 | 北京邮电大学 | Method and system for wireless channel measurement based on wavelet decomposition threshold de-nosing |
CN101478507B (en) * | 2008-12-10 | 2012-07-25 | 北京创毅视讯科技有限公司 | Channel estimation method and terminal |
CN102724147A (en) * | 2012-06-27 | 2012-10-10 | 哈尔滨工程大学 | Channel estimation method for underwater sound orthogonal frequency division multiplexing |
CN103267905A (en) * | 2013-04-25 | 2013-08-28 | 北京航空航天大学 | A Method for Extracting Electromagnetic Background Noise Based on Hierarchical-Clustering Algorithm |
CN104038452A (en) * | 2013-03-06 | 2014-09-10 | 中兴通讯股份有限公司 | Channel estimation method and channel estimation device |
CN104301262A (en) * | 2014-01-13 | 2015-01-21 | 河南科技大学 | A Channel Estimation Method for Single Carrier Frequency Domain Equalization UWB System |
CN105827561A (en) * | 2016-04-27 | 2016-08-03 | 广东广联电子科技有限公司 | Wavelet OFDM modulation and demodulation method |
CN107222309A (en) * | 2017-06-29 | 2017-09-29 | 常州机电职业技术学院 | Time type network hidden channel construction method based on discrete wavelet transform |
CN107431547A (en) * | 2015-08-03 | 2017-12-01 | 三菱电机株式会社 | Dispensing device |
CN108742697A (en) * | 2018-05-29 | 2018-11-06 | 深圳市太空科技南方研究院 | Cardiechema signals sorting technique and terminal device |
CN109495409A (en) * | 2018-12-29 | 2019-03-19 | 京信通信系统(中国)有限公司 | Channel estimation methods, device, radio receiver and storage medium |
CN113257249A (en) * | 2021-04-22 | 2021-08-13 | 中国能源建设集团广东省电力设计研究院有限公司 | Power equipment fault diagnosis method, device and equipment based on voiceprint recognition |
CN113952707A (en) * | 2021-12-16 | 2022-01-21 | 广州优刻谷科技有限公司 | Motion sensing game action recognition method, scoring method and system based on RFID |
CN120196880A (en) * | 2025-05-27 | 2025-06-24 | 长春理工大学 | A multipath effect suppression method for indoor visible light positioning |
-
2007
- 2007-02-15 CN CNA2007100793450A patent/CN101247376A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478507B (en) * | 2008-12-10 | 2012-07-25 | 北京创毅视讯科技有限公司 | Channel estimation method and terminal |
CN101442512B (en) * | 2008-12-19 | 2011-04-13 | 西安电子科技大学 | Method for recognizing OFDM signal |
CN102082754A (en) * | 2009-11-26 | 2011-06-01 | 中兴通讯股份有限公司 | OFDM (Orthogonal Frequency Division Multiplexing) channel estimation method and device |
CN102082754B (en) * | 2009-11-26 | 2014-02-05 | 中兴通讯股份有限公司 | OFDM (Orthogonal Frequency Division Multiplexing) channel estimation method and device |
CN102130871A (en) * | 2010-01-15 | 2011-07-20 | 无锡百阳科技有限公司 | Channel estimation method and device |
CN102594472A (en) * | 2012-03-22 | 2012-07-18 | 北京邮电大学 | Method and system for wireless channel measurement based on wavelet decomposition threshold de-nosing |
CN102724147B (en) * | 2012-06-27 | 2016-01-13 | 哈尔滨工程大学 | A kind of channel estimation methods of underwater sound OFDM |
CN102724147A (en) * | 2012-06-27 | 2012-10-10 | 哈尔滨工程大学 | Channel estimation method for underwater sound orthogonal frequency division multiplexing |
CN104038452A (en) * | 2013-03-06 | 2014-09-10 | 中兴通讯股份有限公司 | Channel estimation method and channel estimation device |
WO2014134956A1 (en) * | 2013-03-06 | 2014-09-12 | 中兴通讯股份有限公司 | Channel estimation method and device |
CN103267905A (en) * | 2013-04-25 | 2013-08-28 | 北京航空航天大学 | A Method for Extracting Electromagnetic Background Noise Based on Hierarchical-Clustering Algorithm |
CN103267905B (en) * | 2013-04-25 | 2015-11-18 | 北京航空航天大学 | A kind of electromagnetic background noise extracting method based on layering-clustering algorithm |
CN104301262A (en) * | 2014-01-13 | 2015-01-21 | 河南科技大学 | A Channel Estimation Method for Single Carrier Frequency Domain Equalization UWB System |
CN104301262B (en) * | 2014-01-13 | 2017-07-21 | 河南科技大学 | A kind of single-carrier frequency domain balance ultra-wide broadband system channel estimation methods |
CN107431547B (en) * | 2015-08-03 | 2019-02-12 | 三菱电机株式会社 | sending device |
CN107431547A (en) * | 2015-08-03 | 2017-12-01 | 三菱电机株式会社 | Dispensing device |
CN105827561A (en) * | 2016-04-27 | 2016-08-03 | 广东广联电子科技有限公司 | Wavelet OFDM modulation and demodulation method |
CN107222309A (en) * | 2017-06-29 | 2017-09-29 | 常州机电职业技术学院 | Time type network hidden channel construction method based on discrete wavelet transform |
CN108742697A (en) * | 2018-05-29 | 2018-11-06 | 深圳市太空科技南方研究院 | Cardiechema signals sorting technique and terminal device |
CN109495409A (en) * | 2018-12-29 | 2019-03-19 | 京信通信系统(中国)有限公司 | Channel estimation methods, device, radio receiver and storage medium |
CN109495409B (en) * | 2018-12-29 | 2021-06-25 | 京信通信系统(中国)有限公司 | Channel estimation method, device, wireless receiving equipment and storage medium |
CN113257249A (en) * | 2021-04-22 | 2021-08-13 | 中国能源建设集团广东省电力设计研究院有限公司 | Power equipment fault diagnosis method, device and equipment based on voiceprint recognition |
CN113952707A (en) * | 2021-12-16 | 2022-01-21 | 广州优刻谷科技有限公司 | Motion sensing game action recognition method, scoring method and system based on RFID |
CN120196880A (en) * | 2025-05-27 | 2025-06-24 | 长春理工大学 | A multipath effect suppression method for indoor visible light positioning |
CN120196880B (en) * | 2025-05-27 | 2025-07-22 | 长春理工大学 | Multipath effect suppression method for indoor visible light positioning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101247376A (en) | OFDM Channel Estimation Method Combined with Wavelet Transform Domain Denoising | |
EP2082548B1 (en) | Ofdm receiver | |
CN101202721A (en) | Wiener Interpolation Method Based on Time-Domain SNR Estimation | |
CN1221096C (en) | Channel estimation method for orthogonal frequency-division multiplexing communication system | |
CN102724147B (en) | A kind of channel estimation methods of underwater sound OFDM | |
CN101227438B (en) | OFDM Channel Estimation Method Based on Wavelet Unbiased Risk Threshold Denoising | |
CN102664850B (en) | Multi-carrier mode low-complexity channel noise-reducing method and device thereof in wireless local area network (WLAN) | |
CN101542952B (en) | OFDM receiving device, OFDM receiving integrated circuit and OFDM receiving method | |
CN1968242B (en) | A joint method of frequency offset tracking and channel equalization and its realization system | |
JP5296776B2 (en) | Receiving device, receiving method, integrated circuit, digital television receiver, program | |
JP2008501272A (en) | Channel estimation in OFDM systems with high Doppler shift | |
CN104410590A (en) | Short-wave OFDM (Orthogonal Frequency Division Multiplexing) interference suppression joint channel estimation method based on compressed sensing | |
CN101083644A (en) | Channel estimation method of OFDM system | |
EP1819116B1 (en) | Channel estimator and method for channel estimation | |
CN102130871A (en) | Channel estimation method and device | |
US8374262B2 (en) | Method and device for determining an unabbreviated channel-impulse response in an OFDM transmission system | |
JP2010074578A (en) | Receiving device, receiving method and program | |
CN103346983A (en) | OFDM self-adaption complex interpolation channel estimation method based on comb-type pilot frequency | |
KR20090115772A (en) | Apparatus and method for considering discontinuous effects at the output of automatic gain control in a multicarrier system | |
CN1996973A (en) | OFDM channel estimation method based on the discrete Fourier transform | |
CN103428126B (en) | A kind of OFDM adaptive channel estimation method based on Comb Pilot | |
CN101588330B (en) | Joint channel estimation method for short-wave OFDM communication system | |
EP2285053B1 (en) | Concept for adaptively updating filter coefficients | |
Pan et al. | FrFT equalization for underwater sweep-spread communication system | |
Yao | Research on denoise methods of channel estimation in ofdm system with high-speed multipath channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080820 |