CN101246670B - Serial data transmission method for display device and related device thereof - Google Patents
Serial data transmission method for display device and related device thereof Download PDFInfo
- Publication number
- CN101246670B CN101246670B CN2007100849598A CN200710084959A CN101246670B CN 101246670 B CN101246670 B CN 101246670B CN 2007100849598 A CN2007100849598 A CN 2007100849598A CN 200710084959 A CN200710084959 A CN 200710084959A CN 101246670 B CN101246670 B CN 101246670B
- Authority
- CN
- China
- Prior art keywords
- data
- current
- mode
- transmission
- differential signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000001360 synchronised effect Effects 0.000 claims description 33
- 230000008054 signal transmission Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims 14
- 101100420776 Arabidopsis thaliana SYN1 gene Proteins 0.000 description 20
- VUDQSRFCCHQIIU-UHFFFAOYSA-N DIF1 Natural products CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 20
- 101150001108 DIF1 gene Proteins 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 102220492973 Nuclear RNA export factor 1_D21P_mutation Human genes 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种数据传输方法及其相关装置,尤指一种用于显示装置可嵌入数据与非数据信号于数据传输线的串行式的数据传输方法及其相关装置。The present invention relates to a data transmission method and its related device, especially to a serial data transmission method and its related device which can embed data and non-data signals in a data transmission line for a display device.
背景技术Background technique
液晶显示器(liquid crystal display)为一种外型轻薄的平面显示装置(flat panel display),其具有低辐射、体积小及低耗能等优点,已逐渐取代传统的阴极射线管显示器(cathode ray tube display),因而被广泛地应用在笔记本型计算机(notebook computer)、个人数字助理(personal digitalassistant,PDA)、平面电视、或移动电话等信息产品上。常见的平面显示器包含薄膜晶体管(thin film transistor,TFT)液晶显示器、低温多晶硅(lowtemperature poly silicon,LTPS)液晶显示器和有机发光二极管(organiclight emitting diode,OLED)显示器等。显示器的驱动系统是由时序控制器(timing controller)、多个源极驱动器(source driver)以及多个栅极驱动器(gate driver)所构成。时序控制器及源极驱动器之间的接口是以总线型式(bus type)来传递时钟信号、数据信号、控制信号和设定信号等,其常见的连接接口包含晶体管-晶体管逻辑(transistor-transistor logic,TTL)接口、低电压差动信号(low voltage differential signal,LVDS)接口、低摆幅差动信号(reduced swing differential signal,RSDS)及微低电压差动信号(mini low voltage differential signal,mini-LVDS)接口等。Liquid crystal display (liquid crystal display) is a light and thin flat panel display device (flat panel display), which has the advantages of low radiation, small size and low energy consumption, and has gradually replaced the traditional cathode ray tube display (cathode ray tube display) display), and thus are widely used in information products such as notebook computers (notebook computers), personal digital assistants (personal digital assistants, PDAs), flat-screen TVs, or mobile phones. Common flat panel displays include thin film transistor (thin film transistor, TFT) liquid crystal display, low temperature polysilicon (low temperature poly silicon, LTPS) liquid crystal display, and organic light emitting diode (organic light emitting diode, OLED) display. The driving system of the display is composed of a timing controller, multiple source drivers and multiple gate drivers. The interface between the timing controller and the source driver is a bus type (bus type) to transmit clock signals, data signals, control signals and setting signals, etc., and its common connection interface includes transistor-transistor logic (transistor-transistor logic) , TTL) interface, low voltage differential signal (LVDS) interface, low swing differential signal (reduced swing differential signal, RSDS) and micro low voltage differential signal (mini low voltage differential signal, mini- LVDS) interface, etc.
请参考图1及图2,图1及图2为已知显示器的低摆幅差动信号接口的信号示意图。首先,在图1中,显示器的时钟控制器产生一组差动电压信号DxN及DxP。差动电压信号DxN及DxP具有180°的相位差和相同的转换率(slewrate),并以共模电压VCOM为基准而上下摆幅。接着,在图2中,差动电压信号DxP减去差动电压信号DxN可以得到差动电压信号DIF(DxP-DxN),其具有正电压摆幅VIH及负电压摆幅VIL,两者摆幅大小相同,为差动电压信号DxN及DxP的波峰与波谷的差值。Please refer to FIG. 1 and FIG. 2 . FIG. 1 and FIG. 2 are signal schematic diagrams of a low-swing differential signal interface of a conventional display. First, in FIG. 1 , the clock controller of the display generates a set of differential voltage signals DxN and DxP. The differential voltage signals DxN and DxP have a phase difference of 180° and the same slew rate, and swing up and down based on the common-mode voltage VCOM. Next, in Figure 2, the differential voltage signal DxP is subtracted from the differential voltage signal DxN to obtain the differential voltage signal DIF (DxP-DxN), which has a positive voltage swing VIH and a negative voltage swing VIL. have the same magnitude, which is the difference between the peak and valley of the differential voltage signals DxN and DxP.
请参考图3及图4,图3及图4分别为已知显示器的低摆幅差动信号接口的信号线对D00P/N、D01P/N、D02P/N、D03P/N、D10P/N、D11P/N、D12P/N、D13P/N、D20P/N、D21P/N、D22P/N及D23P/N的信号高态及低态的电流示意图。在图3及图4中,输出端Tx表示时钟控制器的输出端,接收端Rx表示源极驱动器的接收端。时钟控制器由输出端Tx产生差动电流于前述的12组信号线对上,源极驱动器的接收端Rx通过感测每一信号线对上的电流方向来接收信号。例如,在图3中,电流由信号线D01P流至D01N代表信号高态,或′1′;在图4中,电流由信号线D01N流至D01P代表信号低态,或′0′。因此,低摆幅差动信号接口的每一信号线对仅能代表一位的信号。Please refer to Fig. 3 and Fig. 4. Fig. 3 and Fig. 4 respectively show the signal line pairs D00P/N, D01P/N, D02P/N, D03P/N, D10P/N, Schematic diagram of currents in high and low states of signals of D11P/N, D12P/N, D13P/N, D20P/N, D21P/N, D22P/N and D23P/N. In FIG. 3 and FIG. 4 , the output terminal Tx represents the output terminal of the clock controller, and the receiving terminal Rx represents the receiving terminal of the source driver. The clock controller generates differential currents on the aforementioned 12 signal line pairs from the output terminal Tx, and the receiving terminal Rx of the source driver receives signals by sensing the current direction on each signal line pair. For example, in FIG. 3, the current flowing from the signal line D01P to D01N represents the signal high state, or '1'; in FIG. 4, the current flowing from the signal line D01N to D01P represents the signal low state, or '0'. Therefore, each signal line pair of the low-swing differential signal interface can only represent a signal of one bit.
请参考图5,图5为已知显示器的低摆幅差动信号接口的信号接口时序示意图。信号的时序由上而下为:时钟信号SCLK、左移信号SSHL、极性信号SPOL、差动信号线对D00P/N、D01P/N、D02P/N、D03P/N、D10P/N、D11P/N、D12P/N、D13P/N、D20P/N、D21P/N、D22P/N及D23P/N的低摆幅差动信号、数据栓锁起始信号SDIO、数据输出同步信号SLD及电压输出信号SOUTPUT。左右移控制信号SSHL、极性信号SPOL、数据栓锁起始信号SDIO及数据输出同步信号SLD等控制信号给源极驱动器后,源极驱动器可进行相关设定后,再通过低摆幅差动信号接收数据,其接口时序的工作原理大致如下。当时钟信号SCLK的负缘拴住(Latch)数据栓锁起始信号SDIO的高态时(A点),再过两个时钟信号SCLK的负缘时(B点),低摆幅差动信号开始传送数据信号,并由时钟信号SCLK的正负缘(rising and falling edges)同时取样(dual edge sampling;B与C点)。源极驱动器再通过数据输出同步信号SLD,同步数据的输出时间并传送信息至面板(D点)。由上可知,已知显示器通过晶体管-晶体管逻辑(TTL)接口传送控制及设定信号(左右移控制信号SSHL、极性信号SPOL、数据栓锁起始信号SDIO及数据输出同步信号SLD)给源极驱动器,并通过低摆幅差动信号接口传送数据信号给源极驱动器。Please refer to FIG. 5 . FIG. 5 is a timing diagram of a signal interface of a low-swing differential signal interface of a known display. The timing of the signal from top to bottom is: clock signal S CLK , left shift signal S SHL , polarity signal S POL , differential signal line pair D00P/N, D01P/N, D02P/N, D03P/N, D10P/N , D11P/N, D12P/N, D13P/N, D20P/N, D21P/N, D22P/N and D23P/N low-swing differential signals, data latch start signal S DIO , data output synchronization signal S LD and voltage output signal S OUTPUT . After the left and right shift control signal S SHL , polarity signal S POL , data latch start signal S DIO and data output synchronization signal S LD and other control signals are given to the source driver, the source driver can perform related settings, and then pass the low The swing differential signal receives data, and the working principle of its interface timing is roughly as follows. When the negative edge of the clock signal S CLK latches (Latch) the high state of the data latch start signal S DIO (point A), after two negative edges of the clock signal S CLK (point B), the low swing The differential signal starts to transmit the data signal, and is sampled simultaneously by the rising and falling edges of the clock signal S CLK (dual edge sampling; points B and C). The source driver then uses the data output synchronization signal S LD to synchronize the output time of the data and transmit the information to the panel (point D). As can be seen from the above, known displays transmit control and setting signals through a transistor-transistor logic (TTL) interface (left and right shift control signal S SHL , polarity signal S POL , data latch start signal S DIO and data output synchronization signal S LD ) to the source driver, and transmit the data signal to the source driver through the low-swing differential signal interface.
因此,在已知显示器中,数据信号、控制信号、设定信号和时钟信号是通过两不同的信号接口(低摆幅差动信号接口及晶体管-晶体管逻辑接口)来传递,容易造成信号不同步(signal skewing)的情形,使得设置时间(setuptime)或维持时间(hold time)等时间参数不易调校。因此,在高速率及高分辨率的应用中,已知显示器无法提升其数据速率或时钟速率。此外,由于已知低摆幅差动信号接口是仅利用电流方向来区分数据,且其信号线仅用来传送数据信号及时钟信号。随着画面上每个像素的色彩深度上升,所需要的信号线也就越多,再加上已知显示器中不同信号是通过个别的信号线来传递,造成电路板的走线及换层次数增加,占据印刷电路板极大的空间。另一方面,由于已知显示器通过不同信号线来分别传递时钟信号和数据信号,为了使源极驱动器能正常运作,时钟控制器需要使用设定信号来设定源极驱动器中不同接脚,例如左右移接脚、数据反转接脚、低电源控制接脚和电荷分享/回收起始接脚等。因此,源极驱动器的接脚数目会过多而造成接脚间距(pin pitch)减少,如此会降低接合制程(bonding process)的良率,增加液晶显示器的生产成本。Therefore, in the known display, the data signal, control signal, setting signal and clock signal are transmitted through two different signal interfaces (low-swing differential signal interface and transistor-transistor logic interface), which may easily cause the signals to be out of sync. (signal skewing) makes it difficult to adjust time parameters such as setup time or hold time. Therefore, known displays cannot increase their data rate or clock rate in high speed and high resolution applications. In addition, because the known low-swing differential signal interface only uses current direction to distinguish data, and its signal lines are only used to transmit data signals and clock signals. As the color depth of each pixel on the screen increases, more signal lines are required. In addition, it is known that different signals in the display are transmitted through individual signal lines, resulting in the wiring of the circuit board and the number of layer changes. increase, taking up a lot of space on the printed circuit board. On the other hand, since it is known that the display transmits the clock signal and the data signal respectively through different signal lines, in order to make the source driver work normally, the clock controller needs to use setting signals to set different pins in the source driver, for example Left and right shift pins, data inversion pins, low power control pins, charge sharing/recycling start pins, etc. Therefore, the number of pins of the source driver will be too many, resulting in reduced pin pitch, which will reduce the yield rate of the bonding process and increase the production cost of the LCD.
发明内容Contents of the invention
因此,本发明是提供一种用于显示装置串行式的数据传输方法及其相关装置。Therefore, the present invention provides a serial data transmission method for a display device and related devices.
本发明是揭露一种用于显示装置串行式的数据传输方法,包含有:取得该显示装置的多个数据传输模式;根据该多个数据传输模式,以多组差动信号线对上分别传输的电流大小和方向的多种组合定义多个电流组合,每一电流组合对应于一数据传输模式,其中,所述电流大小和方向从多个电流大小及多个电流方向中选取;以及根据当前数据传输模式,通过该多组差动信号线对输出对应的电流组合至该显示装置的电子装置。The present invention discloses a serial data transmission method for a display device, including: obtaining multiple data transmission modes of the display device; Various combinations of current magnitudes and directions transmitted define a plurality of current combinations, each current combination corresponds to a data transmission mode, wherein the current magnitude and direction are selected from a plurality of current magnitudes and a plurality of current directions; and according to In the current data transmission mode, corresponding currents are output through the plurality of differential signal line pairs to be combined to the electronic device of the display device.
本发明还揭露一种用于显示装置的接口装置,包含有多组差动信号线对、储存单元、判断单元,以及电流输出单元。该储存单元,用来储存多个电流组合,该多个电流组合是以该多组差动信号线对上分别传输的电流大小和方向的多种组合而定义,每一电流组合是对应于该显示装置的多个数据传输模式中一数据传输模式,其中,所述电流大小和方向从多个电流大小及多个电流方向中选取。该判断单元,耦接于该储存单元,用来根据当前数据传输模式,由该储存单元所储存的该多个电流组合中选择一电流组合。该电流输出单元,耦接于该判断单元,用来通过该多组差动信号线对输出该电流组合至该显示装置的电子装置。The invention also discloses an interface device for a display device, which includes a plurality of differential signal line pairs, a storage unit, a judgment unit, and a current output unit. The storage unit is used to store multiple current combinations, the multiple current combinations are defined by multiple combinations of the magnitude and direction of the currents respectively transmitted on the multiple sets of differential signal line pairs, each current combination corresponds to the A data transmission mode among the multiple data transmission modes of the display device, wherein the magnitude and direction of the current are selected from multiple current magnitudes and multiple current directions. The judging unit is coupled to the storage unit, and is used for selecting a current combination from the plurality of current combinations stored in the storage unit according to the current data transmission mode. The current output unit, coupled to the judging unit, is used for outputting the combined current to the electronic device of the display device through the plurality of differential signal line pairs.
附图说明Description of drawings
图1及图2为已知显示器的低摆幅差动信号接口的信号示意图。FIG. 1 and FIG. 2 are signal schematic diagrams of a low-swing differential signal interface of a conventional display.
图3及图4为已知显示器的低摆幅差动信号接口的信号线对的信号高态及低态的电流示意图。FIG. 3 and FIG. 4 are schematic current diagrams of signal high state and low state of a signal line pair of a low-swing differential signal interface of a conventional display.
图5为已知显示器的低摆幅差动信号接口的信号接口时序示意图。FIG. 5 is a schematic diagram of a timing sequence of a signal interface of a low-swing differential signal interface of a conventional display.
图6为本发明用于显示装置串行式的数据传输流程的流程图。FIG. 6 is a flowchart of a serial data transmission process for a display device according to the present invention.
图7至图9为本发明实施例具有可变电流的差动信号接口的信号特性示意图。7 to 9 are schematic diagrams of signal characteristics of a differential signal interface with variable current according to an embodiment of the present invention.
图10至图17为本发明实施例根据图4的电流组合及数据传输模式的配对示意图。FIG. 10 to FIG. 17 are schematic diagrams of the pairing of the current combination and the data transmission mode according to the embodiment of the present invention according to FIG. 4 .
图18为本发明实施例显示装置的接口时序示意图。FIG. 18 is a schematic diagram of an interface sequence of a display device according to an embodiment of the present invention.
图19为本发明实施例串行式的接口时序的示意图。FIG. 19 is a schematic diagram of a serial interface timing according to an embodiment of the present invention.
图20为本发明实施例用于显示装置的时序控制器的接口装置的示意图。FIG. 20 is a schematic diagram of an interface device for a timing controller of a display device according to an embodiment of the present invention.
[主要元件标号说明][Description of main component labels]
DxN、DxP、DATAxN、DATAxP、DIF、DIFNEW、DIF0NEW、 差动电压信号DxN, DxP, DATAxN, DATAxP, DIF, DIF NEW , DIF0 NEW , differential voltage signal
DIF1NEW DIF1 NEW
VIH、VIL、VIHNEW、VILNEW 电压摆幅VIH, VIL, VIH NEW , VIL NEW voltage swing
D00P/N、D01P/N、D02P/N、D03P/N、D10P/N、 差动电压信号线对D00P/N, D01P/N, D02P/N, D03P/N, D10P/N, differential voltage signal line pair
D11P/N、D12P/N、D13P/N、D20P/N、D21P/N、D11P/N, D12P/N, D13P/N, D20P/N, D21P/N,
D22P/N、D23P/N、DATA0P/N、DATA1P/ND22P/N, D23P/N, DATA0P/N, DATA1P/N
92 时序控制器 94 源极驱动器92
90 显示装置 910 储存单元90
920 判断单元 930 电流输出单元920
Tx 输出端 Rx 接收端Tx Output Terminal Rx Receiver
900 接口装置900 interface device
SYNC、LD、CONTROL、DIO、DATA、OUTPUT、DATA1、 数据传输模式SYNC, LD, CONTROL, DIO, DATA, OUTPUT, DATA1, data transmission mode
DATA2、DATA3、DATA4、DATA5、DATA6、DATA7、DATA2, DATA3, DATA4, DATA5, DATA6, DATA7,
DATA8DATA8
SCLK、SSYNC、SPOL、SSHL、SDIO、SLD、SOUTPUT、SDATA0、SDATA1 信号S CLK , S SYNC , S POL , S SHL , S DIO , S LD , S OUTPUT , S DATA0 , S DATA1 signals
60 流程60 Process
602、604、606、608、610 步骤602, 604, 606, 608, 610 Steps
具体实施方式Detailed ways
请参考图6,图6为本发明用于显示装置串行式的数据传输流程60的流程图。流程60包含下列步骤:Please refer to FIG. 6 , which is a flowchart of a serial
步骤602:开始。Step 602: start.
步骤604:取得该显示装置的多个数据传输模式。Step 604: Obtain multiple data transmission modes of the display device.
步骤606:根据该多个数据传输模式,以多个电流大小及多个电流方向定义多个电流组合,每一电流组合对应于一数据传输模式。Step 606: According to the multiple data transmission modes, define multiple current combinations with multiple current magnitudes and multiple current directions, and each current combination corresponds to a data transmission mode.
步骤608:根据当前数据传输模式,通过多条传输线输出对应的电流组合至该显示装置的电子装置。Step 608: According to the current data transmission mode, output corresponding current combinations to the electronic device of the display device through multiple transmission lines.
步骤610:结束。Step 610: end.
根据流程60,为了将数据和控制信号传送至电子装置,本发明是根据显示装置的数据传输模式的个数及种类,将每一数据传输模式对应于一种电流组合,而每一种电流组合是由不同的电流大小及电流方向所定义。According to the
本发明可适用于显示装置内任两端装置之间的传输方式,但为求便利,本发明往后的实施例皆以显示器内的时序控制器与源极驱动器之间的数据传输方式作说明,其中于时序控制器与源极驱动器之间,本发明实施例是运用差动信号线来传递信号。因此,通过传输不同的电流组合,时序控制器可传输对应于不同数据传输模式的信号至源极驱动器,如同步模式用来传输重置及同步信号,数据模式用来传输数据信号等等。在此情形下,当需要传送信号至源极驱动器时,流程60可根据时序控制器所选择的数据传输模式,产生对应的电流组合,并通过多条传输线(如差动线对)输出至源极驱动器。The present invention can be applied to the transmission mode between any two devices in the display device, but for the sake of convenience, the following embodiments of the present invention will be described with the data transmission mode between the timing controller and the source driver in the display , wherein between the timing controller and the source driver, the embodiment of the present invention uses differential signal lines to transmit signals. Therefore, by transmitting different current combinations, the timing controller can transmit signals corresponding to different data transmission modes to the source driver, such as synchronous mode for transmitting reset and synchronization signals, data mode for transmitting data signals, and so on. In this case, when it is necessary to transmit a signal to the source driver, the
特别注意的是,本发明是于传输线上提供不同的电流大小及方向,其方向可自行定义,并以电流大小与方向形成多种电流组合,其电流组合的方式不限于特定规定,例如,可以两个不同的电流大小且方向皆为正向的电流定义一种数据传输模式,或以三个不同的电流大小且方向为两正向及一反向的电流来定义等,诸如此类。举例来说,若使用两种电流大小I1及I2的电流并以I+及I-表示电流方向的正反向,和一对差动线对DATAxP及DATAxN来输出电流,则可定义出四种电流组合,分别为(1)DATAxP:I1+,DATAxN:I1-;(2)DATAxP:I1-,DATAxN:I1+;(3)DATAxP:I2+,DATAxN:I2-;(4)DATAxP:I2-,DATAxN:I2+;四种电流组合可分别对应至二个数据传输模式,以传送所需的信号,其中(1)、(2)及(3)、(4)可分别代表信号的高低态。另举一例说明,若前述的电流大小I1、I2及电流方向I+、I-运用两组差动线对DATA0P、DATA0N及DATA1P、DATA1N上时,则可形成十六种电流组合,分别为:It should be noted that the present invention provides different current magnitudes and directions on the transmission line. The direction can be defined by itself, and various current combinations can be formed based on the current magnitude and direction. The current combination method is not limited to specific regulations. For example, it can be A data transmission mode can be defined by two currents with different magnitudes and directions both forward, or three different current magnitudes with two forward directions and one reverse direction, etc. For example, if two currents with current sizes I 1 and I 2 are used and I+ and I- represent the forward and reverse directions of the current direction, and a pair of differential line pairs DATAxP and DATAxN are used to output the current, then four The current combinations are (1) DATAxP: I 1 +, DATAxN: I 1 -; (2) DATAxP: I 1 -, DATAxN: I 1 +; (3) DATAxP: I 2 +, DATAxN: I 2 - ; (4) DATAxP: I 2 -, DATAxN: I 2 +; The four current combinations can respectively correspond to two data transmission modes to transmit the required signals, wherein (1), (2) and (3), (4) It can represent the high and low states of the signal respectively. As another example, if the aforementioned current magnitudes I 1 , I 2 and current directions I+, I- are applied to two sets of differential line pairs DATA0P, DATA0N and DATA1P, DATA1N, sixteen kinds of current combinations can be formed, respectively: :
(1)DATA0P:I1+,DATA0N:I1-,DATA1P:I2+,DATA1N:I2-;(1) DATA0P: I 1 +, DATA0N: I 1 -, DATA1P: I 2 +, DATA1N: I 2 -;
(2)DATA0P:I1+,DATA0N:I1-,DATA1P:I2-,DATA1N:I2+;(2) DATA0P: I 1 +, DATA0N: I 1 -, DATA1P: I 2 -, DATA1N: I 2 +;
(3)DATA0P:I1-,DATA0N:I1+,DATA1P:I2+,DATA1N:I2-;(3) DATA0P: I 1 -, DATA0N: I 1 +, DATA1P: I 2 +, DATA1N: I 2 -;
(4)DATA0P:I1-,DATA0N:I1+,DATA1P:I2-,DATA1N:I2+;(4) DATA0P: I 1 -, DATA0N: I 1 +, DATA1P: I 2 -, DATA1N: I 2 +;
(5)DATA0P:I2+,DATA0N:I2-,DATA1P:I1+,DATA1N:I1-;(5) DATA0P: I 2 +, DATA0N: I 2 -, DATA1P: I 1 +, DATA1N: I 1 -;
(6)DATA0P:I2+,DATA0N:I2-,DATA1P:I1-,DATA1N:I1+;(6) DATA0P: I 2 +, DATA0N: I 2 -, DATA1P: I 1 -, DATA1N: I 1 +;
(7)DATA0P:I2-,DATA0N:I2+,DATA1P:I1+,DATA1N:I1-;(7) DATA0P: I 2 -, DATA0N: I 2 +, DATA1P: I 1 +, DATA1N: I 1 -;
(8)DATA0P:I2-,DATA0N:I2+,DATA1P:I1-,DATA1N:I1+;(8) DATA0P: I 2 -, DATA0N: I 2 +, DATA1P: I 1 -, DATA1N: I 1 +;
(9)DATA0P:I1+,DATA1N:I1-,DATA1P:I2+,DATA0N:I2-;(9) DATA0P: I 1 +, DATA1N: I 1 -, DATA1P: I 2 +, DATA0N: I 2 -;
(10)DATA0P:I1+,DATA1N:I1-,DATA1P:I2-,DATA0N:I2+;(10) DATA0P: I 1 +, DATA1N: I 1 -, DATA1P: I 2 -, DATA0N: I 2 +;
(11)DATA0P:I1-,DATA1N:I1+,DATA1P:I2+,DATA0N:I2-;(11) DATA0P: I 1 -, DATA1N: I 1 +, DATA1P: I 2 +, DATA0N: I 2 -;
(12)DATA0P:I1-,DATA1N:I1+,DATA1P:I2-,DATA0N:I2+;(12) DATA0P: I 1 -, DATA1N: I 1 +, DATA1P: I 2 -, DATA0N: I 2 +;
(13)DATA0P:I2+,DATA1N:I2-,DATA1P:I1+,DATA0N:I1-;(13) DATA0P: I 2 +, DATA1N: I 2 -, DATA1P: I 1 +, DATA0N: I 1 -;
(14)DATA0P:I2+,DATA1N:I2-,DATA1P:I1-,DATA0N:I1+;(14) DATA0P: I 2 +, DATA1N: I 2 -, DATA1P: I 1 -, DATA0N: I 1 +;
(15)DATA0P:I2-,DATA1N:I2+,DATA1P:I1+,DATA0N:I1-;(15) DATA0P: I 2 -, DATA1N: I 2 +, DATA1P: I 1 +, DATA0N: I 1 -;
(16)DATA0P:I2-,DATA1N:I2+,DATA1P:I1-,DATA0N:I1+;(16) DATA0P: I 2 -, DATA1N: I 2 +, DATA1P: I 1 -, DATA0N: I 1 +;
因此,在本发明中,传输线的种类与数目,电流大小与方向的选择并不限于特定范围内,本领域技术人员可视需要加以改变之。Therefore, in the present invention, the types and numbers of the transmission lines, the selection of the magnitude and direction of the current are not limited to specific ranges, and those skilled in the art can make changes as needed.
如前所述,已知低摆幅差动信号接口仅使用电流方向来定义信号,且仅能用来传送图像数据,当数据量大时,需使用较多传输线来传送信号。相较之下,本发明流程60同时运用电流大小与方向来定义多个电流组合,以根据相对应的数据传输模式,传送相对应的信号至源极驱动器,如此一来,本发明可使用同一组的传输线传送多种不同的信号,如数据信号、控制信号等等,大大减少印刷电路板上走线的面积及复杂度。As mentioned above, known low-swing differential signal interfaces only use current direction to define signals, and can only be used to transmit image data. When the amount of data is large, more transmission lines are required to transmit signals. In contrast, the
根据流程60,本发明实施例是利用具有可变电流的差动信号接口来实现步骤606的电流组合及数据传输模式。请参考图7至图9,图7至图9为本发明实施例具有可变电流的差动信号接口的信号示意图。图7类似于图1,可来调整差动电压信号DATAxN及DATAxP的电压,以改变正电压摆幅VIHNEW及负电压摆幅VILNEW的大小。举例来说,显示器内的时序控制器可调整一组差动线对DATAxN及DATAxP的电流大小及方向,使电流在内部终端电阻上造成不同电压,以改变正电压摆幅VIHNEW及负电压摆幅VILNEW。因此,若正电压摆幅VIHNEW及负电压摆幅VILNEW出现不同倍数的变化意实时序控制器提供差动线对对等倍数的电流变化。在图8及图9中,差动电压信号DIFNEW(DATAxP-DATAxN)可表现出一倍、三倍及两倍的直流电压值(1*M、3*M、2*M)。因此,本发明可利用差动电压信号的不同的直流电压值及电流方向,定义多个电流组合以对应多个数据传输模式。According to the
请参考图10至图17,图10至图17分别为本发明实施例数据传输模式及电流组合的示意图。图10至图17的数据传输模式DATA1~DATA8分别对应于一种电流组合。在本发明实施例中,时序控制器是使用两组差动信号线DATA0P/N及DATA1P/N来输出电流至源极驱动器。源极驱动器通过感测差动信号线DATA0P/N及DATA1P/N在终端电阻上形成的电压,得到两个差动电压信号DIF0NEW及DIF1NEW。以图10的数据传输模式DATA1来说,时序控制器在差动信号线DATA0P/N上产生一正向三倍直流电压值+3*M的差动电压信号,而在差动信号线DATA1P/N上产生一一倍直流电压值±1*M的差动电压信号,因此数据传输模式DATA1即对应于(DIF0NEW:+3*M,DIF1NEW:±1*M)的电流组合,其中差动电压信号DIF1NEW上的电流方向可用来分辨时钟信号的正负缘。同样地,数据传输模式DATA2~DATA4分别对应于电流组合:(DIF0NEW:-3*M,DIF1NEW:±1*M)、(DIF0NEW:+1*M,DIF1NEW:±3*M)及(DIF0NEW:-1*M,DIF1NEW:±3*M)。此外,以图13的数据传输模式DATA5来说,时序控制器在差动信号线DATA0P及DATA1N上产生一三倍直流电压值3*M的差动电压信号,而在差动信号线DATA0N及DATA1P上产生一一倍直流电压值1*M的差动电压信号,因此数据传输模式DATA5对应于(DIF0NEW:+2*M,DIF1NEW:+2*M)或(DIF0NEW:-2*M,DIF1NEW:-2*M)的电流组合,其中差动电压信号DIF1NEW上的电流方向可用来分辨时钟信号的正负缘。同理,数据传输模式DATA6对应于(DIF0NEW:+2*M,DIF1NEW:-2*M)或(DIF0NEW:-2*M,DIF1NEW:+2*M)的电流组合。其中,正负号表示定义的电流正向及负向。Please refer to FIG. 10 to FIG. 17 . FIG. 10 to FIG. 17 are schematic diagrams of data transmission modes and current combinations according to embodiments of the present invention. The data transmission modes DATA1 to DATA8 in FIGS. 10 to 17 respectively correspond to a current combination. In the embodiment of the present invention, the timing controller uses two sets of differential signal lines DATA0P/N and DATA1P/N to output current to the source driver. The source driver obtains two differential voltage signals DIF0 NEW and DIF1 NEW by sensing the voltage formed on the terminal resistor by the differential signal lines DATA0P/N and DATA1P/N. Taking the data transmission mode DATA1 in FIG. 10 as an example, the timing controller generates a positive differential voltage signal of three times the DC voltage value +3*M on the differential signal line DATA0P/N, and a differential voltage signal on the differential signal line DATA1P/N N generates a differential voltage signal with a double DC voltage value of ±1*M, so the data transmission mode DATA1 corresponds to the current combination of (DIF0 NEW :+3*M, DIF1 NEW :±1*M), where the difference The current direction on the dynamic voltage signal DIF1 NEW can be used to distinguish the positive and negative edges of the clock signal. Similarly, the data transmission modes DATA2~DATA4 respectively correspond to current combinations: (DIF0 NEW :-3*M, DIF1 NEW :±1*M), (DIF0 NEW :+1*M, DIF1 NEW :±3*M) And (DIF0 NEW : -1*M, DIF1 NEW : ±3*M). In addition, taking the data transmission mode DATA5 in FIG. 13 as an example, the timing controller generates a differential voltage signal of three times the DC voltage value 3*M on the differential signal lines DATA0P and DATA1N, and generates a differential voltage signal on the differential signal lines DATA0N and DATA1P Generate a differential voltage signal with a DC voltage value of 1*M, so the data transmission mode DATA5 corresponds to (DIF0 NEW :+2*M, DIF1 NEW :+2*M) or (DIF0 NEW :-2*M , DIF1 NEW :-2*M) current combination, wherein the current direction on the differential voltage signal DIF1 NEW can be used to distinguish the positive and negative edges of the clock signal. Similarly, the data transmission mode DATA6 corresponds to the current combination of (DIF0 NEW :+2*M, DIF1 NEW :-2*M) or (DIF0 NEW :-2*M, DIF1 NEW :+2*M). Among them, the positive and negative signs represent the positive and negative directions of the defined current.
图10至图17所示的电流组合是对应于八种数据传输模式,本领域技术人员可根据所需的数据传输模式,分别定义数据传输模式DATA1~DATA8所传输的信号种类。举例来说,可定义数据传输模式DATA1~DATA6,分别为控制模式(CONTROL)、拴锁模式(DIO)、数据模式(DATA)、电压输出模式(OUTPUT)、同步模式(SYNC)以及数据输出同步模式(LD)。同步模式用来传输同步信号,以重置源极驱动器与同步启始源极驱动器的电路;数据输出同步模式用来传输数据输出同步信号,以同步图像数据的输出时序;控制模式用来传输控制信号,以提供多个设定信号给源极驱动器;拴锁模式用来传输拴锁信号,以使源极驱动器进行数据拴锁;数据模式用来传输数据信号,以传输该图像数据至源极驱动器;以及,电压输出模式用来传输电压输出信号,以驱动源极驱动器输出该图像数据。在此情形下,显示装置中的控制信号、设定信号及数据信号同时嵌入仅两组差动信号线,不仅节省印刷板上的接线,更有利于在频率高速上数据同步的运作。The current combinations shown in FIG. 10 to FIG. 17 correspond to eight data transmission modes. Those skilled in the art can respectively define the types of signals transmitted by the data transmission modes DATA1-DATA8 according to the required data transmission modes. For example, data transmission modes DATA1~DATA6 can be defined, which are control mode (CONTROL), latch mode (DIO), data mode (DATA), voltage output mode (OUTPUT), synchronization mode (SYNC) and data output synchronization mode (LD). The synchronous mode is used to transmit the synchronous signal to reset the source driver and the circuit of the synchronous start source driver; the data output synchronous mode is used to transmit the data output synchronous signal to synchronize the output timing of the image data; the control mode is used to transmit the control signal to provide multiple setting signals to the source driver; the latch mode is used to transmit the latch signal to enable the source driver to perform data latching; the data mode is used to transmit the data signal to transmit the image data to the source driver; and, the voltage output mode is used to transmit the voltage output signal to drive the source driver to output the image data. In this case, the control signal, setting signal and data signal in the display device are embedded in only two sets of differential signal lines at the same time, which not only saves the wiring on the printed board, but also facilitates the operation of data synchronization at high frequency.
特别注意的是,本领域技术人员可作适当的变化,视需求增加、减少或改变电流组合,以配合所定义的数据传输模式。例如,将数据传输模式DATA1~DATA4对应于为第一组数据传输模式,而DATA5~DATA8对应于为第二组数据传输模式。另外,每个数据传输模式的运作内容与运作时间可视需要自行定义。如同步模式不一定仅用来传送同步信号,亦可同时传送同步信号及数据输出同步信号,而其模式运作时间只要为系统内时钟信号的周期倍数即可,不限于特定时间长度。It should be noted that those skilled in the art can make appropriate changes to increase, decrease or change the combination of currents according to requirements, so as to match the defined data transmission mode. For example, the data transmission modes DATA1-DATA4 correspond to the first group of data transmission modes, and DATA5-DATA8 correspond to the second group of data transmission modes. In addition, the operation content and operation time of each data transmission mode can be defined according to the needs. For example, the synchronous mode is not only used to transmit the synchronous signal, but also can transmit the synchronous signal and the data output synchronous signal at the same time, and the operating time of the mode only needs to be a multiple of the period of the clock signal in the system, and is not limited to a specific length of time.
请参考图18,图18为本发明实施例用于显示装置的接口时序示意图。由图18可知,DIF0NEW及DIF1NEW的时序可分为同步模式、控制模式、拴锁模式、数据模式、数据输出同步模式及电压输出模式,所有的数据传输模式的运作时间皆为时钟信号SCLK的周期时间的倍数。根据时序控制器及源极驱动器的时序,左右移控制信号SSHL及极性信号SPOL传输于控制模式下;数据信号SDATA0及SDATA0传输于数据模式下;同步信号SSYNC、拴锁信号SDIO、数据输出同步信号SLD及电压输出信号SOUTPUT分别传输于同步模式、拴锁模式、数据模式、数据输出同步模式及电压输出模式下。图18的接口时序的工作原理如下,当时序控制器运作于同步模式时(A点),时序控制器通过差动信号线DATA0P/N与DATA1P/N输出电流,在终端电阻上形成电压组合(DIF0NEW:+2*M,DIF1NEW:+2*M)或(DIF0NEW:-2*M,DIF1NEW:-2*M)至源极驱动器,源极驱动器经由解码程序后,开始接收同步信号SSYNC,以重置与同步启始内部的电路。同样地,当时序控制器运作于数据输出同步模式时(B点),时序控制器通过差动信号线DATA0P/N与DATA1P/N输出电流,在终端电阻上形成电压组合(DIF0NEW:+2*M,DIF1NEW:-2*M)或(DIF0NEW:-2*M,DIF1NEW:+2*M)至源极驱动器,源极驱动器经由解码程序后,开始接收数据输出同步信号SLD,以同步源极驱动器中的图像数据的输出时序。另外,拴锁模式(C点)的电压组合为(DIF0NEW:-3*M,DIF1NEW:±1*M),源极驱动器经由解码程序后,开始接收拴锁信号SDIO,以使源极驱动器进行数据拴锁;数据模式(D及E点)的电压组合分别为(DIF0NEW:+1*M,DIF1NEW:+3*M)及(DIF0NEW:+1*M,DIF1NEW:-3*M),即源极驱动器经由解码程序后,开始接收数据信号SDATA,以使源极驱动器于时钟信号SCLK的正负时钟缘上进行数据接收。Please refer to FIG. 18 . FIG. 18 is a schematic diagram of an interface sequence for a display device according to an embodiment of the present invention. It can be seen from Figure 18 that the timing of DIF0 NEW and DIF1 NEW can be divided into synchronous mode, control mode, latch mode, data mode, data output synchronous mode and voltage output mode. The operation time of all data transmission modes is the clock signal S multiple of the cycle time of CLK . According to the timing of the timing controller and the source driver, the left and right shift control signal S SHL and polarity signal S POL are transmitted in the control mode; the data signals S DATA0 and S DATA0 are transmitted in the data mode; the synchronization signal S SYNC and the latch signal S DIO , the data output synchronous signal S LD and the voltage output signal S OUTPUT are respectively transmitted in the synchronous mode, the latch mode, the data mode, the data output synchronous mode and the voltage output mode. The working principle of the interface timing in Figure 18 is as follows. When the timing controller operates in synchronous mode (point A), the timing controller outputs current through the differential signal lines DATA0P/N and DATA1P/N, forming a voltage combination on the terminal resistor ( DIF0 NEW :+2*M, DIF1 NEW :+2*M) or (DIF0 NEW :-2*M, DIF1 NEW :-2*M) to the source driver, after the source driver goes through the decoding process, it starts to receive synchronously Signal S SYNC to reset and start the internal circuit synchronously. Similarly, when the timing controller operates in the data output synchronous mode (point B), the timing controller outputs current through the differential signal lines DATA0P/N and DATA1P/N, forming a voltage combination on the terminal resistor (DIF0 NEW : +2 *M, DIF1 NEW :-2*M) or (DIF0 NEW :-2*M, DIF1 NEW :+2*M) to the source driver, the source driver starts to receive the data output synchronization signal S LD after going through the decoding process , to synchronize the output timing of the image data in the source driver. In addition, the voltage combination of latch mode (point C) is (DIF0 NEW :-3*M, DIF1 NEW :±1*M), the source driver starts to receive the latch signal S DIO after the decoding process, so that the source The pole driver performs data latching; the voltage combinations of the data mode (D and E points) are (DIF0 NEW :+1*M, DIF1 NEW :+3*M) and (DIF0 NEW :+1*M, DIF1 NEW : -3*M), that is, the source driver starts to receive the data signal S DATA after the decoding process, so that the source driver performs data reception on the positive and negative clock edges of the clock signal S CLK .
特别注意的是,本领域技术人员可作适当的变化,视需求增加、减少或改变此显示装置内数据传输模式的数目与用途,并配合所定义的电流组合。例如,本领域技术人员可仅取得同步、控制、拴锁及数据四种模式,并定义其对应的电流组合,使得同步模式用来传送同步信号SSYNC及数据输出同步信号SLD,而控制、拴锁及数据模式则分别用来传送控制信号、拴锁信号SDIO及数据信号SDATA。It should be noted that those skilled in the art can make appropriate changes, increase, decrease or change the number and usage of the data transmission modes in the display device according to requirements, and match the defined current combinations. For example, those skilled in the art can obtain only four modes of synchronization, control, latch and data, and define their corresponding current combinations, so that the synchronization mode is used to transmit the synchronization signal S SYNC and the data output synchronization signal S LD , while the control, The latch and data modes are respectively used to transmit the control signal, the latch signal S DIO and the data signal S DATA .
请参考图19,图19为本发明实施例串行式的接口时序的示意图。为了使显示装置能正常运作,每个完整时序皆需包含前述六种数据传输模式,并按照预定规则运作,使图像数据能正确地显示于面板上。本发明实施例的预定规则为数据模式是于同步模式之后且于数据输出同步模式之前;控制模式可自由分开摆放,如图19的(c),只需在同步模式之后及电压输出同步模式之前。因此,在本发明实施例中,控制信号、设定信号(如同步信号,数据输出同步信号等等)及数据信号是嵌入于同一接口上,并通过数据传输模式的定义,建立时序控制器与源极驱动器之间的传输协议。Please refer to FIG. 19 , which is a schematic diagram of a serial interface timing according to an embodiment of the present invention. In order to make the display device work normally, each complete sequence needs to include the aforementioned six data transmission modes, and operate according to predetermined rules, so that the image data can be correctly displayed on the panel. The predetermined rule of the embodiment of the present invention is that the data mode is after the synchronous mode and before the data output synchronous mode; the control mode can be freely placed separately, as shown in (c) of Figure 19, only after the synchronous mode and the voltage output synchronous mode Before. Therefore, in the embodiment of the present invention, control signals, setting signals (such as synchronization signals, data output synchronization signals, etc.) and data signals are embedded on the same interface, and through the definition of data transmission mode, the timing controller and Transfer protocol between source drivers.
请参考图20,图20为本发明实施例用于显示装置90的时序控制器92的接口装置900的示意图。接口装置900包含有两组差动信号线DDS0P/N与DDS1P/N、储存单元910、判断单元920及电流输出单元930。显示装置90根据所需的多个数据传输模式,定义了不同的电流组合储存于储存单元920中。当时序控制器92操作于某一数据传输模式时,判断单元920根据此数据传输模式,从储存单元910所储存的多个电流组合中选择一电流组合。接着,电流输出单元930通过差动信号线DATA0P/N与DATA1P/N,输出被选择的电流组合至源极驱动器94。源极驱动器94感测目前的电流组合以进行解码程序,并解出对应的传输信号模式,开始接收控制信号、数据信号或进行相关运作。因此,本发明是利用专属通道(Dedicated channel)的方式,实时序控制器对每一个源极驱动器,分别使用两组差动信号线来进行数据传输。当然,本领域技术人员可对传输线作适当的变化,视显示装置90内部的数据传输模式的数目,可增加、减少或改变传输线的组合,并非限定于两组差动信号线。Please refer to FIG. 20 , which is a schematic diagram of an interface device 900 used for the
综上所述,在接口特性上,已知技术是利用电流方向来传输数据,使每组差动信号线仅能代表一位的数据信号,控制及设定等信号传输需通过其它接口来实现;相较之下,本发明是同时利用不同的电流大小及方向来传输数据,使一组传输线能传送多种电流组合,进而定义多个数据传输模式,如此一来,可将时序控制器中的控制信号、设定信号及数据信号等等同时嵌入传输线中。另一方面,在硬件实现上,为了传输不同的信号,已知技术利用多种传输接口与源极驱动器沟通,并采用总线型式(bus type),造成接脚数目过多,信号传输容易反射的缺点产生;反之,本发明可使用较少的传输线,并采用专属信道及串行型式来传输各种信号,以降低接线数目及减少源极驱动器内部的阻抗匹配的难度。因此,本发明明显地可解决已知技术的多种问题。To sum up, in terms of interface characteristics, the known technology is to use the direction of current to transmit data, so that each set of differential signal lines can only represent a data signal of one bit, and the transmission of control and setting signals needs to be realized through other interfaces. ; In contrast, the present invention uses different current magnitudes and directions to transmit data at the same time, so that a set of transmission lines can transmit multiple current combinations, and then define multiple data transmission modes. In this way, the timing controller can be The control signals, setting signals and data signals of the transmission line are embedded in the transmission line at the same time. On the other hand, in terms of hardware implementation, in order to transmit different signals, the known technology utilizes multiple transmission interfaces to communicate with the source driver, and adopts a bus type, resulting in too many pins, and the signal transmission is easily reflected. On the contrary, the present invention can use fewer transmission lines, and use dedicated channels and serial types to transmit various signals, so as to reduce the number of wiring and reduce the difficulty of impedance matching inside the source driver. Thus, it is apparent that the present invention can solve various problems of the known art.
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100849598A CN101246670B (en) | 2007-02-17 | 2007-02-17 | Serial data transmission method for display device and related device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100849598A CN101246670B (en) | 2007-02-17 | 2007-02-17 | Serial data transmission method for display device and related device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101246670A CN101246670A (en) | 2008-08-20 |
CN101246670B true CN101246670B (en) | 2010-06-16 |
Family
ID=39947095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100849598A Expired - Fee Related CN101246670B (en) | 2007-02-17 | 2007-02-17 | Serial data transmission method for display device and related device thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101246670B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890919A (en) * | 2011-07-20 | 2013-01-23 | 联咏科技股份有限公司 | Source driver array and drive method of source driver array as well as liquid crystal drive device |
DE102017200687A1 (en) * | 2017-01-17 | 2018-07-19 | Robert Bosch Gmbh | Transmitter and receiver for a differential low voltage signal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1725277A (en) * | 2005-05-24 | 2006-01-25 | 广辉电子股份有限公司 | display panel |
CN1870115A (en) * | 2005-05-26 | 2006-11-29 | 凌阳科技股份有限公司 | Timing controller and source driver of liquid crystal panel as well as control method and circuit |
CN1991955A (en) * | 2005-12-31 | 2007-07-04 | 义隆电子股份有限公司 | Source drive method of liquid crystal display |
-
2007
- 2007-02-17 CN CN2007100849598A patent/CN101246670B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1725277A (en) * | 2005-05-24 | 2006-01-25 | 广辉电子股份有限公司 | display panel |
CN1870115A (en) * | 2005-05-26 | 2006-11-29 | 凌阳科技股份有限公司 | Timing controller and source driver of liquid crystal panel as well as control method and circuit |
CN1991955A (en) * | 2005-12-31 | 2007-07-04 | 义隆电子股份有限公司 | Source drive method of liquid crystal display |
Also Published As
Publication number | Publication date |
---|---|
CN101246670A (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496545B1 (en) | Connector And Apparatus Of Driving Liquid Crystal Display Using The Same | |
CN100505026C (en) | Receiver of source driver in liquid crystal display panel | |
US20220198989A1 (en) | Data drive circuit, clock recovery method of the same, and display drive device having the same | |
US8947412B2 (en) | Display driving system using transmission of single-level embedded with clock signal | |
CN106933405B (en) | Touch driving signal generation and touch driving device, display device and driving method | |
CN104575413B (en) | Display Device and Method for Driving Same | |
US8884934B2 (en) | Display driving system using single level data transmission with embedded clock signal | |
CN107783688A (en) | Touch display unit and the method for driving touch display unit | |
CN103871381B (en) | Time schedule controller and its driving method and the liquid crystal display device using the controller | |
CN101303826A (en) | Column driver and flat panel display with same | |
KR101803575B1 (en) | Display device and driving method thereof | |
US20080192030A1 (en) | Serial Data Transmission Method and Related Apparatus for Display Device | |
CN101587690B (en) | Data transmission device and related method | |
KR101489637B1 (en) | Timing controller, its driving method, and flat panel display device | |
US20090274241A1 (en) | Data Transmission Device and Related Method | |
US20110273424A1 (en) | Display panel data driver and display apparatus including same | |
CN101246670B (en) | Serial data transmission method for display device and related device thereof | |
KR20150075640A (en) | Apparatus and method of data interface of flat panel display device | |
US20230094326A1 (en) | Touch display device | |
KR101761417B1 (en) | Liquid crystal display | |
CN101174392A (en) | Driving device for inner of flat panel display and related image transmission device | |
Kim et al. | P‐38: 1Gbps/lane Low Overhead Clock‐Shared Differential Signaling (CSDS)—An Efficient Interface for Large‐Size TFT‐LCDs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100616 Termination date: 20150217 |
|
EXPY | Termination of patent right or utility model |