CN101246184B - Quasi-two-dimension magnetic fluid acceleration transducer - Google Patents
Quasi-two-dimension magnetic fluid acceleration transducer Download PDFInfo
- Publication number
- CN101246184B CN101246184B CN2007100639922A CN200710063992A CN101246184B CN 101246184 B CN101246184 B CN 101246184B CN 2007100639922 A CN2007100639922 A CN 2007100639922A CN 200710063992 A CN200710063992 A CN 200710063992A CN 101246184 B CN101246184 B CN 101246184B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- cavity
- mass block
- magnetic fluid
- nonmagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fluid-Damping Devices (AREA)
Abstract
本发明所述的一种准二维磁性流体加速度传感器,包括非磁性腔体、质量块、检测装置与磁性流体,非磁性腔体是由非磁性材料构成的密闭容器;质量块设于非磁性腔体中部,质量块的两端面与非磁性腔体的接触面的法向与质量块的轴线成一定倾斜角度;且在接触面间设有检测装置,并在质量块、检测装置与非磁性腔体之间保持设定的预紧压力;且非磁性腔体与质量块形成的空腔中充满磁性流体;检测装置用于检测质量块与非磁性腔体之间压力的变化,输出加速度检测结果信号。具有检测方向二维性、大量程、量程可控性、高灵敏度、智能性、高可靠性、工作寿命长等特点。
A quasi-two-dimensional magnetic fluid acceleration sensor according to the present invention includes a non-magnetic cavity, a mass block, a detection device and a magnetic fluid. The non-magnetic cavity is a closed container made of non-magnetic material; In the middle of the cavity, the normal direction between the two ends of the mass block and the contact surface of the non-magnetic cavity forms a certain inclined angle with the axis of the mass block; and a detection device is provided between the contact surfaces, and the mass block, the detection device and the non-magnetic The set pre-tightening pressure is maintained between the cavities; and the cavity formed by the non-magnetic cavity and the mass block is filled with magnetic fluid; the detection device is used to detect the pressure change between the mass block and the non-magnetic cavity, and the output acceleration detection result signal. It has the characteristics of two-dimensional detection direction, large range, range controllability, high sensitivity, intelligence, high reliability, and long working life.
Description
技术领域technical field
本发明涉及加速度传感器的生产及应用领域,尤其涉及一种基于磁性流体的准二维加速度传感器。The invention relates to the field of production and application of acceleration sensors, in particular to a quasi-two-dimensional acceleration sensor based on magnetic fluid.
背景技术Background technique
目前,在诸多的技术领域均常用到加速度传感器,如汽车运动控制、建筑机械运动控制、机械振动检测、航天航空、家电产品性能检测等等。At present, acceleration sensors are commonly used in many technical fields, such as automobile motion control, construction machinery motion control, mechanical vibration detection, aerospace, home appliance performance detection and so on.
现有的加速度传感器通常有以下几种结构。Existing acceleration sensors usually have the following structures.
一种加速度传感器是采用悬臂梁结构,包含固定端设置在基板上作往复弹性变形运动的悬臂梁,通过检测悬臂梁位置的方式确定外界加速度大小。常用的检测方式有设置一端固定、另一端自由运动的悬臂梁,在悬臂梁的根部粘贴应变片,通过应变片检测悬臂梁根部的位移值,从而确定外界输入加速度。An acceleration sensor adopts a cantilever beam structure, including a cantilever beam whose fixed end is arranged on a substrate for reciprocating elastic deformation movement, and the external acceleration is determined by detecting the position of the cantilever beam. The commonly used detection method is to set a cantilever beam with one end fixed and the other end free to move, attach a strain gauge to the root of the cantilever beam, and use the strain gauge to detect the displacement value of the cantilever beam root to determine the external input acceleration.
另一种加速度传感器是将压电元件设置于传感器底部,在压电元件上方设置质量块,质量块与压电元件在法向上紧密接触,接触面法线平行于所测加速度的方向,工作时质量块产生一定的位移量,使得与之相接触的压电元件产生输出信号,通过检测输出信号,即可检测相应的输入加速度。Another type of acceleration sensor is to install the piezoelectric element at the bottom of the sensor, and set a mass block above the piezoelectric element. The mass block is in close contact with the piezoelectric element in the normal direction, and the normal line of the contact surface is parallel to the direction of the measured acceleration. The quality block produces a certain amount of displacement, so that the piezoelectric element in contact with it generates an output signal, and the corresponding input acceleration can be detected by detecting the output signal.
上述的加速度传感器一旦安装之后,只能检测同一个方向的输入加速度,而对于其他方向的加速度则无法检测,即其检测方向具有一维性,同时,一经制造后就不能改变加速度传感器内部的材料,这些都是它们的缺点。Once the above-mentioned acceleration sensor is installed, it can only detect the input acceleration in the same direction, but cannot detect the acceleration in other directions, that is, its detection direction is one-dimensional, and at the same time, the material inside the acceleration sensor cannot be changed once it is manufactured. , these are their shortcomings.
发明内容Contents of the invention
鉴于上述现有技术所存在的问题,本发明的目的是提供准二维磁性流体加速度传感器,核心是基于磁性流体的斜接触压电式加速度传感器,具有检测方向二维性、大量程、量程可控性、高灵敏度、高可靠性、智能性、工作寿命长等特点。In view of the problems existing in the above-mentioned prior art, the object of the present invention is to provide a quasi-two-dimensional magnetic fluid acceleration sensor, the core of which is an oblique contact piezoelectric acceleration sensor based on magnetic fluid, which has two-dimensionality in the detection direction, large range, and adjustable range. Controllability, high sensitivity, high reliability, intelligence, long working life and so on.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种准二维磁性流体加速度传感器,包括:非磁性腔体、质量块、检测装置与磁性流体,其中:A quasi-two-dimensional magnetic fluid acceleration sensor, comprising: a non-magnetic cavity, a mass, a detection device and a magnetic fluid, wherein:
非磁性腔体:由非磁性材料构成的密闭容器;Non-magnetic cavity: a closed container made of non-magnetic materials;
质量块:设于非磁性腔体中部,质量块的两端面与非磁性腔体的接触面的法向与质量块的轴线成一定倾斜角度;且在接触面间设有检测装置,并在质量块、检测装置与非磁性腔体之间保持设定的预紧压力;且非磁性腔体与质量块形成的空腔中充满磁性流体;Mass block: located in the middle of the non-magnetic cavity, the normal direction of the contact surface between the two ends of the mass block and the non-magnetic cavity forms a certain inclined angle with the axis of the mass block; and a detection device is installed between the contact surfaces, and the mass The set pre-tightening pressure is maintained between the block, the detection device and the non-magnetic cavity; and the cavity formed by the non-magnetic cavity and the mass block is filled with magnetic fluid;
检测装置:用于检测质量块与非磁性腔体之间压力的变化,输出加速度检测结果信号。Detection device: used to detect the pressure change between the mass block and the non-magnetic cavity, and output the acceleration detection result signal.
所述的准二维磁性流体加速度传感器,还包括磁场控制装置,用于改变磁性流体的粘度,控制质量块轴向的位移量,具体包括:The quasi-two-dimensional magnetic fluid acceleration sensor also includes a magnetic field control device for changing the viscosity of the magnetic fluid and controlling the axial displacement of the mass block, specifically including:
励磁线圈:缠绕于非磁性腔体的外部,通过输入电流产生均匀磁场,改变磁性流体的粘度,控制质量块轴向的位移量。Excitation coil: wound outside the non-magnetic cavity, a uniform magnetic field is generated by inputting current, the viscosity of the magnetic fluid is changed, and the axial displacement of the mass is controlled.
所述的准二维磁性流体加速度传感器,还包括检测控制装置,用于根据检测装置输出的加速度检测结果信号,控制励磁线圈的输入电流,从而控制励磁线圈的内部磁场。The quasi-two-dimensional magnetic fluid acceleration sensor further includes a detection control device for controlling the input current of the excitation coil according to the acceleration detection result signal output by the detection device, thereby controlling the internal magnetic field of the excitation coil.
所述的检测装置包括一块或者多块压电片通过串连方式或者并联方式组成的压电元件,压电元件设于质量块与非磁性腔体之间,用于检测质量块的位移量变化,输出可供后续检测电路检测的信号。The detection device includes a piezoelectric element composed of one or more piezoelectric sheets connected in series or in parallel, and the piezoelectric element is arranged between the mass block and the non-magnetic cavity to detect the displacement change of the mass block , and output a signal that can be detected by a subsequent detection circuit.
所述的质量块的一端与非磁性腔体的接触面包括成一定角度的两个接触面,且每个接触面间均设有压电元件。The contact surface between one end of the mass block and the non-magnetic cavity includes two contact surfaces at a certain angle, and piezoelectric elements are arranged between each contact surface.
所述的质量块端面为外定位棱锥面,非磁性腔体设有内棱锥凹槽,质量块的外定位棱锥面设于非磁性腔体的内棱锥凹槽中实现周向定位。The end face of the mass block is an outer positioning pyramid surface, the non-magnetic cavity is provided with an inner pyramid groove, and the outer positioning pyramid surface of the mass block is arranged in the inner pyramid groove of the non-magnetic cavity to achieve circumferential positioning.
所述的质量块以高比重材料制成,且所述的质量块是圆柱体或棱柱体,且在质量块周向设置有多道凹槽或叶片,用于增加与磁性流体的有效接触面积。The mass block is made of high specific gravity material, and the mass block is a cylinder or a prism, and a plurality of grooves or blades are arranged around the mass block to increase the effective contact area with the magnetic fluid .
所述的非磁性腔体包括非磁性内筒与非磁性压盖,其中:The non-magnetic cavity includes a non-magnetic inner cylinder and a non-magnetic gland, wherein:
所述的非磁性内筒两端开口,两端分别通过螺钉固定安装一个非磁性压盖压紧质量块,组成非磁性腔体,并在质量块、检测装置与非磁性腔体之间产生保持设定的预紧压力;或者,Both ends of the non-magnetic inner cylinder are open, and a non-magnetic gland is fixed at both ends to press the mass block by screws to form a non-magnetic cavity, and a holding force is generated between the mass block, the detection device and the non-magnetic cavity. the set preload pressure; or,
所述的非磁性内筒一端开口,开口处安装一个非磁性压盖压紧质量块,组成非磁性腔体,并在质量块、检测装置与非磁性腔体之间产生保持设定的预紧压力;或者,One end of the non-magnetic inner cylinder is open, and a non-magnetic gland is installed at the opening to press the mass block to form a non-magnetic cavity, and a preload is generated between the mass block, the detection device and the non-magnetic cavity to maintain the setting pressure; or,
所述的非磁性内筒与非磁性压盖之间还设置有非磁性密封圈。A non-magnetic sealing ring is also arranged between the non-magnetic inner cylinder and the non-magnetic gland.
所述的非磁性腔体为圆柱体或棱柱体,外壁沿轴向方向设置有周向凹槽,用于安装励磁线圈。The non-magnetic cavity is a cylinder or a prism, and the outer wall is provided with a circumferential groove along the axial direction for installing the excitation coil.
所述的磁性流体加速度传感器,还包括外壳体,所述的非磁性腔体、磁性流体、质量块、检测装置或磁场控制装置设置于外壳体内腔中,外壳体具体包括外套筒、上端盖与下端盖,外套筒与上端盖与下端盖通过螺栓固定,所述的下端盖上设有安装支脚和/或安装孔,或者;The magnetic fluid acceleration sensor also includes an outer casing, and the non-magnetic cavity, magnetic fluid, mass, detection device or magnetic field control device are arranged in the inner cavity of the outer casing, and the outer casing specifically includes an outer sleeve and an upper end cover and the lower end cover, the outer sleeve and the upper end cover and the lower end cover are fixed by bolts, and the lower end cover is provided with mounting feet and/or mounting holes, or;
所述的外壳体与非磁性腔体间设有隔离套,用于隔离磁场控制装置与外部磁场的联系,抑制外界磁场干扰。An isolation sleeve is provided between the outer shell and the non-magnetic cavity, which is used to isolate the connection between the magnetic field control device and the external magnetic field, and suppress the interference of the external magnetic field.
由上述本发明提供的技术方案可以看出,本发明所述的一种准二维磁性流体加速度传感器包括非磁性腔体、质量块、检测装置与磁性流体,非磁性腔体是由非磁性材料构成的密闭容器;质量块设于非磁性腔体中部,质量块的两端面与非磁性腔体的接触面的法向与质量块的轴线成一定倾斜角度;且在接触面间设有检测装置,并在质量块、检测装置与非磁性腔体之间保持设定的预紧压力;且非磁性腔体与质量块形成的空腔中充满磁性流体;检测装置用于检测质量块与非磁性腔体之间压力的变化,输出加速度检测结果信号。It can be seen from the technical solution provided by the present invention that the quasi-two-dimensional magnetic fluid acceleration sensor described in the present invention includes a non-magnetic cavity, a mass, a detection device and a magnetic fluid, and the non-magnetic cavity is made of a non-magnetic material The airtight container constituted; the mass block is arranged in the middle of the non-magnetic cavity, and the normal direction of the contact surface between the two ends of the mass block and the non-magnetic cavity forms a certain inclined angle with the axis of the mass block; and a detection device is provided between the contact surfaces , and maintain a set pre-tightening pressure between the mass block, the detection device and the non-magnetic cavity; and the cavity formed by the non-magnetic cavity and the mass block is filled with magnetic fluid; the detection device is used to detect the mass block and the non-magnetic The pressure change between the cavities outputs the acceleration detection result signal.
具体可将一质量块和多块压电元件放置于一非磁性材料组成的满磁性流体的非磁性腔体的内部,通过非磁性压盖的周向定位作用,使质量块与非磁性腔体保持同轴,在非磁性压盖的内棱锥凹槽的两倾斜相对平面上粘贴压电元件,两片压电元件的接触面法线以一倾斜角度相交,每个压电元件的接触面法线与质量块的轴线成一倾斜角度,非磁性压盖除了起到定位的作用,还提供了预紧力,当非磁性压盖锁紧的时候,产生的预紧力将压电元件和质量块压紧,使压电元件和质量块在压电元件的接触面紧密接触;当存在外界加速度时,质量块由于惯性作用,将对压电元件产生拉伸或者压缩的效果,通过检测压电元件的输出信号,即可确定质量块的位移量,进而确定外界加速度的值,同时,质量块还将受到磁性流体的阻尼力作用,通过控制磁性流体的阻尼力,可以控制质量块的位移量,从而实现检测量程范围的改变。Specifically, a mass block and multiple piezoelectric elements can be placed inside a non-magnetic cavity filled with magnetic fluid composed of non-magnetic materials, and the mass block and the non-magnetic cavity can be connected through the circumferential positioning of the non-magnetic gland. Keeping the same axis, paste the piezoelectric element on the two inclined opposite planes of the inner pyramid groove of the non-magnetic gland. The contact surface normals of the two piezoelectric elements intersect at an oblique angle, and the contact surface normal of each piezoelectric element The line and the axis of the mass block form an inclined angle. The non-magnetic gland not only plays a role in positioning, but also provides a pre-tightening force. When the non-magnetic gland is locked, the pre-tightening force generated will connect the piezoelectric element and the mass block. Compression, so that the piezoelectric element and the mass block are in close contact on the contact surface of the piezoelectric element; when there is an external acceleration, the mass block will have a stretching or compression effect on the piezoelectric element due to inertia, and the piezoelectric element can be tested The output signal of the mass block can determine the displacement of the mass block, and then determine the value of the external acceleration. At the same time, the mass block will also be affected by the damping force of the magnetic fluid. By controlling the damping force of the magnetic fluid, the displacement of the mass block can be controlled. In order to realize the change of detection range.
本发明结构上新颖,避免了传统的悬臂梁结构,引入了压电元件,通过非磁性压盖提供的预紧力,使质量块和压电元件紧密接触,一方面增强了所述加速度传感器的灵敏度,另一方面有效增加了加速度传感器的刚度,能够提高加速度传感器的量程,实现加速度传感器大量程检测;在每个非磁性压盖的内棱锥凹槽的倾斜相对平面上设置两块压电元件,质量块两端设置了相应的棱锥面,用于实现质量块与压电元件的面接触;两块压电元件的接触面法线以一倾斜角度相交,同时,每个压电元件的接触面法线与质量块的轴线成一倾斜角度,当所述的加速度传感器承受水平加速度或竖直加速度时,质量块由于惯性而产生水平位移量或者竖直位移量,这两种位移量都可以被分解成平行于压电元件接触面的位移量和垂直于压电元件接触面的位移量,从而使得输入的水平加速度或者竖直加速度都在压电元件上有了相应的输出量,因此所述的加速度传感器可以检测二维方向的输入加速度;质量块上设置斜凹槽,增大了质量块与磁性流体的有效接触面积,可以同时在水平方向或竖直方向感受磁性流体的阻尼力,控制质量块在水平方向或竖直方向的位移量;在质量块的每个端面设置两块压电元件,当输入水平加速度时,同一轴侧的两块压电元件受压,另外一侧的两块压电元件则被放松,当输入竖直加速度时,位于同一端面的两块压电元件将受压、另一端面的两块压电元件被放松,这种差动检测方式可有效消除各种干扰,提高了质量块位移量检测的准确度;另外本发明中利用磁性流体粘度可控性特点,通过对励磁线圈电流进行改变,改变施加在磁性流体上的磁场强度,达到控制磁性流体粘度的目的,从而可以达到对加速度传感器量程的控制,实现大量程的特点。具有检测方向二维性、大量程、量程可控性、高灵敏度、高可靠性、智能性、工作寿命长等特点。The present invention is novel in structure, avoids the traditional cantilever beam structure, introduces piezoelectric elements, and uses the pre-tightening force provided by the non-magnetic gland to make the mass block and the piezoelectric element closely contact, on the one hand, it enhances the acceleration sensor Sensitivity, on the other hand, effectively increases the stiffness of the acceleration sensor, can increase the range of the acceleration sensor, and realize the large-range detection of the acceleration sensor; set two piezoelectric elements on the inclined opposite plane of the inner pyramid groove of each non-magnetic gland , the two ends of the mass block are provided with corresponding pyramidal surfaces to realize the surface contact between the mass block and the piezoelectric element; the contact surface normals of the two piezoelectric elements intersect at an oblique angle, and at the same time, the contact of each piezoelectric element The normal line of the surface forms an inclination angle with the axis of the mass block. When the acceleration sensor is subjected to horizontal acceleration or vertical acceleration, the mass block produces a horizontal displacement or a vertical displacement due to inertia, and these two displacements can be measured. It is decomposed into the displacement parallel to the contact surface of the piezoelectric element and the displacement perpendicular to the contact surface of the piezoelectric element, so that the input horizontal acceleration or vertical acceleration has a corresponding output on the piezoelectric element, so the The acceleration sensor can detect the input acceleration in the two-dimensional direction; the oblique groove is set on the mass block, which increases the effective contact area between the mass block and the magnetic fluid, and can feel the damping force of the magnetic fluid in the horizontal direction or vertical direction at the same time, and control The displacement of the mass block in the horizontal or vertical direction; two piezoelectric elements are set on each end face of the mass block. When the horizontal acceleration is input, the two piezoelectric elements on the same axis side are compressed, and the two piezoelectric elements on the other side are pressed. One piezoelectric element is released. When the vertical acceleration is input, the two piezoelectric elements on the same end face will be pressed, and the two piezoelectric elements on the other end face will be released. This differential detection method can effectively eliminate the This interference improves the accuracy of mass displacement detection; in addition, the present invention uses the controllability of the viscosity of the magnetic fluid to change the current of the excitation coil and change the magnetic field strength applied to the magnetic fluid to control the viscosity of the magnetic fluid. The purpose of this is to achieve the control of the range of the acceleration sensor and realize the characteristics of a large range. It has the characteristics of two-dimensional detection direction, large range, range controllability, high sensitivity, high reliability, intelligence, and long working life.
附图说明Description of drawings
图1为本发明所述的准二维磁性流体加速度传感器的立体爆炸示意图;Fig. 1 is the three-dimensional exploded schematic diagram of the quasi-two-dimensional magnetic fluid acceleration sensor of the present invention;
图2为本发明所述的准二维磁性流体加速度传感器的结构示意图;Fig. 2 is the structural representation of the quasi-two-dimensional magnetic fluid acceleration sensor of the present invention;
图3为本发明所述的准二维磁性流体加速度传感器的局部放大结构示意图。Fig. 3 is a schematic diagram of a partially enlarged structure of the quasi-two-dimensional magnetic fluid acceleration sensor according to the present invention.
具体实施方式Detailed ways
本发明所述的准二维磁性流体加速度传感器包括非磁性腔体、质量块、检测装置与磁性流体,非磁性腔体是由非磁性材料构成的密闭容器;质量块设于非磁性腔体中部,质量块的两端面与非磁性腔体的接触面的法向与质量块的轴线成一定倾斜角度;且在接触面间设有检测装置,并在质量块、检测装置与非磁性腔体之间保持设定的预紧压力;且非磁性腔体与质量块形成的空腔中充满磁性流体;检测装置用于检测质量块与非磁性腔体之间压力的变化,输出加速度检测结果信号。The quasi-two-dimensional magnetic fluid acceleration sensor of the present invention includes a non-magnetic cavity, a mass block, a detection device and a magnetic fluid. The non-magnetic cavity is a closed container made of non-magnetic materials; the mass block is arranged in the middle of the non-magnetic cavity. , the normal direction between the two ends of the mass block and the contact surface of the non-magnetic cavity forms a certain inclination angle with the axis of the mass block; and a detection device is provided between the contact surfaces, and between the mass block, the detection device and the non-magnetic cavity The set pre-tightening pressure is maintained between; and the cavity formed by the non-magnetic cavity and the mass block is filled with magnetic fluid; the detection device is used to detect the pressure change between the mass block and the non-magnetic cavity, and output the acceleration detection result signal.
具体是将一质量块和多块压电元件放置于一非磁性材料组成的满磁性流体的非磁性腔体的内部,通过非磁性压盖的内棱锥凹槽的周向定位作用,使质量块与非磁性腔体保持同轴,在非磁性压盖的内棱锥凹槽的两倾斜相对平面上粘贴压电元件,两片压电元件的接触面法线以一倾斜角度相交,每个压电元件的接触面法线与质量块的轴线成一倾斜角度,非磁性压盖除了对质量块和压电元件起到周向定位的作用,还提供了必要的预紧力,当非磁性压盖锁紧的时候,产生的预紧力将压电元件和质量块压紧,使压电元件和质量块紧密接触,用于增大所述加速度传感器的刚度,还能增大加速度的测量灵敏度;当存在外界加速度时,质量块由于惯性作用,对与之紧密接触的压电元件产生拉伸或者压缩的效果:当输入水平加速度时,同一轴侧的两块压电元件受压,另外一侧的两块压电元件则被放松,当输入竖直加速度时,位于同一端面的两块压电元件将受压、另一端面的两块压电元件被放松,这种差动检测方式可有效消除各种干扰,提高了质量块位移量检测的准确度,通过检测压电元件的输出信号,可确定质量块的位移量,从而确定外界的二维加速度的值,同时,质量块外壁设置了多道斜凹槽,可有效增质量块与磁性流体的有效接触面积,可以同时在水平方向或竖直方向感受磁性流体的阻尼力,控制质量块在水平方向或竖直方向的位移量;通过控制励磁线圈的输入电流,可控制励磁线圈的磁场,励磁线圈的磁场可改变磁性流体的粘度,磁性流体粘度的改变将改变磁性流体对质量块的阻尼力,从而可控制质量块的位移量,实现加速度传感器大量程检测,还可动态控制量程范围大小。Specifically, a mass block and multiple piezoelectric elements are placed inside a non-magnetic cavity filled with magnetic fluid composed of non-magnetic materials, and the mass block is positioned through the circumferential positioning of the inner pyramid groove of the non-magnetic gland. Keeping the same axis with the non-magnetic cavity, the piezoelectric element is pasted on the two obliquely opposite planes of the inner pyramid groove of the non-magnetic gland. The contact surface normals of the two piezoelectric elements intersect at an oblique angle. The normal line of the contact surface of the component forms an inclined angle with the axis of the mass block. The non-magnetic gland not only plays a role in the circumferential positioning of the mass block and the piezoelectric element, but also provides the necessary pre-tightening force. When the non-magnetic gland locks When tight, the pre-tightening force generated will compress the piezoelectric element and the mass block, so that the piezoelectric element and the mass block are in close contact, which is used to increase the stiffness of the acceleration sensor and also increase the measurement sensitivity of the acceleration; when When there is an external acceleration, due to the action of inertia, the mass block will stretch or compress the piezoelectric element in close contact with it: when the horizontal acceleration is input, the two piezoelectric elements on the same axis side will be compressed, and the piezoelectric element on the other side will be compressed. The two piezoelectric elements are released. When the vertical acceleration is input, the two piezoelectric elements on the same end face will be pressed, and the two piezoelectric elements on the other end face will be released. This differential detection method can effectively eliminate Various interferences improve the accuracy of mass block displacement detection. By detecting the output signal of the piezoelectric element, the mass block displacement can be determined, thereby determining the value of the external two-dimensional acceleration. At the same time, the outer wall of the mass block is equipped with multiple The inclined groove can effectively increase the effective contact area between the mass block and the magnetic fluid, and can feel the damping force of the magnetic fluid in the horizontal or vertical direction at the same time, and control the displacement of the mass block in the horizontal or vertical direction; by controlling The input current of the excitation coil can control the magnetic field of the excitation coil, and the magnetic field of the excitation coil can change the viscosity of the magnetic fluid. The change of the viscosity of the magnetic fluid will change the damping force of the magnetic fluid on the mass block, thereby controlling the displacement of the mass block. The acceleration sensor has a large range of detection, and can also dynamically control the size of the range.
本发明的具体实施方式的结构如图1与图2所示,所述的准二维加速度传感器最基本的结构包括:非磁性腔体、磁性流体10、质量块12与检测装置,其中:The structure of the specific embodiment of the present invention is shown in Figure 1 and Figure 2, and the most basic structure of described quasi-two-dimensional acceleration sensor comprises: non-magnetic cavity, magnetic fluid 10,
非磁性腔体为非磁性材料构成的密闭容器,内部充满磁性流体10,非磁性腔体包括非磁性内筒9与非磁性压盖3,本例中的非磁性内筒9两端开口,两端通过第一螺钉13安装非磁性压盖3,锁紧后组成密闭的非磁性腔体,内部充满磁性流体10;有时在加工工艺允许的情况下,非磁性内筒9可以是一端开口,开口处通过第一螺钉13安装一个非磁性压盖压紧质量块3组成非磁性腔体,内部充满磁性流体10。同时,为了更好地实现非磁性腔体的密闭(主要是磁性流体的密封),所述的非磁性内筒9与非磁性压盖3之间可设置非磁性密封圈5,防止磁性流体10发生泄漏。The non-magnetic cavity is a closed container made of non-magnetic material, which is filled with magnetic fluid 10. The non-magnetic cavity includes a non-magnetic inner cylinder 9 and a
本例中的非磁性腔体外壁沿轴向方向设置有周向凹槽,也就是非磁性内筒9的外壁沿轴向方向设置有周向凹槽,用于安装励磁线圈8,在非磁性内筒9的两个端面沿轴向方向预留壁厚,用于固定非磁性压盖3。In this example, the outer wall of the non-magnetic cavity is provided with a circumferential groove along the axial direction, that is, the outer wall of the non-magnetic inner cylinder 9 is provided with a circumferential groove along the axial direction, which is used to install the
本例中的非磁性腔体为圆柱形,也就是非磁性内筒9的形状为圆柱形,内部开通孔,两端面预留安装壁厚,且在非磁性内筒9的外壁沿轴向方向设有周向凹槽,用于安装励磁线圈8;当然,非磁性腔体也可以是棱柱体,也就是非磁性内筒9的形状为棱柱体,内部开通孔,两端面处预留壁厚,在非磁性内筒9的外壁沿轴向方向设有周向凹槽,凹槽处用于设置线圈固定套,励磁线圈8可缠绕在线圈固定套上。The non-magnetic cavity in this example is cylindrical, that is, the shape of the non-magnetic inner cylinder 9 is cylindrical, with a through hole inside, and the installation wall thickness is reserved on both ends, and the outer wall of the non-magnetic inner cylinder 9 is along the axial direction. A circumferential groove is provided for installing the
磁性流体10为磁流体、磁性复合流体或磁流变体等具备磁性的流体中的任何一种或是其中任何几种的组合。所述加速度传感器的非磁性内筒9中充满磁性流体10,质量块12设置于磁性流体10中,受到磁性流体10的阻尼力作用。改变磁性流体10的粘度,可以改变磁性流体10对质量块12的阻尼力大小,从而改变质量块12在竖直方向或水平方向的位移量。The magnetic fluid 10 is any one of magnetic fluids such as magnetic fluid, magnetic composite fluid, or magnetorheological fluid, or any combination thereof. The non-magnetic inner cylinder 9 of the acceleration sensor is filled with a magnetic fluid 10 , and the
所述的检测装置包括一块或者多块压电片通过串连方式或者并联方式组成的压电元件4,压电元件4设于质量块12与非磁性腔体之间,用于检测质量块12的位移量变化,输出可供后续检测电路检测的信号。The detection device includes a
所述的质量块12的一端与非磁性腔体的接触面包括成一定角度的两个接触面,且每个接触面间均设有压电元件4。实际中质量块12端面为外定位棱锥面,非磁性腔体设有内棱锥凹槽,质量块12的外定位棱锥面设于非磁性腔体的内棱锥凹槽中实现周向定位。具体为:The contact surface between one end of the
压电元件4由石英晶体、压电陶瓷、压电薄膜或其他新型压电材料等具备压电效应的材料构成。本例中的压电元件4为长方体薄片形,粘贴于非磁性压盖3的内棱锥凹槽的倾斜相对的两个表面;当然,不排除压电元件4为棱形、柱形等其他可替换的形状。当锁紧非磁性压盖3时,压电元件4受到预紧力的作用而与质量块12在接触面上紧密接触,确保压电元件4能够正常感应质量块12的位移量。The
质量块12为高比重材料制成,一般要求比重为14-19克/立方厘米,质量块可以为金属如由钨合金、铜钨合金等高比重合金构成。质量块也可以为非金属,只要满足上述比重范围即可。质量块12的两个端面处设置有定位锥面,通过非磁性压盖3的内棱锥凹槽的表面进行定位,本例中的质量块12为长方体,在长方体周向设置有斜凹槽,这里的斜凹槽可以是螺旋状的,用于增质量块12与磁性流体10的有效接触面积,可以同时在水平方向或竖直方向感受磁性流体的阻尼力;当然,质量块12也可以是圆柱体,在两个端面处设置圆锥面,在圆柱体周向设置斜凹槽,可以实现同样的功能。当锁紧非磁性压盖3时,产生的预紧力使得质量块12和压电元件4紧密接触,可以增大所述加速度传感器的灵敏度,同时由于压电元件4的材料特性,能够增大加速度传感器的刚度;当存在外界加速度时,质量块12由于自身惯性的作用,输出相应的位移量,由于压电元件4与质量块12紧密接触,质量块12的位移量便成为压电元件4的输入量;由于质量块12周向设置了斜凹槽,可以同时在水平方向或竖直方向感受磁性流体的阻尼力,当改变磁性流体10的粘度时,质量块12受到磁性流体10的阻尼力将发生变化,从而其输出位移量也发生变化:相同的加速度输入时,若增大磁性流体10的粘度,质量块12受到磁性流体10的阻尼力将相对增大,质量块12的输出位移量相对减小,此时所述的加速度传感器适合测量数值比较大的输入加速度;若减小磁性流体10的粘度,质量块12受到磁性流体10的阻尼力将相对减小,质量块12的输出位移量相对增大,此时所述的加速度传感器适合测量数值比较小的输入加速度。因此,通过控制磁性流体10的粘度,可以控制所述加速度传感器的量程范围,同时,通过大幅度增大磁性流体10的粘度,所述加速度传感器可实现大量程测量。The
本例中的质量块12周向设置有斜凹槽也可以用环状的叶片来代替,同样满足上述要求。The oblique grooves provided on the circumference of the
为了更好地完成测量工作,在本例的基础上所述的加速度传感器还包括磁场控制装置,用于改变磁性流体的粘度,控制质量块轴向的位移量。励磁线圈8设置于非磁性内筒9和非磁性套筒7之间,线圈缠绕在非磁性内筒9的凹槽之上,保持与非磁性内筒9同轴;也可以设置同轴线圈固定套于非磁性内筒9上,励磁线圈8缠绕在线圈固定套中。励磁线圈8用于在非磁性内筒9的内部产生均匀磁场,改变励磁线圈8的通电电流,可以改变非磁性内筒9内部的磁场:增大励磁线圈8的通电电流,将增大非磁性内筒9内部的磁场;减小励磁线圈8的通电电流,将减小非磁性内筒9内部的磁场。非磁性套筒7、非磁性垫圈2和非磁性压盖3用于隔绝励磁线圈8产生的磁场和外界磁场之间的联系,防止外磁场干扰。In order to better complete the measurement work, the acceleration sensor described in this example also includes a magnetic field control device for changing the viscosity of the magnetic fluid and controlling the axial displacement of the mass block. The
所述的加速度传感器还包括外壳体,所述的非磁性腔体、磁性流体10、质量块12、检测装置或磁场控制装置设置于外壳体内腔中,外壳体具体包括外套筒6、上端盖11与下端盖1,外套筒6与上端盖11与下端盖1通过第二螺钉14固定,所述的下端盖1上设有安装支脚15和/或安装孔16。The acceleration sensor also includes an outer casing, and the non-magnetic cavity, the magnetic fluid 10, the
所述的外壳体与非磁性腔体间设有隔离套,用于隔离磁场控制装置与外部磁场的联系,抑制外界磁场干扰。隔离套包括非磁性套筒7与非磁性垫圈2。An isolation sleeve is provided between the outer shell and the non-magnetic cavity, which is used to isolate the connection between the magnetic field control device and the external magnetic field, and suppress the interference of the external magnetic field. The spacer includes a non-magnetic sleeve 7 and a non-magnetic washer 2 .
所述的加速度传感器还包括检测控制装置,用于根据检测装置输出的加速度检测结果信号,控制励磁线圈的输入电流,从而控制励磁线圈的内部磁场。The acceleration sensor also includes a detection and control device, which is used to control the input current of the excitation coil according to the acceleration detection result signal output by the detection device, so as to control the internal magnetic field of the excitation coil.
本发明所述的加速度传感器的工作原理如下:The operating principle of the acceleration sensor of the present invention is as follows:
如图1、图2与图3所示,在非磁性内筒9中充满了磁性流体10,在磁性流体10里,质量块12和压电元件4通过非磁性压盖3的内棱锥凹槽定位,当锁紧非磁性压盖3时,产生的预紧力使得质量块12和压电元件4紧密接触,质量块12还受到磁性流体10的阻尼力作用,质量块12设置有斜凹槽,增加与磁性流体10的有效接触面积,可以同时在水平方向或竖直方向感受磁性流体的阻尼力,由于非磁性压盖3设置了密封圈5,使得磁性流体10不会溢出;在非磁性内筒9的外壁沿轴向方向设有周向凹槽,励磁线圈8设置于周向凹槽内,用于提供均匀的磁场,励磁线圈8外部设置了非磁性套筒9、非磁性压盖3设置了非磁性垫圈,用于隔绝励磁线圈8的磁场和外界磁场的联系,防止外磁场干扰。As shown in Figure 1, Figure 2 and Figure 3, the non-magnetic inner cylinder 9 is filled with a magnetic fluid 10, and in the magnetic fluid 10, the
当存在外界加速度时,质量块12由于自身惯性的作用,输出相应的位移量,由于压电元件4与质量块12紧密接触,质量块12的位移量便成为压电元件4的输入量:当竖直加速度输入时,质量块12由于惯性作用在竖直方向产生位移量,此时位于同一端面的两块压电元件4被压缩,位于另外一个端面的压电元件4被放松,质量块12在竖直方向产生的位移量将被分解为垂直于压电元件4接触面的分量和平行于压电元件4接触面的分量,此时位于同一端面的两块压电元件4的输出信号的符号相同,位于不同端面的压电元件的输出信号符号相反,因此,通过检测压电元件4的输出量,即可确定竖直加速度的值;当水平加速度输入时,质量块12由于惯性作用在水平方向产生位移量,此时位于同一轴侧的两块压电元件4被压缩,位于另一轴侧的两块压电元件4被放松,质量块12的水平方向产生的位移量将被分解为垂直于压电元件4接触面的分量和平行于压电元件4接触面的分量,此时位于同一轴侧的两块压电元件4的输出信号的符号相同,位于不同轴侧的压电元件的输出信号符号相反。压电元件4的输出信号大小可确定输入加速度的值,而对比不同压电元件输出信号的符号,可确定输入加速度是竖直加速度或是水平加速度,从而实现检测方向的二维性。When there is an external acceleration, the
通过控制励磁线圈8的通电电流,改变产生的磁场大小,能改变磁性流体10的粘度,由于质量块12受到磁性流体10的阻尼力作用,因此可改变质量块12受到的阻尼力作用,进而改变质量块12的输出位移量。在相同的外界加速度输入时,改变励磁线圈8的通电电流,改变磁性流体10的粘度,即可改变质量块12的位移量,从而可实现所述加速度传感器的量程可控性,同时,由于质量块12周向设置斜凹槽,可以同时在水平方向或竖直方向感受磁性流体的阻尼力,因此可实现所述加速度传感器在二维方向的量程可控性;若大幅度提高磁性流体10的粘度,在相同的外界加速度输入时,质量块12的位移量将会降低。因此,可以实现大量程加速度的测量。By controlling the energizing current of the
若进一步将压电元件4的输出量以反馈的形式输入到励磁线圈8的控制电路,控制电路可以自动根据压电元件4的输出量来调整励磁线圈8的通电电流,则可实现所述加速度传感器的智能性。If the output of the
本例所述加速度传感器结构中不再采用传统的悬臂梁工作方式,转而引入了压电元件作为弹性元件,提高了所述加速度传感器的测量灵敏度,在工作过程中弹性元件不再出现弯曲、扭转等物理变形,也提高了加速度传感器的工作寿命和可靠性。The structure of the acceleration sensor described in this example no longer adopts the traditional cantilever beam working method, but instead introduces a piezoelectric element as an elastic element, which improves the measurement sensitivity of the acceleration sensor, and the elastic element no longer bends, Physical deformation such as torsion also improves the working life and reliability of the acceleration sensor.
因此本发明具有如下优点和有益效果:Therefore the present invention has following advantage and beneficial effect:
1、本发明结构上新颖,避免了传统的悬臂梁结构,改变了质量块的工作原理,是对现有加速度传感器原理上的创新;1. The invention is novel in structure, avoids the traditional cantilever beam structure, changes the working principle of the mass block, and is an innovation on the principle of the existing acceleration sensor;
2、本发明中采用了质量块与压电元件斜接触式结构,改变了传统一维压电式加速度传感器中采取的质量块轴线与压电元件接触面法线平行的工作原理,达到检测二维方向输入加速度的目的,从而实现了检测方向的二维性;2. The oblique contact structure between the mass block and the piezoelectric element is adopted in the present invention, which changes the working principle that the axis of the mass block and the normal line of the contact surface of the piezoelectric element in the traditional one-dimensional piezoelectric acceleration sensor are parallel to the normal line of the contact surface of the piezoelectric element to achieve two-dimensional detection. The purpose of inputting the acceleration in the dimensional direction, thus realizing the two-dimensionality of the detection direction;
3、本发明中采用磁性流体粘度可控性特点,通过控制励磁线圈的通电电流,改变施加在磁性流体上的磁场强度,达到控制磁性流体粘度的目的,从而实现了加速度传感器量程可控性;3. The present invention adopts the characteristics of the controllability of the viscosity of the magnetic fluid. By controlling the energizing current of the excitation coil, the magnetic field strength applied to the magnetic fluid is changed to achieve the purpose of controlling the viscosity of the magnetic fluid, thereby realizing the controllability of the range of the acceleration sensor;
4、本发明引入多凹槽质量块和压电元件,通过提高磁性流体的粘度,可以实现大量程输入加速度的检测;4. The present invention introduces a multi-groove mass block and a piezoelectric element, and by increasing the viscosity of the magnetic fluid, the detection of a large range of input acceleration can be realized;
5、本发明中采取了压电元件输出信号的差动连接,能够有效消除各种干扰,提高了检测准确度;5. In the present invention, the differential connection of the output signal of the piezoelectric element is adopted, which can effectively eliminate various interferences and improve the detection accuracy;
6、本发明消除了弹性元件在运动过程中产生弯曲、扭转的弹性形变,提高了所述加速度传感器的工作可靠性;6. The present invention eliminates the elastic deformation of the elastic element in the process of bending and torsion, and improves the working reliability of the acceleration sensor;
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100639922A CN101246184B (en) | 2007-02-15 | 2007-02-15 | Quasi-two-dimension magnetic fluid acceleration transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100639922A CN101246184B (en) | 2007-02-15 | 2007-02-15 | Quasi-two-dimension magnetic fluid acceleration transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101246184A CN101246184A (en) | 2008-08-20 |
CN101246184B true CN101246184B (en) | 2011-03-23 |
Family
ID=39946758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100639922A Expired - Fee Related CN101246184B (en) | 2007-02-15 | 2007-02-15 | Quasi-two-dimension magnetic fluid acceleration transducer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101246184B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103760616B (en) * | 2014-01-24 | 2017-01-04 | 天津大学 | Magnetic fluid compound gravity gradiometer |
CN105856188B (en) * | 2016-05-06 | 2017-11-07 | 简燕梅 | Portable Flexible Building Structures detect robot |
CN115236573B (en) * | 2022-09-19 | 2022-11-25 | 河北工业大学 | Magnetic field sensor and device for testing two-dimensional piezoelectric vector magnetic characteristics |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1146558A (en) * | 1994-12-12 | 1997-04-02 | 株式会社村田制作所 | Installation configuration of acceleration detection element |
CN1766647A (en) * | 2004-09-23 | 2006-05-03 | 伊纳拉伯斯技术公司 | Magnetofluidic accelerometer with partial filling of cavity with magnetic fluid |
-
2007
- 2007-02-15 CN CN2007100639922A patent/CN101246184B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1146558A (en) * | 1994-12-12 | 1997-04-02 | 株式会社村田制作所 | Installation configuration of acceleration detection element |
CN1766647A (en) * | 2004-09-23 | 2006-05-03 | 伊纳拉伯斯技术公司 | Magnetofluidic accelerometer with partial filling of cavity with magnetic fluid |
Non-Patent Citations (5)
Title |
---|
JP特开2002-148276A 2002.05.22 |
JP特开2002-40042A 2002.02.06 |
JP特开平11-118823A 1999.04.30 |
刘桂雄等.基于磁流体独有特性的各种潜在传感器.功能材料37 5.2006,37(5),756-759. |
刘桂雄等.基于磁流体独有特性的各种潜在传感器.功能材料37 5.2006,37(5),756-759. * |
Also Published As
Publication number | Publication date |
---|---|
CN101246184A (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ITTO20100944A1 (en) | BIONIAL ACCELEROMETER STRUCTURE RESONANT OF MICROELETTROMECHANICAL TYPE | |
CN106814216A (en) | The round flexible hinge optical fibre grating acceleration sensor of Integral direct | |
CN109828123B (en) | Two-dimensional acceleration sensor based on long-period fiber bragg grating bending characteristics and measuring method | |
WO2014169540A1 (en) | Non-uniform cross section cantilever beam piezoelectricity acceleration sensor | |
CN103675342B (en) | Novel range-adjustable magnetic liquid acceleration sensor | |
CN103217210B (en) | Piezoelectric type noise sensor | |
CN100594384C (en) | Orthogonal loop type piezoelectric accelerometer | |
CN106908626A (en) | A kind of capacitance microaccelerator sensitive structure | |
CN100573154C (en) | Magnetic Fluid Acceleration Sensor | |
CN103675351A (en) | Novel inductive magnetic liquid acceleration sensor | |
Jia et al. | Novel high-performance piezoresistive shock accelerometer for ultra-high-g measurement utilizing self-support sensing beams | |
CN101246184B (en) | Quasi-two-dimension magnetic fluid acceleration transducer | |
CN106771358A (en) | A kind of full quartz resonance accelerometer of miniature differential formula | |
CN100595591C (en) | Two-dimensional Magnetic Fluid Acceleration Sensor | |
CN111505340A (en) | A two-dimensional acceleration sensor of fiber grating with small structure | |
JP2008507711A (en) | Vibration sensor | |
Chen et al. | A novel flexure-based uniaxial force sensor with large range and high resolution | |
Yugandhar et al. | Modeling and simulation of piezoelectric MEMS sensor | |
Xu et al. | Analytical and finite element analysis of a new tri-axial piezoelectric accelerometer | |
Nallathambi et al. | Performance analysis of slotted square diaphragm for MEMS pressure sensor | |
US3521492A (en) | Fast response pressure gage | |
CN203941192U (en) | A kind of piezoelectric type micro-acceleration sensor | |
CN113324465B (en) | Absolute displacement sensor and design method thereof | |
Wang et al. | Structure-air damping coupling analysis of micromachined gyroscope | |
CN102183676B (en) | Low-frequency/ultralow-frequency acceleration transducer with polyvinylidene fluoride piezoelectric films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110323 Termination date: 20130215 |