CN101241520A - Model State Generation Method Based on Feature Suppression in Finite Element Modeling - Google Patents
Model State Generation Method Based on Feature Suppression in Finite Element Modeling Download PDFInfo
- Publication number
- CN101241520A CN101241520A CNA2008100205612A CN200810020561A CN101241520A CN 101241520 A CN101241520 A CN 101241520A CN A2008100205612 A CNA2008100205612 A CN A2008100205612A CN 200810020561 A CN200810020561 A CN 200810020561A CN 101241520 A CN101241520 A CN 101241520A
- Authority
- CN
- China
- Prior art keywords
- feature
- model
- simplified
- features
- model state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 230000001629 suppression Effects 0.000 title claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 91
- 230000008859 change Effects 0.000 claims abstract description 49
- 238000004458 analytical method Methods 0.000 claims description 26
- 230000002068 genetic effect Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000035772 mutation Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 238000011156 evaluation Methods 0.000 abstract description 6
- 230000007704 transition Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005457 optimization Methods 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011960 computer-aided design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010845 search algorithm Methods 0.000 description 3
- 238000002076 thermal analysis method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001726 chromosome structure Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
有限元建模中基于特征抑制的模型态生成方法,其特征是由用户提供待简化模型;识别待简化模型中可简化特征;确定待简化特征数量;获得待简化特征在其被抑制后的敏感值;以所有被抑制特征敏感值之和表征模型态误差水平;估计模型态进行网格划分后的单元数量;根据模型的误差水平和单元数量Ne进行模型态的选择,获得简化模型编码;再应用特征抑制法生成对应于简化模型编码的简化模型。本发明方法实现模型中各特征的变化对有限元计算结果敏感性的客观评价,建立模型中各要素的取舍与变化对计算结果的敏感性评价体系,并给出了客观精确的模型态消耗时间的估计方法,在此基础上生成模型态。The model state generation method based on feature suppression in finite element modeling is characterized by providing the model to be simplified by the user; identifying the features that can be simplified in the model to be simplified; determining the number of features to be simplified; obtaining the sensitivity of the feature to be simplified after it is suppressed value; represent the model state error level by the sum of all suppressed feature sensitivity values; estimate the number of units after the model state is meshed; select the model state according to the error level of the model and the number of units Ne to obtain a simplified model code; The feature suppression method is then applied to generate a simplified model corresponding to the code of the simplified model. The method of the invention realizes the objective evaluation of the sensitivity of the change of each feature in the model to the finite element calculation result, establishes the sensitivity evaluation system of the choice and change of each element in the model to the calculation result, and provides an objective and accurate model state consumption time Estimation method based on which the model state is generated.
Description
技术领域technical field
本发明涉及计算机辅助建模方法,更具体地说是一种应用在有限元建模中的模型态生成方法。The invention relates to a computer-aided modeling method, more specifically a method for generating model states applied in finite element modeling.
背景技术Background technique
计算机对于提高社会生产力发挥了越来越重要的作用,特别是计算机辅助设计CAD、辅助工程CAE、辅助制造CAM在工业界日益成熟和普及,极大地提高了工业设计和生产的效率。采用有限元分析及基于有限元分析的优化处理,能够改进产品的结构设计,使产品在满足强度和刚度的情况下具有最合理的结构。Computers play an increasingly important role in improving social productivity, especially computer-aided design CAD, aided engineering CAE, and aided manufacturing CAM are becoming increasingly mature and popular in the industry, which greatly improves the efficiency of industrial design and production. The use of finite element analysis and optimization processing based on finite element analysis can improve the structural design of the product, so that the product has the most reasonable structure under the condition of satisfying the strength and rigidity.
有限元分析FEA早在50年代首先在连续体力学领域中,比如在飞机结构静态和动态特性分析中得到应用,随后很快应用于分析热传导、电磁场和流体力学等连续性问题。Finite element analysis (FEA) was first applied in the field of continuum mechanics in the 1950s, such as in the analysis of static and dynamic characteristics of aircraft structures, and was soon applied to analyze continuous problems such as heat conduction, electromagnetic field and fluid mechanics.
有限元分析的物理实质是用由有限个在节点处相连接的单元组成的组合体近似替代一个连续体,从而把连续体的分析问题转化为单元分析和单元组合的分析问题。有限元分析和计算机的强大的数据处理能力的结合,使过去不可能进行的一些大型复杂结构的分析变成了常规的计算任务。The physical essence of finite element analysis is to approximately replace a continuum with a combination composed of a finite number of elements connected at nodes, so that the analysis problem of the continuum is transformed into the analysis problem of unit analysis and unit combination. The combination of finite element analysis and computer's powerful data processing ability makes the analysis of some large and complex structures that were impossible in the past become routine computing tasks.
进行有限元分析首先要建立待分析对象的几何模型。实际模型通常十分复杂,主要体现在其包含的特征种类和数量巨大,除了常见的孔、槽特征,还含有大量的过渡特征。如果建模的精度太高,无疑会为计算带来极大的负担,尤其是过渡特征的存在会大大增加计算量,因此,需要对实际模型进行特征简化。在对实际模型中的特征进行简化时涉及以下两个核心问题:一是如何对细小的孔、槽以及过渡特征简化后对原计算结果造成的影响进行估计;二是如何估计出简化后的模型所需消耗的计算时间,以判断简化后模型是否能够提升计算效率。To perform finite element analysis, the geometric model of the object to be analyzed must first be established. The actual model is usually very complicated, which is mainly reflected in the huge number and types of features it contains. In addition to the common hole and groove features, it also contains a large number of transition features. If the modeling accuracy is too high, it will undoubtedly bring a huge burden to the calculation, especially the existence of transitional features will greatly increase the amount of calculation. Therefore, it is necessary to simplify the features of the actual model. The following two core issues are involved in the simplification of the features in the actual model: one is how to estimate the influence of the simplified small holes, grooves and transition features on the original calculation results; the other is how to estimate the simplified model The calculation time required to determine whether the simplified model can improve the calculation efficiency.
针对此问题,在期刊《Computer-Aided Design》、2001年33卷13期第925-934页上,A Sheffer.的文章《Model Simplification for Meshing Using Face Clustering》(以下简称文献1)中,分析了几种常见的过渡特征对划分网格造成的消极影响;但并未针对过渡特征进行处理,更没有估计特征简化后对结果造成的影响和简化后的模型所需消耗的计算时间。In view of this problem, in the journal "Computer-Aided Design", 2001, Volume 33,
《Computer-Aided Design》2002年34卷22期第109-123页上,H Zhu,C H Menq的另一篇文献《B-Rep Model Simplification by Automatic Fillet/Round Suppressing for EfficientAutomatic Feature Recognition》(以下简称文献2)和《Computer-Aided Design》2004年第5期第24-28页上崔秀芬的文章《An Efficient Algorithm for Recognizing and SuppressingBlend Features》(以下简称文献3)中虽然提出了较为完善的过渡特征识别和简化方法,但是也没有估计过渡特征被抑制后对结果造成的影响和简化后的模型所需消耗的计算时间。"Computer-Aided Design" 2002, Volume 34, Issue 22, Page 109-123, another document "B-Rep Model Simplification by Automatic Fillet/Round Suppressing for Efficient Automatic Feature Recognition" by H Zhu, C H Menq (hereinafter referred to as Document 2) and Cui Xiufen's article "An Efficient Algorithm for Recognizing and Suppressing Blend Features" (hereinafter referred to as Document 3) on pages 24-28 of "Computer-Aided Design" No. 5, 2004, although a relatively complete transition feature is proposed identification and simplification methods, but also did not estimate the impact of suppressed transition features on the results and the computational time consumed by the simplified model.
浙江大学学报自然科学版2006年第7卷第9期第1535-1543页上LEE Sang Hun的文章《Feature-based multiresolution techniques for product design》(以下简称文献4)提出了产品制造中基于细节层次LOD的建模方法,在这种方法中,将几何模型中的特征简单地分为加特征和减特征,通过用户决定LOD的值来决定模型中各个特征是否存在,以达到减小计算量的目的。但这种方法过分依赖用户经验;同时由于模型层次间几何差别过大,选择模型层次后还需要反复实验以验证模型是否合适,过程太复杂,且没有给出层次模型对应的估计误差,也没有估计简化后的模型需消耗的时间。The article "Feature-based multiresolution techniques for product design" by LEE Sang Hun on pages 1535-1543, Vol. 7, No. 9, 2006, Vol. 7, No. 9, Journal of Zhejiang University, Natural Science Edition (hereinafter referred to as Document 4) proposes a method based on LOD in product manufacturing. In this method, the features in the geometric model are simply divided into adding features and subtracting features, and the user decides the value of LOD to determine whether each feature in the model exists, so as to reduce the amount of calculation. . However, this method relies too much on user experience; at the same time, due to the large geometric differences between the model levels, repeated experiments are required to verify whether the model is suitable after selecting the model level. The process is too complicated, and the estimation error corresponding to the level model is not given, nor Estimate the time consumed by the simplified model.
合肥工业大学2005届硕士学位论文《科学计算中的几何多态模型初探》(以下简称文献5)中,以中子输运程序MCNP为研究对象,对科学计算领域中采用某个模型态替换原始模型产生的计算误差的影响要素做了初步研究,并以实验数据为基础,总结了计算误差与特征体积之间的规律。根据总结的规律,采用特征抑制的方法形成模型态。每个模型态对应一个估计误差,给用户提供了一个很好的辅助建模功能。其研究方法具有一定的可借鉴性,但是存在领域局限性,即误差要素的总结方法没有考虑有限元领域的自身特性,结论的可靠性和通用性不强,且并未给出模型态计算效率的估计方法。In the 2005 master's degree thesis of Hefei University of Technology, "A Preliminary Study on Geometric Polymorphic Models in Scientific Computing" (hereinafter referred to as Document 5), the neutron transport program MCNP is taken as the research object, and a certain model state is used in the field of scientific computing to replace the original Preliminary research was done on the influencing factors of the calculation error generated by the model, and based on the experimental data, the law between the calculation error and the characteristic volume was summarized. According to the summarized rules, the method of feature suppression is used to form the model state. Each model state corresponds to an estimation error, which provides users with a very good auxiliary modeling function. The research method has some references, but there are limitations in the field, that is, the summary method of the error elements does not consider the characteristics of the finite element field, the reliability and generality of the conclusion are not strong, and the calculation efficiency of the model state is not given. estimation method.
合肥工业大学2007届硕士学位论文《有限元领域中模型态的选择研究》(以下简称文献6)中,以实验为基础,从实验数据中总结了热传导领域中采用某个模型态替换原始模型产生的计算误差规律,并对影响计算时间的因素进行了初步分析和总结;在给出计算精度和计算时间的形式化表达式的基础上构造了遗传算法的适应度函数,通过一定数量的迭代次数选择出适应度最高的模型态;最后根据模型态编码使用特征抑制算法对原始模型进行改造得到最终几何模型。论文中所记载的模型态生成的具体步骤是:In the 2007 master's degree thesis of Hefei University of Technology "Research on the Selection of Model States in the Finite Element Field" (hereinafter referred to as Document 6), based on experiments, it was summarized from the experimental data that the replacement of the original model with a certain model state in the field of heat conduction produces The law of the calculation error, and the factors that affect the calculation time are initially analyzed and summarized; on the basis of the formal expression of the calculation accuracy and calculation time, the fitness function of the genetic algorithm is constructed, through a certain number of iterations Select the model state with the highest fitness; finally, according to the model state code, use the feature suppression algorithm to transform the original model to obtain the final geometric model. The specific steps of model state generation described in the paper are:
a、针对有限元不同的应用领域,建立只包含一个待简化特征的简单模型,这里的待简化特征是加工零件中最常见的槽、孔或柱面过渡特征,建立包含它们的模型,并构造稳态热传导实验方案。a. For different application fields of finite element, establish a simple model containing only one feature to be simplified. The feature to be simplified here is the most common transition feature of groove, hole or cylinder in the machined parts, establish a model containing them, and construct Steady-state heat transfer protocol.
b、按照特征体积参数和位置参数构造实验方案,即对含有若干组不同特征体积比V和特征与载荷面的距离D的槽、孔特征的模型进行分析计算,根据计算结果分析误差比EP、特征体积比V和特征与载荷面的距离D的内在关系,对其关系进行拟合。b. Construct the experimental plan according to the characteristic volume parameters and position parameters, that is, analyze and calculate the model of the groove and hole features containing several groups of different characteristic volume ratios V and the distance D between the feature and the load surface, and analyze the error ratio EP, according to the calculation results The intrinsic relationship between the feature volume ratio V and the distance D between the feature and the load surface is used to fit the relationship.
c、用户利用自身领域知识判断模型中的过渡特征存在与否对结果的影响程度,若某过渡特征对计算结果的影响程度可以被忽略,则以网格划分的质量为标准,对过渡特征确定其被删除的几何属性阈值,避免计算时出现不可预知的问题;不能删除的过渡特征将被保留。c. Users use their own domain knowledge to judge the degree of influence of the existence of transition features in the model on the results. If the influence of a certain transition feature on the calculation results can be ignored, the quality of the grid division is used as the standard to determine the transition features. The deleted geometric attribute threshold avoids unpredictable problems during calculation; the transitional features that cannot be deleted will be retained.
d、根据拟合出的槽、孔特征的特征体积比V、特征与载荷面的距离D与误差比EP之间的函数关系来确定为进一步提高计算效率可以抑制的槽、孔特征。d. According to the function relationship between the fitted characteristic volume ratio V of the groove and hole features, the distance D between the feature and the load surface, and the error ratio EP, determine the groove and hole features that can be suppressed to further improve the calculation efficiency.
e、构造反应精度要素的表达式P=1-∑EPi和时间要素的表达式
f、根据编码对几何模型处理,得到最终选择的模型态。f. Process the geometric model according to the coding to obtain the final selected model state.
在上述步骤中a-d中,是通过拟合实验数据来获得误差比EP、特征体积比V、特征与载荷面的距离D之间的函数关系。但是,这种方式存在有两方面的不足:首先,误差比、特征体积比和特征与载荷面距离之间的关系仅通过有限次实验的数据得出,具有随机性;其次,不能保证影响误差要素总结的全面性。在步骤(e)中,根据模型态中含有的特征的平均体积比大小
发明内容Contents of the invention
本发明是为避免上述现有技术所存在的不足之处,提供一种有限元建模中基于特征抑制的模型态生成方法,全面考虑模型简化后对有限元计算结果影响的因素,从而实现模型中各特征的变化对有限元计算结果敏感性的客观评价,建立模型中各要素的取舍与变化对计算结果的敏感性评价体系,并给出一种客观精确的模型态消耗时间的估计方法,在此基础上生成模型态。In order to avoid the shortcomings of the above-mentioned prior art, the present invention provides a model state generation method based on feature suppression in finite element modeling, and fully considers the factors that affect the finite element calculation results after model simplification, so as to realize the model The objective evaluation of the sensitivity of the change of each feature in the model to the calculation result of the finite element is established, and the sensitivity evaluation system of the choice and change of each element in the model to the calculation result is established, and an objective and accurate estimation method of the model state consumption time is given. On this basis, the model state is generated.
本发明解决技术问题采用如下技术方案:The present invention solves technical problem and adopts following technical scheme:
本发明有限元建模中基于特征抑制的模型态生成方法的特点是按如下步骤进行:The feature of the model state generation method based on feature suppression in the finite element modeling of the present invention is to carry out as follows:
a、由用户提供待简化模型,所述待简化模型具有在进行有限元分析时的载荷条件,以及网格剖分条件,所述网格剖分条件为最大网格直径hmax和最小网格直径hmin;a. The model to be simplified is provided by the user, and the model to be simplified has load conditions during finite element analysis and meshing conditions, and the meshing conditions are the maximum mesh diameter h max and the minimum mesh diameter hmin ;
b、识别所述待简化模型中的可简化特征,并存入特征链表;b. Identify the simplification features in the model to be simplified, and store them in the feature list;
c、在所述特征链表中选择待简化特征,确定待简化特征数量n;按任意顺序对所选择的n个待简化特征进行编号,计算获得所选择的每个待简化特征的体积Vi和位置参数Pi;c. Select the feature to be simplified in the feature linked list, determine the number of features to be simplified n; number the selected n features to be simplified in any order, and calculate and obtain the volume V i of each selected feature to be simplified positional parameter P i ;
d、依据每个所选择的待简化特征的体积Vi、位置参数Pi,以及每个所选择的待简化特征在其被抑制后的网格直径改变量,获得对应的待简化特征在其被抑制后的敏感值Ei=ViPiHi;以所有被抑制特征的敏感值之和表征模型态的误差水平;d. According to the volume V i of each selected feature to be simplified, the position parameter P i , and the mesh diameter change of each selected feature to be simplified after it is suppressed, obtain the corresponding feature to be simplified in its The suppressed sensitive value E i =V i P i H i ; the error level of the model state is represented by the sum of the sensitive values of all suppressed features;
e、通过对模型态网格单元进行数量的估算,估计出模型态进行网格划分后的单元数量Ne,所述单元数量Ne与模型态刚度矩阵阶数线性相关,以所述单元数量Ne反映模型态所需的有限元计算时间;e. By estimating the number of grid cells in the model state, it is estimated that the number of cells in the model state after grid division Ne is linearly related to the order of the stiffness matrix in the model state. N e reflects the finite element calculation time required for the model state;
f、根据模型的误差水平和单元数量Ne,采用遗传算法进行模型态的选择,获得简化模型编码;f. According to the error level of the model and the number of units N e , the genetic algorithm is used to select the model state to obtain the simplified model code;
g、应用特征抑制法生成对应于所述简化模型编码的简化模型。g. Applying feature suppression to generate a simplified model corresponding to said simplified model code.
本发明方法的特点也在于:The inventive method is also characterized in that:
所述步骤c中简化特征位置参数Pi通过如下方式获得:In the step c, the simplified feature position parameter P i is obtained in the following way:
a、给定每个待简化特征简化后对有限元计算结果影响的权重,设为q1,q2,…qn,其中qi∈[0,1],(i=0,1,…n),qi=0表征第i个待简化特征存在与否对有限元计算结果没有影响;qi=1表征第i个待简化特征存在与否对有限元计算结果影响最大,qi越靠近1表征特征对有限元计算结果的影响越大;a. Given the weight of the influence of each feature to be simplified on the finite element calculation result after simplification, set it as q 1 , q 2 , ... q n , where q i ∈ [0, 1], (i=0, 1, ... n), q i =0 indicates that the presence or absence of the i-th feature to be simplified has no effect on the finite element calculation results; q i =1 indicates that the existence or non-existence of the ith feature to be simplified has the greatest impact on the finite element calculation results , The closer to 1, the greater the influence of the characteristic features on the finite element calculation results;
b、令i=1;b. Let i=1;
c、设第i个待简化特征到载荷面的距离di;c. Set the distance d i from the i-th feature to be simplified to the load surface;
d、计算第i个待简化特征的位置参数Pi=qi/di;d. Calculate the position parameter P i =q i /d i of the i-th feature to be simplified;
e、令i=i+1,重复步骤c~d,直至模型中所有待简化特征的位置参数Pi计算完毕。e. Set i=i+1, repeat steps c-d until the calculation of position parameters P i of all features to be simplified in the model is completed.
所述步骤d中网格直径改变量按如下步骤获得:In the step d, the amount of mesh diameter change is obtained as follows:
a、若待简化特征均由平面组成,获取此待简化特征的最小边长hi,计算网格直径改变量Htemp=hmax-min(hmax,hi),若Htemp>0,则采用此种特征简化方案,对应的网格直径改变量
b、若待简化特征中存在曲面,获取当前待简化特征i包含的所有高曲率曲面的平均高斯曲率θavgi,计算网格直径改变量
所述步骤e中对模型态网格单元进行数量的估算是按如下步骤进行:In the step e, the estimation of the quantity of the model state grid units is carried out as follows:
a、根据用户提供的最大网格直径hmax,最小网格直径hmin,取网格单元边长h=(hmax+hmin)/2;a. According to the maximum grid diameter h max and the minimum grid diameter h min provided by the user, take the grid unit side length h=(h max +h min )/2;
b、结合网格单元类型和网格单元边长,计算出一个网格单元所占用的实际体积ve,体积计算公式因单元而异;b. Combining the type of grid unit and the side length of the grid unit, calculate the actual volume ve occupied by a grid unit, and the volume calculation formula varies from unit to unit;
c、计算出模型态的实际体积v,得到模型网格划分的单元数量Ne=v/ve;c. Calculate the actual volume v of the model state, and obtain the number of units Ne = v/v e of the model mesh;
所述步骤f中采用遗传算法进行模型态选择按如下步骤进行:Adopt genetic algorithm to carry out model state selection in the described step f and carry out as follows:
a、使用二进制编码表示模型态,编码长度是特征数量,每个特征对应于个体中的一个二进制位;0代表某特征不存在模型态中,1代表某特征存在于模型态中;a. Use binary code to represent the model state, the code length is the number of features, and each feature corresponds to a binary bit in the individual; 0 means that a certain feature does not exist in the model state, and 1 represents that a certain feature exists in the model state;
b、用户输入可容忍的误差水平级别m,m∈[1,n],形成最大允许误差
c、随机生成个体数量为
d、迭代次数为,每迭代一次,估计出这代中所有个体编码对应模型态的网格单元数量,以此为基础计算适应度函数;若连续三代没有出现适应度更大的个体或者到达最大迭代次数,则最后一代的种群中适应度最大的个体即所获得的简化模型编码。d. The number of iterations is , each iteration, estimate the number of grid cells corresponding to the model state for all individuals in this generation, and calculate the fitness function on this basis; The individual with the greatest fitness in the first generation population is the obtained simplified model code.
与已有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、误差因素分析的客观性1. The objectivity of error factor analysis
本发明方法针对使用某个模型态代替原始模型进行计算产生误差的原因进行分析,得出了与误差相关的要素:体积、特征位置参数和特征简化后网格直径改变量;摒弃了从经验出发,通过实验数据来寻找误差相关要素方法的随机性。The method of the present invention analyzes the cause of calculation errors using a certain model state instead of the original model, and obtains the elements related to errors: volume, feature position parameters, and grid diameter change after feature simplification; abandoning experience , using experimental data to find the randomness of the error-related element method.
2、计算消耗时间估计的精确性2. Calculate the accuracy of time consumption estimates
已有的方法中,只有在文献7中初步总结了衡量计算耗时的要素,但其提出将模型中的平均特征体积作为计算耗时的衡量参数,精确性不足。本发明方法将可以精确反映计算耗时的要素,即模型划分网格后的单元数量Ne作为模型态评价要素中的时间要素,能准确地反映模型态对应的计算时间,有益于最优模型态编码的选取。Among the existing methods, only
3、遗传算法适应度函数构造的合理性3. Rationality of Genetic Algorithm Fitness Function Construction
适应度函数的构造充分地考虑了模型态计算时间和计算精度之间的平衡关系,为了平衡两个要素的影响因子,对适应度函数中误差水平EM进行了数量级修正。The construction of the fitness function fully considers the balance between the calculation time of the model state and the calculation accuracy. In order to balance the influence factors of the two elements, the error level E M in the fitness function is corrected by an order of magnitude.
附图说明Description of drawings
图1为本发明方法中模型态的选择变迁数学模型示意图。Fig. 1 is a schematic diagram of the mathematical model of the selection transition of the model state in the method of the present invention.
图2为网格顶点在曲面上对应点外法矢量示意图。Fig. 2 is a schematic diagram of the external normal vector of the corresponding point of the mesh vertex on the surface.
图3为模型表面曲率和网格之间关系示意图。Figure 3 is a schematic diagram of the relationship between the surface curvature of the model and the grid.
图4为模型态编码示意图。Figure 4 is a schematic diagram of model state encoding.
图5为模型态选取示意图。Figure 5 is a schematic diagram of model state selection.
图6为槽、孔和圆角的特征组成面示意图。其中,图6(a1)为含有槽特征的模型;图6(a2)为图6(a1)所示模型对应的面边图;图6(b1)为含有孔特征的模型;图6(b2)为图6(b1)所示模型对应的面边图;图6(c1)为含有圆角特征的模型;图6(c2)图6(c1)所示模型对应的面边图。Fig. 6 is a schematic diagram of the feature composition surface of slots, holes and rounded corners. Among them, Fig. 6(a1) is a model containing groove features; Fig. 6(a2) is the surface and edge diagram corresponding to the model shown in Fig. 6(a1); Fig. 6(b1) is a model containing hole features; Fig. 6(b2 ) is the surface-edge graph corresponding to the model shown in Figure 6(b1); Figure 6(c1) is the model with rounded corner features; Figure 6(c2) is the surface-edge graph corresponding to the model shown in Figure 6(c1).
图7(a)是含有一个盲孔、一个通孔和一个槽特征的模型,图7(b)为图7(a)对应的特征子图。Figure 7(a) is a model containing a blind hole, a through hole and a slot feature, and Figure 7(b) is the corresponding feature subgraph of Figure 7(a).
图8(a)、图8(b)、图8(c)、图8(d)和图8(e)分别为方通孔、方盲孔、圆通孔、圆盲孔和槽的特征子图分类图。Figure 8(a), Figure 8(b), Figure 8(c), Figure 8(d) and Figure 8(e) are the eigenvalues of square through holes, square blind holes, round through holes, round blind holes and slots, respectively Graph Classification Diagram.
图9为模型特征树示意图。Figure 9 is a schematic diagram of the model feature tree.
图10为本发明方法中待简化的实际模型示意图。Fig. 10 is a schematic diagram of an actual model to be simplified in the method of the present invention.
图11为以本发明方法所获得的简化模型示意图。Fig. 11 is a schematic diagram of a simplified model obtained by the method of the present invention.
图中标号:1基座、2内圆柱A、3内圆柱B、4内圆柱C、5内六棱柱A、6内八棱柱A、7内八棱柱B、8内六棱柱B、9槽A、10槽B、11槽C、12槽D、13槽E、14槽F、15圆角A、16圆角B、17圆角C、18圆角D。Symbols in the figure: 1 base, 2 inner cylinder A, 3 inner cylinder B, 4 inner cylinder C, 5 inner hexagonal prism A, 6 inner octagonal prism A, 7 inner octagonal prism B, 8 inner hexagonal prism B, 9 slot A , 10 slot B, 11 slot C, 12 slot D, 13 slot E, 14 slot F, 15 fillet A, 16 fillet B, 17 fillet C, 18 fillet D.
以下通过具体实施方式,并结合附图对本发明作进一步描述:The present invention will be further described below in conjunction with the accompanying drawings by way of specific embodiments:
具体实施方式Detailed ways
本实施例给出模型误差水平构建方法按如下步骤进行:This embodiment provides a method for constructing the model error level according to the following steps:
1、由用户提供待简化的模型,所述待简化的模型具有在进行有限元分析时的载荷条件,以及网格剖分条件,所述网格剖分条件为最大网格直径hmax和最小网格直径hmin;1. The model to be simplified is provided by the user. The model to be simplified has load conditions during finite element analysis and grid division conditions. The grid division conditions are the maximum grid diameter h max and the minimum Mesh diameter h min ;
2、对其进行特征识别,将识别出的特征分类存入特征链表;遍历特征链表,计算获得每个特征的体积Vi,每个特征的位置参数Pi;2. Perform feature recognition on it, classify and store the identified features into the feature linked list; traverse the feature linked list, calculate and obtain the volume V i of each feature, and the position parameter P i of each feature;
其中,链表是一种常规的计算机数据结构;Among them, the linked list is a conventional computer data structure;
在这一步骤中,待简化特征的体积Vi按常规的体积公式进行计算,特征的位置参数Pi通过如下方式获得:In this step, the volume V i of the feature to be simplified is calculated according to the conventional volume formula, and the position parameter P i of the feature is obtained as follows:
a、给定每个待简化特征简化后对有限元计算结果影响的权重,设为q1,q2,…qn,其中qi∈[0,1],(i=0,1,…n),qi=0表征第i个待简化特征存在与否对有限元计算结果没有影响;qi=1表征第i个待简化特征存在与否对有限元计算结果影响最大,qi越靠近1表征特征对有限元计算结果的影响越大;a. Given the weight of the influence of each feature to be simplified on the finite element calculation result after simplification, set it as q 1 , q 2 , ... q n , where q i ∈ [0, 1], (i=0, 1, ... n), q i =0 indicates that the presence or absence of the i-th feature to be simplified has no effect on the finite element calculation results; q i =1 indicates that the existence or non-existence of the ith feature to be simplified has the greatest impact on the finite element calculation results , The closer to 1, the greater the influence of the characteristic features on the finite element calculation results;
b:令i=1;b: let i=1;
c:求取第i个待简化特征包围盒形心,若载荷为体载荷,则获得载荷体的形心;计算第i个待简化特征形心到载荷面的距离di,若为体载荷,则计算第i个待简化特征形心到载荷体形心的距离di;若有多个载荷面则计算第i个待简化特征形心到每个载荷的距离,再取其平均值;c: Find the centroid of the bounding box of the i-th feature to be simplified, if the load is a body load, then obtain the centroid of the load body; calculate the distance d i from the centroid of the i-th feature to be simplified to the load surface, if it is a body load , then calculate the distance d i from the centroid of the i-th feature to be simplified to the centroid of the load body; if there are multiple load surfaces, calculate the distance from the centroid of the i-th feature to be simplified to each load, and then take the average value;
d:计算第i个待简化特征的位置参数Pi=qi/di;d: Calculate the position parameter P i =q i /d i of the i-th feature to be simplified;
e:令i=i+1,重复步骤c~d,直至模型中所有待简化特征的位置参数Pi计算完毕;e: set i=i+1, repeat steps c~d until the position parameter P i of all features to be simplified in the model is calculated;
3、计算获得所有待简化特征所有特征组成面的最大高斯曲率θmax;3. Calculate and obtain the maximum Gaussian curvature θ max of all feature composition surfaces of all features to be simplified;
4、根据网格直径改变量计算方法,计算特征被简化后网格直径的改变量Hi;4. According to the calculation method of the mesh diameter change, calculate the mesh diameter change H i after the feature is simplified;
依据最大曲率θmax、最大网格直径hmax和最小网格直径hmin按如下步骤获得网格直径改变量;According to the maximum curvature θ max , the maximum grid diameter h max and the minimum grid diameter h min , the grid diameter change is obtained as follows;
a、令i=1,计算ε=θmaxhmin;若特征组成面均为平面,则获取此待简化特征的最小边长hi,计算网格直径改变量Htemp=hmax-min(hmax,hi),若Htemp>0,对应的网格直径改变量Hi=Htemp,否则转下一步骤;a. Set i=1, calculate ε=θ max h min ; if the feature composition surfaces are all planes, then obtain the minimum side length h i of the feature to be simplified, and calculate the grid diameter change H temp =h max -min( h max , h i ), if H temp >0, the corresponding mesh diameter change H i =H temp , otherwise go to the next step;
b、若特征组成面中存在曲面,则获取当前待简化特征i包含的所有曲面的平均高斯曲率θavgi,计算网格直径改变量
c、令i=i+1,重复步骤a、b,直至模型中所有待简化特征与其简化方式相应的网格直径改变量Hi,i=1,2,…,n,计算完毕;c. Let i=i+1, repeat steps a and b until all the features to be simplified in the model and the grid diameter change amount H i corresponding to the simplification method, i =1, 2, ..., n, the calculation is completed;
5、由误差水平估计公式Ei=ViPiHi估计出该特征被抑制后的敏感值,并以所有被抑制特征的敏感值之和表征模型态的误差水平;5. Estimate the sensitive value of the feature after the feature is suppressed by the error level estimation formula E i =V i P i H i , and use the sum of the sensitive values of all suppressed features to represent the error level of the model state;
6、构造遗传算法的各参数并进行模型态的选择;6. Construct the parameters of the genetic algorithm and select the model state;
遗传算法的构建步骤如下:The construction steps of the genetic algorithm are as follows:
a、使用常规的二进制编码表示模型态,编码长度是特征数量,每个特征对应于个体中的一个二进制位;0代表某特征不存在模型态中,1代表某特征存在于模型态中;a. Use the conventional binary code to represent the model state, the code length is the number of features, and each feature corresponds to a binary bit in the individual; 0 means that a certain feature does not exist in the model state, and 1 means that a certain feature exists in the model state;
b、用户输入可容忍的误差水平级别m,m∈[1,n],形成最大允许误差
c、随机生成个体数量为
d、迭代次数为,每迭代一次,估计出这代中所有个体编码对应模型态的网格单元数量,以此为基础计算适应度函数;若连续三代没有出现更优秀的个体或者到达最大迭代次数,则遗传算法结束,获得最优模型态编码;d. The number of iterations is , each iteration, estimate the number of grid cells corresponding to the model state for all individuals in this generation, and calculate the fitness function based on this; if there are no better individuals in three consecutive generations or the maximum number of iterations is reached, the genetic algorithm ends , to obtain the optimal model state code;
在这一步骤中,种群中某一代所有个体编码对应模型态的网格单元数量通过如下方式获得:In this step, the number of grid cells corresponding to the model state encoded by all individuals in a certain generation of the population is obtained by the following method:
(1)、根据用户输入的最大网格直径hmax,最小网格直径hmin,取单元边长h=(hmax+hmin)/2;(1) According to the maximum grid diameter h max and the minimum grid diameter h min input by the user, take the element side length h=(h max +h min )/2;
(2)、结合单元类型element type和单元边长,根据几何知识计算出一个单元占用的实际体积ve,体积计算公式因单元而异;(2) Combining the element type and the side length of the element, the actual volume v e occupied by an element is calculated according to geometric knowledge, and the volume calculation formula varies from element to element;
(3)、按常规方式计算出模型态的实际体积v,得到模型网格划分的单元数量Ne=v/ve;(3), calculate the actual volume v of the model state in a conventional manner, and obtain the number of units N e =v/v e of the model grid division;
7、根据最优模型态编码,遍历特征链表,使用特征抑制技术取得编码对应的几何模型。7. According to the optimal model state encoding, traverse the feature linked list, and use feature suppression technology to obtain the geometric model corresponding to the encoding.
本发明有限元领域中基于特征抑制的模型态生成方法所依据的原理包括:The principles on which the model state generation method based on feature suppression in the finite element field of the present invention is based include:
本发明所依据的多态模型理论是从系统论的角度出发对科学计算中的模型进行分析研究,将模型作为一个系统,模型中所包含的特征作为构成系统的要素。要素本身的可变性即每个要素都具有多态特性,同时要素之间的构成方式的变化会导致系统状态发生变化,因此将模型视为一个系统时,其本身呈现出多态特性。通过对多态模型所包含的特征要素及其组成方式的研究,为实际模型建立相应的系统,以特征作为系统的组成要素,研究各种特征的敏感性,建立特征敏感性的量化评价标准,寻找模型的态及在其变化过程中所蕴含的规律性,建立多态理论体系来表述复杂模型由于模型精度、计算时间、计算精度的变化而产生的多种状态。多态理论体系的核心思想是态的变迁,即原模型态到达目标模型态的动态过程:如图1所示,将系统模型态记为M,可描述为M{f1,f2,…,fn},其中fi(i=1,2,…n)为其所包含的特征,为方便起见记为
本发明方法中使用模型态代替原始模型进行计算而产生误差的误差水平估算依据的原理:In the method of the present invention, the principle of estimating the error level of the error generated by using the model state instead of the original model for calculation is based on:
当有限单元类型和插值方式确定时,计算模型中特征对简化的敏感值只需考虑三个因素:ΔT、ΔH和ΔUWhen the finite element type and interpolation method are determined, only three factors need to be considered in calculating the sensitivity of features in the model to simplification: ΔT, ΔH and ΔU
其中,ΔT为特征简化对网格剖分产生影响的区域测度反映的要素。Among them, ΔT is the element reflected by the regional measure that the feature simplification affects the grid division.
ΔH为特征简化后网格直径改变量反映的要素。ΔH is the element reflected by the mesh diameter change after feature simplification.
ΔU为特征简化对网格剖分产生影响的区域内场函数的半范数反映的要素。ΔU is an element reflected by the semi-norm of the field function in the region where feature simplification affects grid division.
在计算模型中每个特征对简化的敏感值时需要对三个要素ΔT、ΔH和ΔU进行计算;但是要素ΔT和ΔH的精确值需要在网格剖分后才可能知道,要素ΔU的精确值需要在有限元计算后才可能知道,若要在有限元计算之前获得它们的精确值是困难的,并且对它们的精确计算所需时间可能会大于模型简化后节省的计算时间,从代价上考虑不宜进行精确计算,因此需要寻找一种方法对它们进行估值。一个明显的事实是特征简化对网格剖分产生影响的区域测度反映的要素ΔT与模型特征体积成正比,因此可用特征体积V来代替要素ΔT。在本发明方法中用特征体积V来代替要素ΔT,用特征位置参数P来代替要素ΔU,因此误差估算公式计算方法为:Ei=ViPiHi,其中Ei,Vi,Pi,Hi分别表示特征在第i中简化方式下产生的简化误差、特征体积、位置参数和网格直径改变量。When calculating the sensitivity value of each feature in the model to the simplification, it is necessary to calculate the three elements ΔT, ΔH and ΔU; but the precise values of the elements ΔT and ΔH need to be known after the grid is divided, and the precise value of the element ΔU It is possible to know after the finite element calculation. It is difficult to obtain their precise values before the finite element calculation, and the time required for their precise calculation may be greater than the calculation time saved after the model is simplified. Considering the cost Exact calculations are not amenable, so a way to value them needs to be found. An obvious fact is that the feature simplification affects the mesh subdivision. The element ΔT reflected by the area measure is proportional to the model feature volume, so the feature volume V can be used to replace the element ΔT. In the method of the present invention, the feature volume V is used to replace the element ΔT, and the feature position parameter P is used to replace the element ΔU, so the calculation method of the error estimation formula is: E i =V i P i H i , where E i , V i , P i , H i represent the simplification error, feature volume, position parameter and grid diameter change amount produced by the i-th simplification mode of the feature respectively.
本发明方法中网格直径改变量计算方法所依据的原理:The principle on which the grid diameter variation calculation method is based in the method of the present invention:
已知的情况是,CAD系统建立的模型通常会包含一些复杂特征,如细小特征和高曲率特征等,而有限元分析进行网格剖分时会在这些复杂特征处加大网格剖分密度,从而这些复杂特征处的网格直径比较小。删除或用简单特征替换复杂特征的目的是为了减小这些特征处的网格密度,也即加大这些特征处的网格直径。在误差估算公式计算方法原理中以指出特征简化前后网格直径的改变量是影响特征对简化敏感值的因素之一,本发明方法使用替换和删除两种方式对特征进行简化,不同的简化方式对网格直径改变量计算方法分别是:It is known that the model established by the CAD system usually contains some complex features, such as small features and high curvature features, and the meshing density of these complex features will be increased when the finite element analysis is performed. , so that the mesh diameter at these complex features is relatively small. The purpose of deleting or replacing complex features with simple features is to reduce the mesh density at these features, that is, to increase the mesh diameter at these features. In the principle of the error estimation formula calculation method, it is pointed out that the change of the grid diameter before and after feature simplification is one of the factors affecting the sensitivity of the feature to simplification. The method of the present invention uses two methods of replacement and deletion to simplify the feature. Different simplification methods The calculation methods for the mesh diameter change are as follows:
1、不含高曲率组成面的特征删除后网格直径改变量的计算方法1. Calculation method of mesh diameter change after deletion of features without high curvature components
如果特征中不含高曲率特征组成面,则有限元分析在进行网格剖分时,特征上的网格直径将取决于用户能够容忍的最大网格直径和符合此特征几何属性网格直径的最小值,而符合此特征几何属性的网格直径应为此特征组成面中的最小边长。当特征删除后,模型中此特征不存在,则有限元分析进行网格剖分时应按用户所指定的最大网格直径进行剖分,即用户输入的hmax,因此不含高曲率组成面的特征删除后网格直径改变量应为hmax-min(hmax,h),其中h为此特征的特征组成面中的最小边长。If the feature does not contain high-curvature features to form surfaces, the mesh diameter on the feature will depend on the maximum mesh diameter that the user can tolerate and the mesh diameter that meets the geometric properties of this feature when performing meshing in finite element analysis The minimum value, and the mesh diameter that conforms to the geometric properties of this feature should be the minimum edge length in the component faces of this feature. When the feature is deleted and the feature does not exist in the model, the mesh division of the finite element analysis should be performed according to the maximum mesh diameter specified by the user, that is, the h max input by the user, so there is no high curvature component surface After the feature of is deleted, the mesh diameter change amount should be h max -min(h max , h), where h is the minimum side length in the feature composition surface of this feature.
2、含高曲率组成面的特征删除后网格直径改变量的计算方法2. Calculation method of the mesh diameter change amount after the feature with high curvature composition surface is deleted
如果特征中含高曲率特征组成面,则应首先估计在高曲率特征组成面处的网格直径。首先阐述如何估计高曲率特征处的网格直径。If the feature contains faces with high curvature features, you should first estimate the mesh diameter at the faces with high curvature features. We first describe how to estimate the mesh diameter at high curvature features.
在有限元网格生成过程中,网格的密度控制包括两种:一种是根据分析对象的几何特征和物理特性进行网格疏密的先验控制,另一种是根据当前网格的计算结果,在计算数据变化较大的区域加大网格剖分密度并在计算数据变化平缓的地方减小网格剖分密度的后验控制。本方法针对在有限元分析前对模型的预处理,因此只考虑网格密度的先验控制。根据分析对象的几何特征进行网格控制,主要是指根据网格对模型表面的拟合程度决定网格直径的大小。网格对模型表面的拟合程度可用网格顶点在曲面上对应点外法矢量的夹角来近似。如图2所示,模型的某一块表面使用一个三角形单元来拟合,三角形的顶点对应的外法矢量指尖的夹角决定了单元对模型表面的拟合程度。对于给定对模型表面拟合程度的容许误差η,则要求每一对外法矢量都满足(1-NiNj)≤η,i≠j且i,j∈(1,2,3)。In the process of finite element mesh generation, there are two kinds of mesh density control: one is the prior control of mesh density according to the geometric characteristics and physical characteristics of the analysis object, and the other is based on the calculation of the current mesh As a result, the posterior control of increasing the meshing density in areas where the calculated data varies greatly and decreasing the meshing density where the calculated data changes gently. This method is aimed at the preprocessing of the model prior to finite element analysis, so only a priori control of the mesh density is considered. Mesh control based on the geometric characteristics of the analysis object mainly refers to determining the size of the mesh diameter according to the degree of fitting of the mesh to the model surface. The fitting degree of the mesh to the model surface can be approximated by the angle between the mesh vertices on the surface and the corresponding point external normal vector. As shown in Figure 2, a certain surface of the model is fitted by a triangular unit, and the angle between the fingertips of the outer normal vector corresponding to the vertices of the triangle determines the degree of fitting of the unit to the model surface. For a given allowable error η of the fitting degree of the model surface, each external normal vector is required to satisfy (1-N i N j )≤η, i≠j and i, j∈(1, 2, 3).
当用网格剖分算法对模型表面某一局部区域ΔS进行剖分时,考虑的是其平均法曲率,设为ρ,曲率球半径为r,可在以r为半径的球面上考虑ΔS上的网格直径。设△ABC为一三角网格,因球面上处处法曲率相同,所以△ABC为等边三角形,不失一般性,以边AB讨论△ABC的边长。When the meshing algorithm is used to subdivide a certain local area ΔS on the surface of the model, the average normal curvature is considered, which is set to ρ, and the radius of the curvature sphere is r, and the ΔS can be considered on the spherical surface with r as the radius mesh diameter. Let △ABC be a triangular mesh. Since the normal curvature is the same everywhere on the spherical surface, △ABC is an equilateral triangle. Without loss of generality, discuss the side length of △ABC with side AB.
如图3所示,设在坐标系XOY中,A,B坐标分别为(x1,y1,z1),(x2,y2,z2),当模型表面拟合程度容许误差ε一定时,有如下等式:As shown in Figure 3, assuming that in the coordinate system XOY, the coordinates of A and B are (x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ) respectively, when the allowable error of the fitting degree of the model surface ε At a certain time, there is the following equation:
(x1-x2)2+(y1-y2)2+(z1-z2)2=h2 (x 1 -x 2 ) 2 +(y 1 -y 2 ) 2 +(z 1 -z 2 ) 2 =h 2
ρ=1/rρ=1/r
从而有thus have
有限元分析剖分网格时,当一旦检测到
同样,当此类特征删除后,模型中此特征不存在,则有限元软件进行网格剖分时应按用户所指定的最大网格直径进行剖分,即用户输入的hmax,因此不含高曲率组成面的特征删除后网格直径改变量应为
3、含高曲率组成面的特征替换后网格直径改变量的计算方法3. Calculation method of mesh diameter change after feature replacement with high curvature component surfaces
对于此类型待简化特征,特征上的网格直径估计方法与上一类型中估计方法相同,不同的是此类型的特征将有多种简化方案。对于平均曲率为ρavg的曲面,其表面的网格直径为
本发明方法中特征的位置参数计算方法依据的原理:The principle of the location parameter calculation method basis of the feature in the method of the present invention:
如误差估算公式计算方法所依据的原理中所述,在场函数变化剧烈的区域,简化误差的三个要素之一ΔU也会较大,若对这些区域内特征进行简化会导致较大的误差,因此模型中可被简化的特征必须局限于场函数变化平缓的区域,也即特征在模型中所属区域的场函数变化剧烈程度是特征简化后对有限元计算结果影响程度的重要因素。在实际的有限元计算之前,可通过下面两种方法获得模型中特征所属区域场函数变化的剧烈程度。As stated in the principle on which the calculation method of the error estimation formula is based, in areas where the field function changes drastically, one of the three elements of the simplified error, ΔU, will also be larger. Simplifying the features in these areas will lead to larger errors. Therefore, the features that can be simplified in the model must be limited to the area where the field function changes smoothly, that is, the drastic change of the field function of the area where the feature belongs to in the model is an important factor that affects the finite element calculation results after feature simplification. Before the actual finite element calculation, the following two methods can be used to obtain the severity of the change of the field function of the area where the feature belongs to in the model.
1、依据经验1. Based on experience
由用户给定模型特征所属区域场函数变化的剧烈程度,这是一个非常重要的参考值。在有限元分析中,特征的物理属性,即外加载荷及边界条件赋予特征的属性——特征所处区域场函数变化的剧烈程度,与特征几何形状有相同重要的影响,而这些物理属性在有限元计算之前无法获得精确值,可以根据以往分析经验给出特征物理属性值的排序,对于分析特征简化后对有限元计算结果影响有重要的参考作用。It is a very important reference value to specify the severity of field function changes in the area where the model features belong to by the user. In finite element analysis, the physical properties of the feature, that is, the properties given to the feature by the external load and boundary conditions - the intensity of the field function change in the area where the feature is located, have the same important influence as the feature geometry, and these physical properties are in the finite element. Precise values cannot be obtained before element calculation, and the order of characteristic physical attribute values can be given according to past analysis experience, which is an important reference for the influence of simplified analysis features on finite element calculation results.
2、距离的作用2. The role of distance
根据圣维南原理,在平衡力系中,离载荷越远场函数变化越平缓,因此本发明方法将特征到载荷的距离作为反映场函数变化的剧烈程度的因素之一,将距离和专家指定的权重乘积作为ΔU的估计值。According to St. Venant's principle, in a balanced force system, the farther away from the load the field function changes more smoothly, so the method of the present invention regards the distance from the feature to the load as one of the factors reflecting the severity of the field function change, and the distance and the expert-specified The weight product of is used as an estimate of ΔU.
根据常规理论,特征对简化的敏感值与距离成反比、与用户指定的权值成正比,所以取用户指定的权值和特征到载荷的距离的比值作为特征的位置参数,以此来反映特征所属区域场函数u变化的剧烈程度。According to conventional theory, the sensitivity of features to simplification is inversely proportional to the distance and proportional to the weight specified by the user, so the ratio of the weight specified by the user to the distance from the feature to the load is taken as the position parameter of the feature to reflect the feature The severity of the change of the field function u of the area to which it belongs.
选取模型划分网格后的单元数量作为时间要素所依据的原理The principle of selecting the number of cells after the model is divided into grids as the time element
在有限元领域中,各问题的求解过程都是相同的,步骤如下:In the finite element field, the solution process of each problem is the same, the steps are as follows:
a、对问题的求解区域进行剖分,剖分的结果是单元,求解区域离散为单元的集合。a. Subdivide the solution area of the problem, the result of the subdivision is a unit, and the solution area is discretized into a set of units.
b、构造试探函数空间。b. Construct a trial function space.
c、计算单元刚度矩阵和单元载荷向量。c. Calculate the element stiffness matrix and element load vector.
d、计算总体刚度矩阵和总载荷向量。d. Compute the overall stiffness matrix and the overall load vector.
e、处理约束条件并求解。e. Handle constraints and solve them.
以一维有限元问题为例,将求解区域[a,b]中,首先把[a,b]剖分为n个部分,设节点x0,x1,…,xn满足a=x0<x1<…<xn=b,这样得到的子区间ei=[xi-1,xi](i=1,2,…,n),即单元。单元ei的长度hi=xi-xi-1。考虑构造比较简单的基函数vh,它满足:在[a,b]上连续,而且在每个ei上是线性函数,所有满足这些条件的函数构成试探函数空间。再计算单元刚度矩阵
本发明方法中使用遗传算法选择模型态依据的原理:The principle of using genetic algorithm to select model state basis in the inventive method:
本发明方法中,以特征作为区分模型态的要素,模型态的表示方式为M{f1,f2,…,fn}。由排列组合的原理可知,含有n个特征的模型有2n个可能的模型态。如果模型中含有的特征数量太多,选择过程将耗费大量时间。In the method of the present invention, features are used as elements for distinguishing model states, and the representation of model states is M{f 1 , f 2 , . . . , f n }. According to the principle of permutation and combination, a model with n features has 2 n possible model states. If the number of features contained in the model is too large, the selection process will consume a lot of time.
选择产生模型态的过程实质上是以成本函数为向导,在可能的解空间搜索最佳或几乎最佳的解的问题。因此,多态模型理论的核心问题就是如何在这么大的解空间里快速找到最优解的问题。常用的搜索算法有贪婪算法、模拟退火算法及遗传算法等。前两种算法虽然收敛速度快,但存在易陷入局部最优化的问题;而遗传算法具有搜索空间大的优点,但收敛速度较慢。The process of selecting and generating model states is essentially a problem of searching for the best or almost optimal solution in the possible solution space with the cost function as a guide. Therefore, the core problem of polymorphic model theory is how to quickly find the optimal solution in such a large solution space. Commonly used search algorithms include greedy algorithm, simulated annealing algorithm and genetic algorithm. Although the former two algorithms have fast convergence speed, they are easy to fall into the problem of local optimization; while the genetic algorithm has the advantage of large search space, but the convergence speed is slow.
遗传算法是一种模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法,它具有简单通用、鲁棒性强、适于并行处理的特点。它将实际问题中的可能解模拟成个体的生存环境,将目标函数模拟成个体的生存能力,将可能解的编码模拟为染色体。这样,从任一个初始种群出发,经过选择、交叉、变异三种运算产生新一代种群,经过多次迭代后,使其收敛于全局最优解或次最优解。Genetic Algorithm is an adaptive global optimization probability search algorithm formed by simulating the genetic and evolution process of organisms in the natural environment. It is simple, versatile, robust and suitable for parallel processing. It simulates the possible solutions in practical problems as the living environment of the individual, the objective function as the survival ability of the individual, and the coding of the possible solutions as the chromosome. In this way, starting from any initial population, a new generation of population is generated through three operations of selection, crossover, and mutation, and after many iterations, it converges to the global optimal solution or suboptimal solution.
遗传算法的流程是:设定目标和适应度函数,经过一定次数的迭代之后,找到适应度最大的个体。其中,算法中染色体结构的二进制编码方式所具有的特点与特征抑制的模型态生成方式具有很好的一致性与协调性。编码方式如图4所示,编码的长度就是特征的数量,每个编码对应一个特征的存在状态,0表示某特征不存在于这个模型态中,1表示相反的意义。通过对这个编码构造适应度函数来评价模型态的质量。本发明针对原始模型中的独立特征,结合有限元分析的特点,以热分析领域为切入点,提出一个同时考虑计算时间和计算精度的模型态选择产生标准。采用遗传算法作为搜索算法,通过搜索最佳或几乎最佳的模型态来建立合适的计算模型。如图5所示,根据个体长度随机生成一定数量的初始种群,进行选择、交叉和变异操作进行迭代,最后得到最优模型态的编码。The process of genetic algorithm is: set the goal and fitness function, after a certain number of iterations, find the individual with the highest fitness. Among them, the characteristics of the binary coding method of the chromosome structure in the algorithm and the model state generation method of feature suppression have good consistency and coordination. The encoding method is shown in Figure 4. The length of the encoding is the number of features. Each encoding corresponds to the existence state of a feature. 0 means that a certain feature does not exist in this model state, and 1 means the opposite meaning. The quality of the model state is evaluated by constructing a fitness function for this code. Aiming at the independent features in the original model, combined with the characteristics of finite element analysis, the invention takes the field of thermal analysis as an entry point, and proposes a model state selection generation standard that considers both calculation time and calculation accuracy. The genetic algorithm is used as a search algorithm to establish a suitable calculation model by searching for the best or almost best model state. As shown in Figure 5, a certain number of initial populations are randomly generated according to the individual length, and the selection, crossover and mutation operations are iterated, and finally the code of the optimal model state is obtained.
模型态的评价要素是模型网格划分后的单元数量Ne和误差水平Ei。NE越大,计算耗时越多;Ei越大,精度越低。因此模型态对应的NE和Ei越小,它的质量越高。大多数情况下,这2个要素之间有相互制约的关系,即对同一个模型来说,NE越小说明Ei可能较高,因此这是一个双目标优化问题。The evaluation elements of the model state are the number of elements N e and the error level E i after the model grid is divided. The larger N E is, the more time-consuming the calculation is; the larger E i is, the lower the accuracy. Therefore, the smaller the NE and E i corresponding to the model state, the higher its quality. In most cases, there is a mutual restrictive relationship between these two elements, that is, for the same model, the smaller the N E , the higher the E i may be, so this is a dual-objective optimization problem.
传统的多目标优化方法是将各个子目标聚合成一个带正系数的单目标函数,系数由决策者(Decision Maker,DM)决定,或者由优化方法自适应调整。其中,加权法是一种常见的古典方法,是通过对目标函数的线性组合将MOP问题转换成SOP问题。The traditional multi-objective optimization method is to aggregate each sub-objective into a single objective function with positive coefficients. The coefficients are determined by the decision maker (DM) or adaptively adjusted by the optimization method. Among them, the weighting method is a common classical method, which converts the MOP problem into an SOP problem through the linear combination of the objective function.
y=f(x)=ω1f1(x)+ω2f2(x)+…+ωkfk(x)y=f(x)=ω 1 f 1 (x)+ω 2 f 2 (x)+…+ω k f k (x)
ωi称为权重,通常权重可以正则化后使得∑ωi=1,求解上述不同权重的优化问题则能够输出一组解。ω i is called a weight, and usually the weight can be regularized so that ∑ω i = 1, and a set of solutions can be output by solving the above optimization problems with different weights.
基于古典多目标问题的加权解法,基于NE和EM构造适应度函数
本发明特征识别及抑制算法依据的原理:The principle of feature recognition and suppression algorithm basis of the present invention:
本发明方法中,采用属性邻接图的方法进行特征识别。特征是由面组成的,即特征是特定的面集。In the method of the present invention, the method of attribute adjacency graph is used for feature recognition. A feature is composed of faces, that is, a feature is a specific set of faces.
如图6所示,在一个方体模型中,分别含有槽、孔和过渡特征。其中槽特征由三个平面组成,孔特征由一个圆柱面组成而过渡特征由1/4圆柱面组成。在计算机图形学中的面-边图中,以面作为节点,面与面之间如果邻接的话,则代表面的节点之间有线段相连。在分别含有槽、孔和过渡特征的方体模型中,分别有三个节点、一个节点和一个节点代表相应特征。在图7中的方体模型含有1个开槽特征、1个圆盲孔特征和1个圆通孔特征,假设对模型中的所有面进行编号,槽特征对应的面编号为2,3,4;圆盲孔特征对应的面编号是11,12;圆通孔特征对应的面编号是13,那么在其对应的面-边图中,编号为2,3,4的三个节点包括与其相连接的所有边构成了该特征对应的子图;同理,编号为11,12的节点连同与其相连的所有边构成了圆盲孔特征的子图;编号为13的节点连同与其相连的所有边构成了圆通孔特征的子图,如图8所示。不同的特征对应的子图具有不同的特点,在图9中,根据槽、孔、过渡特征子图的不同特点,可以将模型中的特征分为孔、槽、过渡特征加以识别并存入链表,以便于特征抑制。As shown in Figure 6, in a cube model, there are slots, holes and transition features respectively. Among them, the groove feature is composed of three planes, the hole feature is composed of a cylindrical surface and the transition feature is composed of a 1/4 cylindrical surface. In the face-edge graph in computer graphics, faces are used as nodes, and if the faces are adjacent to each other, it means that the nodes on the faces are connected by line segments. In a box model that contains slot, hole, and transition features, respectively, there are three nodes, one node, and one node representing the corresponding features. The cube model in Figure 7 contains 1 slot feature, 1 round blind hole feature and 1 round through hole feature, assuming that all faces in the model are numbered, and the face numbers corresponding to the slot feature are 2, 3, 4 ; The surface numbers corresponding to the circular blind hole feature are 11, 12; the surface number corresponding to the circular through hole feature is 13, then in the corresponding surface-edge graph, the three nodes numbered 2, 3, 4 include the connection All the edges of the feature constitute the subgraph corresponding to this feature; similarly, the nodes numbered 11 and 12 together with all the edges connected to them constitute the subgraph of the circular blind hole feature; the nodes numbered 13 together with all the edges connected to them constitute The subgraph of the circular through hole feature is shown in Figure 8. The subgraphs corresponding to different features have different characteristics. In Figure 9, according to the different characteristics of the slot, hole, and transition feature subgraphs, the features in the model can be divided into holes, slots, and transition features for identification and stored in the linked list. , for feature suppression.
在文献6中,对特征识别及抑制的技术做了详细说明。步骤如下:In
1、判断每条边的凹凸性,生成模型的AAG图。1. Determine the concave-convexity of each edge and generate the AAG graph of the model.
2、遍历AAG,找出所有的凸面,构成面集fvex,对fvex进行分析找出单一型特征,具体分类:2. Traverse the AAG to find all the convex surfaces to form a face set fvex, analyze the fvex to find out the single-type features, specific classification:
(1)圆通孔特征:凸面,类型为柱面,并且只有两条边。(1) Round through hole features: convex, cylindrical, and only two sides.
(2)圆角特征:凸面,类型包括环面、柱面、球面、样条曲面。(2) Fillet features: convex surface, types include torus, cylinder, sphere, spline surface.
3、从AAG图中删除fvex,得到子图,其中所有的结点构成面集fcav。找出这一子图所有的连通分量,每个连通分量即为一个特征子图。对每个特征子图按照上述特征子图的分类特征进行识别,判断具体的特征类型。3. Delete fvex from the AAG graph to obtain a subgraph in which all nodes form the face set fcav. Find all connected components of this subgraph, and each connected component is a feature subgraph. Each feature sub-graph is identified according to the classification features of the above-mentioned feature sub-graph, and the specific feature type is judged.
4、圆盲孔特征:两个面,有一个是叶子节点。两条相邻的边,默认叶子节点对应是平面,另一个面是圆柱面。4. Round blind hole features: two faces, one of which is a leaf node. For two adjacent edges, the default leaf node corresponds to a plane, and the other side is a cylindrical surface.
5、方盲孔特征:存在一个面,所有邻边都为凹边。图中含有一个回路,回路中的节点对应面均属于此特征。5. Square blind hole feature: There is one surface, and all adjacent sides are concave. The graph contains a loop, and the corresponding surfaces of the nodes in the loop belong to this feature.
6、方通孔特征:图中含有一个回路,回路中的节点对应面均属于此特征。每个面都有四条相邻边,且满足两条为凸边,两条为凹边。6. Square through hole feature: There is a loop in the figure, and the corresponding surfaces of the nodes in the loop belong to this feature. Each face has four adjacent edges, two of which are convex and two of which are concave.
7、槽:三个面,两条凹边。7. Groove: three sides, two concave sides.
8、根据识别出的特征类型,生成对应的特征对象,记录对应的特征组成面。8. According to the identified feature type, generate the corresponding feature object, and record the corresponding feature composition surface.
9、生成模型对应的特征树,用于后续处理。9. Generate the feature tree corresponding to the model for subsequent processing.
实施例:Example:
1、由用户提供待简化模型,待简化的模型具有在进行有限元分析时的载荷条件,以及网格剖分条件,如图10所示,待简化模型有一个中心坐标为(0,0,0)、边长为10个单位的正方体基座1,减去一个底面圆心为(2,-2,0)、半径为0.8个单位、高为10个单位的内圆柱A2,再减去一个底面圆心为(-1,-1,3.5)、半径为0.8个单位、高为3个单位的内圆柱B3,再减去一个底面圆心为(3.5,1,0)、半径为0.5个单位、高为10个单位的内圆柱C4,再减去一个中心坐标为(2,0,0)、边长为0.8个单位、高为10个单位的内六棱柱A5,再减去一个中心坐标为(2.5,2,-2.5)、边长为0.5个单位、高为5个单位的内八棱柱A6,再减去一个中心坐标为(1,2,0)、边长为0.8个单位、高为10个单位的内八棱柱B7,再减去一个中心坐标为(-1,2,3.5)、高为3个单位的内六棱柱B8,再减去对角顶点为(2,4,-5)和(3,5,5)的槽A9,再减去对角顶点为(-1,4,-5)和(0.5,5,5)的槽B10,再减去对角顶点为(-3,3,-5)和(-2,5,5)的槽C 11,再减去对角顶点为(2,-4,-5)和(3,-5,5)的槽D12,再减去对角顶点为(-1,-4,-5)和(0.5,-5,5)的槽E13,再减去对角顶点为(-3,-3,-5)和(-2,-5,5)的槽F14,对立方体的右侧面的四条边进行半径为0.8个单位的圆角化操作,得到圆角A15,圆角B16,圆角C17,圆角D 18,载荷面为立方体的左侧面,网格剖分条件为最大网格直径hmax=2和最小网格直径hmin=1;1. The model to be simplified is provided by the user. The model to be simplified has the load conditions and grid division conditions during finite element analysis. As shown in Figure 10, the model to be simplified has a center coordinate of (0, 0, 0), cube base 1 with a side length of 10 units, minus an inner cylinder A2 with a bottom center of (2, -2, 0), a radius of 0.8 units, and a height of 10 units, and then subtract one Inner cylinder B3 whose bottom center is (-1, -1, 3.5), radius is 0.8 units, and height is 3 units, minus one inner cylinder whose bottom center is (3.5, 1, 0), radius is 0.5 units, Inner cylinder C4 with a height of 10 units, subtract an inner hexagonal prism A5 with a center coordinate of (2, 0, 0), a side length of 0.8 units, and a height of 10 units, and then subtract a center coordinate of (2.5, 2, -2.5), an inner octagonal prism A6 with a side length of 0.5 units and a height of 5 units, minus a center coordinate of (1, 2, 0), a side length of 0.8 units, and a height It is an inner octagonal prism B7 of 10 units, then subtract an inner hexagonal prism B8 whose center coordinates are (-1, 2, 3.5) and a height of 3 units, and then subtract the diagonal vertices to be (2, 4, - 5) and (3, 5, 5) slot A9, then subtract the slot B10 whose diagonal vertices are (-1, 4, -5) and (0.5, 5, 5), and then subtract the diagonal vertices as ( Slot C 11 for -3, 3, -5) and (-2, 5, 5), minus slot D12 with diagonal vertices (2, -4, -5) and (3, -5, 5) , then subtract the slot E13 whose diagonal vertices are (-1, -4, -5) and (0.5, -5, 5), and then subtract the diagonal vertices as (-3, -3, -5) and ( Slot F14 of -2, -5, 5), perform a rounding operation on the four sides of the right side of the cube with a radius of 0.8 units, and obtain rounded corners A15, rounded corners B16, rounded corners C17, and rounded corners D 18 , the load surface is the left side of the cube, and the grid division conditions are the maximum grid diameter h max =2 and the minimum grid diameter h min =1;
2、建立特征链表2. Create a feature list
模型的载荷情况,有限元单元属性与网格剖分条件如表1所示。用户使用商业建模软件建立格式为.SAT的3D几何模型,将模型文件导入并进行特征识别,将识别出的特征分类存入特征链表;再次遍历特征链表,针对每一个特征,根据Di计算出该特征的位置参数Pi;通过如下方式获得位置参数Pi:The load conditions of the model, the properties of the finite element element and the grid division conditions are shown in Table 1. The user uses commercial modeling software to create a 3D geometric model in the format of .SAT, imports the model file and performs feature recognition, and stores the identified features into the feature list; traverses the feature list again, and calculates according to D i for each feature. Get the position parameter P i of this feature; obtain the position parameter P i by the following method:
a、给定每个待简化特征简化后对有限元计算结果影响的权重为q1=q2=…=q8=0.5;a. Given that the weight of each feature to be simplified on the finite element calculation result after simplification is q 1 =q 2 =...=q 8 =0.5;
b:令i=1;b: let i=1;
c:设第i个待简化特征包围盒形心,形心坐标为(xi,yi,zi),计算第i个待简化特征形心到载荷面的距离di,di=xi;c: Set the centroid of the enclosing box of the i-th feature to be simplified, and the centroid coordinates are (x i , y i , zi ) , calculate the distance d i from the centroid of the i-th feature to be simplified to the load surface, d i = x i ;
d:计算第i个待简化特征的位置参数Pi=qi/di;d: Calculate the position parameter P i =q i /d i of the i-th feature to be simplified;
e:令i=i+1,重复步骤c~d,直至模型中所有待简化特征的位置参数Pi计算完毕;e: set i=i+1, repeat steps c~d until the position parameter P i of all features to be simplified in the model is calculated;
获得所选择待简化特征所有特征组成面的最大高斯曲率θmax=0.25;Obtain the maximum Gaussian curvature θ max = 0.25 of the surface composed of all features of the selected feature to be simplified;
2、依据每个所选择的待简化特征的体积Vi、位置参数Pi、每个所选择的待简化特征在其相应简化方案下的网格直径改变量按计算公式Ei=ViPiHi获得此特征在其相应简化方案下的敏感值Ei,如表1所示;2. According to the volume V i of each selected feature to be simplified, the position parameter P i , and the mesh diameter change amount of each selected feature to be simplified under its corresponding simplification scheme, according to the calculation formula E i =V i P i H i obtains the sensitive value E i of this feature under its corresponding simplified scheme, as shown in Table 1;
本实施例中网格直径改变量按如下步骤获得:In this embodiment, the mesh diameter change amount is obtained according to the following steps:
a、计算ε=θmaxhmin=0.25,令i=1;a. Calculate ε=θ max h min =0.25, let i=1;
b、令i=1,计算ε=θmaxhmin;若特征组成面均为平面,则获取此待简化特征的最小边长hi,计算网格直径改变量Htemp=hmax-min(hmax,hi),若Htemp>0,对应的网格直径改变量Hi=Htemp,否则转下一步骤;b. Set i=1, calculate ε=θ max h min ; if the feature composition surfaces are all planes, then obtain the minimum side length h i of the feature to be simplified, and calculate the grid diameter change H temp =h max -min( h max , h i ), if H temp >0, the corresponding mesh diameter change H i =H temp , otherwise go to the next step;
c、若特征组成面中存在曲面,则获取当前待简化特征i包含的所有曲面的平均高斯曲率θavgi,计算网格直径改变量
d、令i=i+1,重复步骤b、c,直至模型中所有待简化特征与其简化方式相应的网格直径改变量Hi,i=1,2,…,n,计算完毕,得到表1;d. Let i=i+1, repeat steps b and c, until all the features to be simplified in the model and the grid diameter change amount H i corresponding to the simplification method, i =1, 2,..., n, the calculation is completed, and the table is obtained 1;
本实施例中敏感值为对应特征的体积、位置参数和相应简化方式之下的网格直径改变量之积,计为:Ei=ViPiHi,i=1,2,…,n,得到表1;In this embodiment, the sensitivity value is the product of the volume of the corresponding feature, the position parameter and the mesh diameter change under the corresponding simplified method, calculated as: E i = V i P i H i , i = 1, 2, ..., n, get Table 1;
表1特征属性列表Table 1 Feature attribute list
4、本实施例中有限单元选取用于热分析的Solid Tet 10node 87单元,即10节点单元,网格剖分采用默认的划分密度。由于平均边长是1.5个单位,因此单元的平均体积是3.375,模型态的体积为v,则其对应的单元数量NE=v/3.375;4. In this embodiment, the Solid Tet 10node 87 element used for thermal analysis is selected as the finite element, that is, the 10-node element, and the default division density is used for grid division. Since the average side length is 1.5 units, the average volume of the unit is 3.375, and the volume of the model state is v, then the corresponding unit number N E =v/3.375;
5、使用二进制编码表示模型态,编码长度是特征数量,在热分析领域中,用户根据经验可知圆角特征对网格划分的负面影响很大而对计算结果的影响可以忽略,将该模型的4个圆角特征先行抑制,于是特征编码为13位,对应于可能存在的213个模型态,模型中特征的顺序与表中的特征序号一致。其中初始模型态编码为1111111111111。5. Use binary coding to represent the model state, and the coding length is the number of features. In the field of thermal analysis, users know from experience that rounded corner features have a great negative impact on mesh division and the impact on calculation results can be ignored. The model's The four rounded corner features are suppressed first, so the feature encoding is 13 bits, corresponding to 213 possible model states, and the order of the features in the model is consistent with the feature numbers in the table. The initial model state code is 1111111111111.
6、用户输入误差级别为1,计算出可容忍的量化误差Emax=11.55。6. The user inputs an error level of 1, and calculates a tolerable quantization error E max =11.55.
7、随机生成个体数量为N=100的种群;交叉概率Pc=0.8,变异概率Pm=0.02,取α=0.3,那么每个个体的适应度计算公式为
其中
8、迭代次数为,每迭代一次,使用网格剖分算法估计出这代中所有个体编码对应模型态的刚度矩阵阶数,再计算适应度函数。最终模型态的编码为0011010011011,经过特征抑制,几何形状如图13所示,剩下正方体基座1、圆盲孔特征3、正六面体通孔5、正六面体盲孔8、槽10、11、14。8. The number of iterations is , each iteration, use the grid subdivision algorithm to estimate the order of the stiffness matrix corresponding to the model state of all individual codes in this generation, and then calculate the fitness function. The code of the final model state is 0011010011011. After feature suppression, the geometric shape is shown in Figure 13, and the remaining
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100205612A CN101241520A (en) | 2008-02-01 | 2008-02-01 | Model State Generation Method Based on Feature Suppression in Finite Element Modeling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100205612A CN101241520A (en) | 2008-02-01 | 2008-02-01 | Model State Generation Method Based on Feature Suppression in Finite Element Modeling |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101241520A true CN101241520A (en) | 2008-08-13 |
Family
ID=39933048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100205612A Pending CN101241520A (en) | 2008-02-01 | 2008-02-01 | Model State Generation Method Based on Feature Suppression in Finite Element Modeling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101241520A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101923590A (en) * | 2010-08-16 | 2010-12-22 | 北京理工大学 | An Efficient Method for Latin Hypercube Design of Experiments |
CN102187342A (en) * | 2008-09-02 | 2011-09-14 | 雪佛龙美国公司 | Indirect-error-based, dynamic upscaling of multi-phase flow in porous media |
CN103106305A (en) * | 2013-02-01 | 2013-05-15 | 北京工业大学 | Space grid structure model step-by-step correction method based on actual measurement mode |
CN104794745A (en) * | 2014-01-20 | 2015-07-22 | 南京理工大学 | 3D and isogeometric mixed unit modeling method of rifling barrel |
CN105159348A (en) * | 2015-07-28 | 2015-12-16 | 上海卫星工程研究所 | System-level thermal performance characterization method for adaptive thermal control technology |
CN116305418A (en) * | 2023-02-13 | 2023-06-23 | 中交四航工程研究院有限公司 | A conversion method from grid structure BIM model and point cloud model to finite element model |
CN116680816A (en) * | 2023-07-27 | 2023-09-01 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for correcting hole-making normal vector of aircraft component |
CN118278255A (en) * | 2024-05-31 | 2024-07-02 | 威海巧渔夫户外用品有限公司 | Carbon fiber fishing rod tonal curve calculation simulation method |
-
2008
- 2008-02-01 CN CNA2008100205612A patent/CN101241520A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102187342A (en) * | 2008-09-02 | 2011-09-14 | 雪佛龙美国公司 | Indirect-error-based, dynamic upscaling of multi-phase flow in porous media |
CN102187342B (en) * | 2008-09-02 | 2013-09-04 | 雪佛龙美国公司 | Indirect-error-based, dynamic upscaling of multi-phase flow in porous media |
CN101923590A (en) * | 2010-08-16 | 2010-12-22 | 北京理工大学 | An Efficient Method for Latin Hypercube Design of Experiments |
CN101923590B (en) * | 2010-08-16 | 2012-10-03 | 北京理工大学 | High-efficiency Latin hypercube experimental design method |
CN103106305A (en) * | 2013-02-01 | 2013-05-15 | 北京工业大学 | Space grid structure model step-by-step correction method based on actual measurement mode |
CN104794745A (en) * | 2014-01-20 | 2015-07-22 | 南京理工大学 | 3D and isogeometric mixed unit modeling method of rifling barrel |
CN105159348A (en) * | 2015-07-28 | 2015-12-16 | 上海卫星工程研究所 | System-level thermal performance characterization method for adaptive thermal control technology |
CN116305418A (en) * | 2023-02-13 | 2023-06-23 | 中交四航工程研究院有限公司 | A conversion method from grid structure BIM model and point cloud model to finite element model |
CN116305418B (en) * | 2023-02-13 | 2024-12-03 | 中交四航工程研究院有限公司 | A method for converting grid structure BIM model and point cloud model to finite element model |
CN116680816A (en) * | 2023-07-27 | 2023-09-01 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for correcting hole-making normal vector of aircraft component |
CN116680816B (en) * | 2023-07-27 | 2023-11-10 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for correcting hole-making normal vector of aircraft component |
CN118278255A (en) * | 2024-05-31 | 2024-07-02 | 威海巧渔夫户外用品有限公司 | Carbon fiber fishing rod tonal curve calculation simulation method |
CN118278255B (en) * | 2024-05-31 | 2024-08-09 | 威海巧渔夫户外用品有限公司 | Carbon fiber fishing rod tonal curve calculation simulation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101241520A (en) | Model State Generation Method Based on Feature Suppression in Finite Element Modeling | |
US11977823B2 (en) | Method for designing high-rigidity blade based on stochastic isogeometric analysis | |
CN109740227B (en) | Miniature complex part modeling method based on feature recognition | |
CN103310481B (en) | A kind of point cloud compressing method based on fuzzy entropy iteration | |
CN105354873B (en) | For the pattern density function analogy method of porous media three-dimensionalreconstruction | |
Tang et al. | Multicriterion aerodynamic shape design optimization and inverse problems using control theory and Nash games | |
CN108763827B (en) | Transmission tower finite element model establishing method and device | |
CN111582350A (en) | An AdaBoost method and system for filter factor optimization based on distance weighted LSSVM | |
Toda et al. | Multilayer batch learning growing neural gas for learning multiscale topologies | |
CN103353916B (en) | Composite Laminated Panel based on engineering optimizes post-processing approach | |
CN108984830A (en) | A kind of building efficiency evaluation method and device based on FUZZY NETWORK analysis | |
CN107871139A (en) | A Data Dimensionality Reduction Method Based on Improved Neighborhood Preserving Embedding Algorithm | |
Ji et al. | Computer 3D vision-aided full-3D optimization of a centrifugal impeller | |
CN107578101B (en) | A Data Flow Load Prediction Method | |
WO2023205901A1 (en) | System and method for heat exchanger shape optimization | |
CN111737110A (en) | A Test Input Selection Method for Deep Learning Models | |
CN114841288A (en) | Typical daily load curve acquisition method and device, electronic equipment and storage medium | |
CN105426626B (en) | Multiple-Point Geostatistics modeling method based on set of metadata of similar data pattern cluster | |
Zhao et al. | Prediction of confined flow field around a circular cylinder and its force based on convolution neural network | |
CN117492411A (en) | Five-axis finish machining approximation error prediction method for flat bottom cutter | |
CN114818128B (en) | Modeling method and optimizing method for ship body local curved surface optimizing neural network | |
CN117150603A (en) | Bridge BIM model construction system and method | |
CN115952994A (en) | A Method for Assembly Sequence Planning | |
CN109710812A (en) | A Stability Measurement Method for Network Characterization Algorithms | |
CN104036024A (en) | Spatial clustering method based on GACUC (greedy agglomerate category utility clustering) and Delaunay triangulation network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20080813 |