CN101236795A - Amorphous silicon multijunction nuclear battery - Google Patents
Amorphous silicon multijunction nuclear battery Download PDFInfo
- Publication number
- CN101236795A CN101236795A CNA2007100025653A CN200710002565A CN101236795A CN 101236795 A CN101236795 A CN 101236795A CN A2007100025653 A CNA2007100025653 A CN A2007100025653A CN 200710002565 A CN200710002565 A CN 200710002565A CN 101236795 A CN101236795 A CN 101236795A
- Authority
- CN
- China
- Prior art keywords
- layer
- amorphous silicon
- junction
- beta
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims abstract description 53
- 230000005855 radiation Effects 0.000 claims abstract description 27
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 claims description 20
- 229910052722 tritium Inorganic materials 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 230000002285 radioactive effect Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 2
- 229910000676 Si alloy Inorganic materials 0.000 claims 5
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000005255 beta decay Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005250 beta ray Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 210000001009 nucleus accumben Anatomy 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
Images
Landscapes
- Secondary Cells (AREA)
- Photovoltaic Devices (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了将核能转换成电能的原子电池的一种设计方案。本发明通过由多结非晶硅p-i-n型电池重叠而成的多结核电池,使得基于非晶硅的β伏(beta-voltaic)电池的电压和输出功率大大增强。在此类非晶硅多结β伏核电池中,β辐射也可由放置在非晶硅p-i-n结构之间和之外的接触层提供。
The invention discloses a design proposal of an atomic battery for converting nuclear energy into electric energy. The invention makes the voltage and output power of the beta-voltaic (beta-voltaic) battery based on amorphous silicon greatly enhanced through the multi-nodule battery formed by overlapping multi-junction amorphous silicon p-i-n type batteries. In such amorphous silicon multi-junction beta accumbens cells, beta radiation can also be provided by contact layers placed between and outside the amorphous silicon p-i-n structures.
Description
技术领域 technical field
本发明是关于核电池,特别是和β射线有关的核电池的描述。基于由非晶硅薄膜构成的具有p-i-n型结构的核电池的原始能量,由β辐射提供。本发明特别涉及到一个使得多结氚化非晶硅β伏电池稳定性极大提高,从而大大延长其可靠供电的周期的技术。The present invention relates to the description of nuclear batteries, especially nuclear batteries related to beta rays. Raw energy based on nuclear cells with a p-i-n structure made of thin films of amorphous silicon, provided by beta radiation. The invention particularly relates to a technique for greatly improving the stability of a multi-junction tritiated amorphous silicon β-volt battery, thereby greatly prolonging its reliable power supply period.
背景技术 Background technique
近年来全世界广泛流行各种各样的电子器件,这对于电池的需求量大大增加。通常使用的化学电池的寿命大概是几个小时,且化学电池又比较笨重,使用完之后的废电池很难处理,而且化学电池的储存寿命有限,所以对另类的可携带的且寿命长的电源有很强的需求。原子能电池就是一种解决办法。In recent years, various electronic devices are widely popular all over the world, which greatly increases the demand for batteries. The life of the commonly used chemical batteries is about several hours, and the chemical batteries are relatively heavy. It is difficult to dispose of the waste batteries after use, and the storage life of the chemical batteries is limited. There is strong demand. Atomic batteries are one solution.
所述这种“电池”的含义指的是一个或多个连在一起的可以提供电源的单位,所述这种“核电池”同时也叫做“原子能电池”,指的是这种电池的能量来源于存储于原子核中的能量。储存于原子核当中的核能量通常由如下三种方式之一得到释放:核裂变、核剧变和放射性蜕变。目前本发明是基于将核蜕变所释放的核辐射(β射线),用半导体结构转换成电能。几十年来一些这种依靠放射性蜕变的核电池,在单步转换过程或双步转换过程的基础上被发明。单步转换原子能电池直接将核辐射转换成电能,双步转换电池将核辐射能转换成中间的一种能源(如热或光),从而进一步转化成电能。The meaning of this "battery" refers to one or more connected units that can provide power. The "nuclear battery" is also called "atomic energy battery", which refers to the energy of this battery Derived from the energy stored in the nucleus of the atom. The nuclear energy stored in the nucleus is usually released in one of three ways: nuclear fission, nuclear catastrophe, and radioactive disintegration. The present invention is based on the conversion of nuclear radiation (beta rays) released by nuclear disintegration into electrical energy using semiconductor structures. Several such nuclear batteries, relying on radioactive disintegration, have been invented over the decades based on a single-step conversion process or a two-step conversion process. The single-step conversion atomic energy battery directly converts nuclear radiation into electrical energy, and the double-step conversion battery converts nuclear radiation energy into an intermediate energy source (such as heat or light), which is further converted into electrical energy.
单步转换类型的核电池包括β伏电池,它的工作原理是一个常规的晶态半导体p-n节暴露在核辐射下,导致生成了电子空穴对,从而诱发低电压电流。其中一个例子是在美国专利号(2745973及4024420)中提供的。另一个单步转换核电池的例子是一个低电压电池,它基于气体离子化的原则,因此包含了电离气体的电池,其电池是由电离的气体和两个电极组成,两个电极在气体之间建立电场,核辐射源可以是气态或固态的。还有一个例子,是高电压的真空电池,其中的一个电极构成核辐射带电离子源,同时另一个电极具有高接收效率和低再次放射性能,这样导致对核辐射的高效收集,从而制成高电压低电流的核电器件。Single-step conversion types of nuclear batteries include beta volt batteries, which operate by exposing a conventional crystalline semiconductor p-n junction to nuclear radiation, resulting in the generation of electron-hole pairs that induce low-voltage current flow. An example of this is provided in US Patent Nos. (2745973 and 4024420). Another example of a single-step conversion nuclear battery is a low-voltage battery, which is based on the principle of gas ionization, and therefore contains an ionized gas battery. The battery consists of an ionized gas and two electrodes placed between the gas The electric field is established between them, and the nuclear radiation source can be gaseous or solid. Another example is a high-voltage vacuum battery, in which one electrode constitutes a source of charged ions for nuclear radiation, while the other electrode has high receiving efficiency and low re-radiation energy, which leads to efficient collection of nuclear radiation, thus making high-efficiency Nuclear power devices with low voltage and low current.
双步转化核电池包括光伏电池,其工作原理是先将核辐射照在一个荧光材料上,使其转换成光能,然后将半导体p-n节暴露在光照之下,从而依光伏效应产生低压电流。还有一种双步核电池是热电型的,其工作原理是先将核辐射转换成热能,然后将热能通过热电效应将其转换成电能。光伏和光热核电池的例子,包括如下美国的专利,它们的号码是4628143;4900368和5008579。The double-step conversion nuclear battery includes a photovoltaic cell. Its working principle is to first irradiate nuclear radiation on a fluorescent material to convert it into light energy, and then expose the semiconductor p-n junction to light, thereby generating low-voltage current according to the photovoltaic effect. There is also a two-step nuclear battery that is thermoelectric. Its working principle is to convert nuclear radiation into heat energy first, and then convert the heat energy into electrical energy through the thermoelectric effect. Examples of photovoltaic and photothermonuclear cells include the following US Patent Nos. 4,628,143; 4,900,368 and 5,008,579.
核能转换成电能通常效率很低,这种单步核电转换过程效率通常在5%之下,双步核电池转换过程效率更低。在现实中对核电池转换的限制来源于核能在达到半导体之前所受到的能量损失,及核辐射在半导体材料中受到的进一步衰减,最终只有很小一部分可用来在p-n节附近产生可被收集的电子空穴对。The conversion of nuclear energy into electrical energy is usually very inefficient. The efficiency of this single-step nuclear power conversion process is usually below 5%, and the efficiency of the two-step nuclear battery conversion process is even lower. In reality, the limitation of nuclear battery conversion comes from the energy loss of nuclear energy before it reaches the semiconductor, and the further attenuation of nuclear radiation in the semiconductor material, and finally only a small part can be used to generate harvestable energy near the p-n junction. electron-hole pairs.
为了解决上述困难,美国专利号为5606213的专利提出了基于非晶硅的β伏电池。这种核电池的构成是将由辐射性的氚用化学办法掺入到非晶硅材料之中。通常的非晶硅里含有氢(氢化非晶硅通常也简称为非晶硅)。在氚化非晶硅里氚原子以化学键的方式均匀的分布在硅的整个网络中,另一种考虑这种材料的着眼点就是在氢化非晶硅里有一些氢被氚代替了。In order to solve the above difficulties, US Patent No. 5606213 proposes a β-volt battery based on amorphous silicon. The composition of this nuclear battery is to chemically incorporate radioactive tritium into the amorphous silicon material. Usually amorphous silicon contains hydrogen (hydrogenated amorphous silicon is also often referred to simply as amorphous silicon). In tritiated amorphous silicon, tritium atoms are uniformly distributed throughout the silicon network in the form of chemical bonds. Another point of view for considering this material is that some hydrogen is replaced by tritium in hydrogenated amorphous silicon.
图1演示了一个基于现有技术的由氚化非晶硅p-i-n结构组成的核电池。它的构成是p层16(硼掺杂的″p型区域″),一个n层19(一个由磷掺杂的″n型区域″),和一个i层18(本征或掺杂区域)。由非晶硅构成的p层16和n层19也可以基于氚化非晶硅,它们被放置在由氚化非晶硅构成的i层18的两侧。根据这个器件的设计,大多数的β射线能源是由氚化非晶硅的i层18提供,它的厚度比p层16和n层19至少要大一个数量级。其设想是将氚直接嵌入到将核能转换成电能的半导体里,从而减少核放射能量的损失,并且简化核电池的结构。Figure 1 demonstrates a state-of-the-art nuclear battery consisting of tritiated amorphous silicon p-i-n structures. It consists of a p-layer 16 ("p-type region" doped with boron), an n-layer 19 (an "n-type region" doped with phosphorus), and an i-layer 18 (intrinsic or doped region) . The p-
不幸的是基于氚化非晶硅β伏核电池的表现过于不稳定.,电力转化功率还没达到1%。具体衰退速度取决于i层18中氚的浓度,通常浓度为10%。在氚化非晶硅i层18中,p-i-n型β伏核电池的电压只在几十个纳伏范围内,远远低于一微伏。这样低的电压不能用作任何普通器件的电源电池。Unfortunately, the performance of tritiated amorphous silicon beta accumbens cells is too unstable, and the power conversion efficiency has not yet reached 1%. The specific rate of decay depends on the concentration of tritium in the i-
此外,这种电池的功效随时间衰退得很快。相比于期望值为12年的使用寿命,电池的输出功率在电池制成之后的几个星期内就衰退了50%以上,具体衰退速度取决于i层18中氚的含量。显然地,由于当氚通过β蜕变释放电子转化成氦时,氦对氚衰退的强反作用,非晶硅i层18的电子质量迅速退化。Furthermore, the efficacy of such batteries decays rapidly over time. Compared with the expected service life of 12 years, the output power of the battery declines by more than 50% within a few weeks after the battery is manufactured, and the specific decline rate depends on the content of tritium in the i-
因此,传统氚化非晶硅i层电池实用性不大。Therefore, the traditional tritiated amorphous silicon i-layer battery is not practical.
发明内容 Contents of the invention
基于上述考虑,申请人拟订了本发明的目的是:提供一个基于非晶硅p-i-n结构的,具有极大改善稳定性的β伏核电池。Based on the above considerations, the applicant has drawn up the purpose of the present invention to provide a beta accumbens battery based on an amorphous silicon p-i-n structure with greatly improved stability.
本发明的进一步目的是,提供一个由氚化硅薄膜p层和n层及不含无放射性元素的非晶硅i层组成的,基于非晶硅p-i-n结构的,具有优良能量转换效率的多结β伏核电池。A further object of the present invention is to provide a multi-junction with excellent energy conversion efficiency based on the p-i-n structure of amorphous silicon, which is composed of tritiated silicon thin film p-layer and n-layer and amorphous silicon i-layer not containing non-radioactive elements. β nucleus accumbens battery.
本发明的第三个目的是,提供一个基于非晶硅p-i-n结构的,在p-i-n型薄膜电池两侧外置了β辐射源的多结β伏核电池。The third object of the present invention is to provide a multi-junction beta accumbens battery based on the p-i-n structure of amorphous silicon, with external beta radiation sources on both sides of the p-i-n thin film battery.
为了达到上述发明目的,本发明采用了基于非晶硅p-i-n型的多结β伏电池的结构。多结核电池是由一组电池首尾相连接构成的。每结电池都是由下列部分组成:基于硅薄膜的p层和n层及置于两者之间的本征i层。前节电池的n层被紧密连接在后节电池的p层,从而使得相邻电池的p层和n层具有良好的、无障碍的电接触性。In order to achieve the purpose of the above invention, the present invention adopts the structure of p-i-n multi-junction β-volt battery based on amorphous silicon. A polytube battery consists of a group of batteries connected end to end. Each junction cell is composed of p-layer and n-layer based on silicon thin film with intrinsic i-layer placed between them. The n-layer of the front cell is closely connected to the p-layer of the rear cell, so that the p-layer and n-layer of the adjacent cell have good, barrier-free electrical contact.
多结p-i-n型的β伏电池被紧密有序的连接起来,多结核电池的总电压就是单个电池的电压之和。因此,即使每结电池只有很小的电压,但是如果串联电池的节数足够多,多结电池的电压也可以被大大增加。而且许多个多结电池可以被串联起来,从而进一步增大提供给外界附载的功率。Multi-junction p-i-n type β-volt batteries are tightly and orderly connected, and the total voltage of the multi-junction battery is the sum of the voltages of the individual cells. Therefore, even if the voltage per junction cell is small, the voltage of a multi-junction cell can be greatly increased if enough cells are connected in series. Moreover, many multi-junction batteries can be connected in series to further increase the power provided to the external load.
附图说明 Description of drawings
下面结合附图和实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1显示了一个传统的由氚化非晶硅组成本征i层的氚化非晶硅p-i-n型β伏电池。Figure 1 shows a traditional tritiated amorphous silicon p-i-n type β-volt battery with intrinsic i layer composed of tritiated amorphous silicon.
图2显示了一个多结p层和n层由氚化非晶硅和其合金构成的p-i-n型β伏电池组成的非晶硅p-i-n型多结β伏电池的层状结构。Figure 2 shows the layered structure of an amorphous silicon p-i-n type multi-junction β-volt battery composed of a p-i-n type β-volt battery composed of tritiated amorphous silicon and its alloys with a multi-junction p-layer and n-layer.
图3显示了一个将β辐射源外置于多结p-i-n型β伏电池两侧的非晶硅多结β伏电池的层状结构。Figure 3 shows the layered structure of an amorphous silicon multi-junction β-volt cell with external β-radiation sources placed on both sides of the multi-junction p-i-n type β-volt cell.
具体实施方式 Detailed ways
本发明可由图2来演示。该图显示了基于非晶硅p-i-n型的多结β伏电池的结构。多结核电池是由一组电池首尾相连接构成的。每结电池都是由下列部分组成:基于硅薄膜的p层6和n层9及置于两者之间的本征i层8。前节电池的n层被紧密连接在后节电池的p层,从而使得相邻电池的p层6和n层9具有良好的、无障碍的电接触性。The present invention can be demonstrated by FIG. 2 . This figure shows the structure of a multi-junction beta volt cell based on amorphous silicon p-i-n type. A polytube battery consists of a group of batteries connected end to end. Each junction cell is composed of p-
多结p-i-n型的β伏电池被紧密有序的连接起来,多结核电池的总电压就是单个电池的电压之和。因此,即使每结电池只有很小的电压,但是如果使用多结电池串联起来,多结电池的电压也可以被大大增加。而且许多个多结电池(它们都是由具有图2所示结构的多个电池组成)可以被串联起来,从而进一步增大提供给外界附载的功率。Multi-junction p-i-n type β-volt batteries are tightly and orderly connected, and the total voltage of the multi-junction battery is the sum of the voltages of the individual cells. Therefore, even if the voltage per junction cell is small, the voltage of multi-junction cells can be greatly increased if they are connected in series. Moreover, many multi-junction batteries (they are composed of multiple batteries with the structure shown in FIG. 2 ) can be connected in series, thereby further increasing the power supplied to the external load.
因为高掺杂度,使得基于非晶硅的p层6和n层9具有高缺陷性,在其中产生的电子和空穴迅速复合而丧失,并且不能用于将核能转换为电能。i层8必须保持较低的电子缺陷密度。因此,氚化非晶硅并不是作为i层8的最佳选择,原因是氚β衰退时的氦原子带有大量的动能。这种能量被硅矩阵吸收,并且一些硅键被破坏,产生了一些如悬浮键的缺陷。相比之下,氚β衰退所释放的具有几千电子伏能量的电子(β粒子)不会对非晶硅原子结构造成什么损坏,因为电子比硅要轻得多。因此,根据本发明,氚只被加入掺杂的p层6和n层9,并将由氢化非晶硅或者它的合金制成的i层8夹在氚辐射源之中。重要的是为了确保高品质,i层8不含有氚或者其他辐射性元素。厚度在100到500纳米之间的本征氢化非晶硅或它的宽带隙合金是作为i层8的首选材料。氚蜕变所产生的β粒子在硅中的穿透平均厚度为500纳米。多结排列确保了活性转化i层8容易接收和吸收由p层6和n层9所产生的β辐射,而不会被氦原子破坏,这种氦原子被不受电子缺陷密度增长影响的掺杂层吸收。Because of the high doping level, the amorphous silicon-based p-
多结电池结构的另一个优势是增加对由掺杂的p层6和n层9提供的β辐射的利用率。在单个电池或者如图1所示的单个p-i-n型电池里,一半以上由p层或n层释放的自由导向的β辐射被i层接收。从另一个方面来说,在多结电池构造里,绝大部分的β粒子必须通过至少一个包围着i层的掺杂层。Another advantage of the multi-junction cell structure is the increased utilization of the beta radiation provided by the doped p-
为了提供足够的β伏电池的电流输出,基于氚化硅薄膜的p层和n层的氚浓度必须根据生成硅薄膜的条件高到足够有10-30原子量百分比例的范围内。这种浓度可以用硅烷和氚气在高气压和相当低的温度160度以下用等离子体化学气相沉积法生成非晶硅薄膜而获得。进一步地说,理想的掺杂层p层6和n层9的膜片厚度是在20-200纳米之间,以便向i层8提供最大剂量的β辐射,而不导致有过多的β放射能量会由于自我吸收而损失于放射源材料之中(指的是氚化层p层6和n层9)。In order to provide sufficient current output of the β-volt battery, the tritium concentration of the p-layer and n-layer based on the tritiated silicon film must be high enough to have a range of 10-30 atomic weight percent according to the conditions for forming the silicon film. This concentration can be obtained by using silane and tritium gas to generate amorphous silicon thin films by plasma chemical vapor deposition at high pressure and relatively low temperature below 160 degrees. Furthermore, the ideal thickness of the doped layers p-
如图3所示,基于非晶硅的多结β伏电池还能由在每个p-i-n型电池的两侧置放β辐射源而形成。连接层22含有持久的β蜕变材料,如氚、镍、铍分别放置在每对p层26和n层29的中间,组成了一种使用于许多t-p-i-n型的器件中的重复22-26-28-29的链。另一个β辐射源连接层22被置于电池组最后的n层下边,基于本征非晶硅的具有重复t-p-i-n-t-p-i-n...t-p-i-n-t结构的i层28不会随时间而衰退。为了使从β辐射源连接层22释放的绝大多数β粒子到达i层28,掺杂层p层26和n层29的厚度至少小于50纳米,最好小于30纳米。As shown in Figure 3, amorphous silicon-based multi-junction beta volt cells can also be formed by placing beta radiation sources on both sides of each p-i-n cell. The connection layer 22 contains a durable beta-transition material such as tritium, nickel, beryllium placed between each pair of p-layer 26 and n-layer 29 respectively, forming a repeat 22-26-28 used in many t-p-i-n type devices -29 chains. Another beta radiation source connection layer 22 is placed under the last n-layer of the battery, an i-layer 28 based on intrinsic amorphous silicon with a repeating t-p-i-n-t-p-i-n...t-p-i-n-t structure that does not decay over time. In order to make most of the β particles released from the β radiation source connection layer 22 reach the i layer 28, the thickness of the doped layers p layer 26 and n layer 29 is at least less than 50 nm, preferably less than 30 nm.
更进一步的说,根据图3所示,p层26和n层29可以由氚化非晶硅和它的合金包括氚化非晶硅碳组成,这样可以增强进入i层28的辐射度和增加β伏电池的电输出功率。那就是为了增强β辐射对i层的辐射度和增加多结β伏电池的电输出功率,β伏电池的连接层22可以被加入图2结构的所有掺杂层之间和之外。Furthermore, as shown in FIG. 3, p layer 26 and n layer 29 can be composed of tritiated amorphous silicon and its alloys including tritiated amorphous silicon carbon, which can enhance the radiance entering i layer 28 and increase The electrical output power of a beta volt battery. That is, in order to enhance the radiance of β radiation to the i layer and increase the electrical output power of the multi-junction β volt battery, the connection layer 22 of the β volt battery can be added between and outside all the doped layers of the structure in FIG. 2 .
因为多结β伏电池中的所有β伏电池都串联排列起来了,β辐射源连接层22必须作为低电阻的接触层插在基于硅薄膜的p-i-n型电池之间。因此,连接层22必须具有很好的导电性和与p层26和n层29接触的低电阻性。连接层22最好是由具有很多β辐射元素合金的金属薄膜组成。这种材料可用适当的材料由磁电管溅射的方法制成。Since all the beta volt cells in a multi-junction beta volt cell are arranged in series, the beta radiation source connection layer 22 must be inserted as a low resistance contact layer between the silicon thin film based p-i-n type cells. Therefore, connection layer 22 must have good electrical conductivity and low resistance in contact with p-layer 26 and n-layer 29 . Bonding layer 22 is preferably composed of a metal thin film alloyed with many beta-radiating elements. Such materials can be produced by magnetron sputtering of suitable materials.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100025653A CN101236795A (en) | 2007-01-29 | 2007-01-29 | Amorphous silicon multijunction nuclear battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100025653A CN101236795A (en) | 2007-01-29 | 2007-01-29 | Amorphous silicon multijunction nuclear battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101236795A true CN101236795A (en) | 2008-08-06 |
Family
ID=39920338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100025653A Pending CN101236795A (en) | 2007-01-29 | 2007-01-29 | Amorphous silicon multijunction nuclear battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101236795A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103377742A (en) * | 2012-04-24 | 2013-10-30 | 超科技公司 | Betavoltaic power sources for mobile device applications |
-
2007
- 2007-01-29 CN CNA2007100025653A patent/CN101236795A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103377742A (en) * | 2012-04-24 | 2013-10-30 | 超科技公司 | Betavoltaic power sources for mobile device applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2922779B2 (en) | Nuclear battery | |
US6118204A (en) | Layered metal foil semiconductor power device | |
US8866152B2 (en) | Betavoltaic apparatus and method | |
US8853531B2 (en) | Photon enhanced thermionic emission | |
US20220223310A1 (en) | Radiation powered devices comprising diamond material and electrical power sources for radiation powered devices | |
CN101236794A (en) | Amorphous silicon carbon thin film nuclear battery | |
CN108492905A (en) | A kind of diamond PIM Schottky types β radiation volta effect nuclear battery | |
CN102969368B (en) | Electrode structure of solar cell piece | |
CN107210078A (en) | Generator system | |
CN101645317B (en) | Isotope battery of carbon nano tube | |
CN110459340B (en) | H-3 silicon carbide PN type isotope battery and manufacturing method thereof | |
CN113707355A (en) | Energy-carrying and energy-converting integrated nuclear battery | |
CN110428922A (en) | One kind radiating volta effect nuclear battery based on silicon carbide PIN junction type β | |
Deus | Tritium-powered betavoltaic cells based on amorphous silicon | |
CN101236795A (en) | Amorphous silicon multijunction nuclear battery | |
CN106847361A (en) | Zinc oxide PIN-type nuclear battery | |
CN109243659B (en) | A kind of miniature nuclear battery based on silicon carbide material and preparation method thereof | |
CN101236796A (en) | Stable amorphous silicon core battery | |
US9305674B1 (en) | Method and device for secure, high-density tritium bonded with carbon | |
WO2019113842A1 (en) | Quantum dot betavoltaic battery | |
Harrison | Betavoltaic Devices | |
CN118782285A (en) | A carbon-14 diamond-based beta radiation voltaic effect nuclear battery and its manufacturing method | |
Deus | 20 North 5th Street, Charleston, Illinois 61920, USA | |
Tchouadep et al. | Modelling the Influence of Low Energy Electrons Emitted from Pm-147 on the Performance of a Silicon PV Cell | |
Kosteski et al. | Nuclear batteries using tritium and thin film hydrogenated amorphous silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
DD01 | Delivery of document by public notice |
Addressee: Ma Cuan Document name: the First Notification of an Office Action |
|
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080806 |