CN101235536A - Na-doped growth method of p-type ZnO crystal film - Google Patents
Na-doped growth method of p-type ZnO crystal film Download PDFInfo
- Publication number
- CN101235536A CN101235536A CNA2007101565875A CN200710156587A CN101235536A CN 101235536 A CN101235536 A CN 101235536A CN A2007101565875 A CNA2007101565875 A CN A2007101565875A CN 200710156587 A CN200710156587 A CN 200710156587A CN 101235536 A CN101235536 A CN 101235536A
- Authority
- CN
- China
- Prior art keywords
- growth
- type zno
- substrate
- zno crystal
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 114
- 239000011787 zinc oxide Substances 0.000 claims abstract description 57
- 239000011734 sodium Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 25
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 18
- 239000010409 thin film Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 11
- 238000004549 pulsed laser deposition Methods 0.000 claims abstract description 10
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 9
- 239000013077 target material Substances 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 19
- 238000000498 ball milling Methods 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 238000000255 optical extinction spectrum Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开的Na掺杂生长p型ZnO晶体薄膜的方法,采用的是脉冲激光沉积法,首先将纯氧化锌和碳酸钠粉末球磨混合后压制成型,烧结,制得掺Na2O的ZnO靶材;然后在脉冲激光沉积装置的生长室中,以掺Na2O的ZnO为靶材,以纯O2为生长气氛,控制O2压强15-45pa,激光频率为1-5Hz,在衬底生长p型ZnO晶体薄膜。本发明方法可以实现实时掺杂,掺杂浓度可以通过调节生长温度和靶材中Na的摩尔含量来控制。采用本发明方法制备的p型ZnO晶体薄膜具有良好的电学性能,重复性和稳定性。The method for growing a p-type ZnO crystal thin film with Na doping disclosed by the present invention adopts a pulsed laser deposition method. Firstly, pure zinc oxide and sodium carbonate powder are ball-milled and mixed, then pressed into shape and sintered to obtain a Na 2 O-doped ZnO target. material; then in the growth chamber of the pulsed laser deposition device, use Na 2 O-doped ZnO as the target material, pure O 2 as the growth atmosphere, control the O 2 pressure at 15-45pa, and the laser frequency at 1-5Hz to grow on the substrate. p-type ZnO crystal thin film. The method of the invention can realize real-time doping, and the doping concentration can be controlled by adjusting the growth temperature and the molar content of Na in the target material. The p-type ZnO crystal thin film prepared by the method of the invention has good electrical properties, repeatability and stability.
Description
技术领域technical field
本发明涉及p型ZnO晶体薄膜的生长方法,尤其是Na掺杂生长p型ZnO晶体薄膜的方法。The invention relates to a growth method of p-type ZnO crystal thin film, especially a method for growing p-type ZnO crystal thin film by Na doping.
背景技术Background technique
ZnO做为宽禁带半导体,有着其独特的优势,在室温下的能带宽度为3.37eV,激子结合能为60meV,远大于GaN的激子结合能25meV和室温分子热运动能26meV,因此很有潜力实现高功率的半导体激光器件。但是,ZnO走向光电器件应用的重要一步就是实现稳定的p型ZnO薄膜。ZnO由于各种本征缺陷,如Zni,Zno,和非故意掺杂缺陷,如Hi,表现为n型。在ZnO中掺入受主杂质会提高系统的Madelung能量,同时造成强烈的施主补偿作用。寻找一种合适的p型ZnO掺杂源是国际上科学家一直努力的方向.国际上报道过的可以做为p型ZnO掺杂材料有V族元素:N,P,As等和I族元素Li。然而在理论计算方面,I族元素Na做为受主有着比V族元素浅的受主能级和比Li更接近Zn原子半径的性能。PLD法具有衬底温度较低、沉积参数易控、易保持薄膜与靶成分一致、生长的薄膜质量较好等优点,但是还没有用这种方法进行过Na掺杂p型ZnO薄膜生长。本发明是利用脉冲激光沉积技术,以掺Na元素氧化物的靶为激光靶材生长p型ZnO晶体薄膜的方法。As a wide bandgap semiconductor, ZnO has its unique advantages. The energy band width at room temperature is 3.37eV, and the exciton binding energy is 60meV, which is much larger than GaN's exciton binding energy of 25meV and room temperature molecular thermal kinetic energy of 26meV. Therefore, It has great potential to realize high-power semiconductor laser devices. However, an important step towards the application of ZnO in optoelectronic devices is to realize stable p-type ZnO thin films. ZnO behaves as n-type due to various intrinsic defects, such as Zn i , Zn o , and unintentional doping defects, such as H i . The doping of acceptor impurities in ZnO will increase the Madelung energy of the system and cause a strong donor compensation effect at the same time. Finding a suitable p-type ZnO doping source is the direction that international scientists have been working hard for. Internationally reported materials that can be used as p-type ZnO doping materials include group V elements: N, P, As, etc. and group I elements Li . However, in terms of theoretical calculations, group I element Na as an acceptor has a shallower acceptor energy level than group V elements and a performance closer to Zn atomic radius than Li. The PLD method has the advantages of low substrate temperature, easy control of deposition parameters, easy to keep the composition of the film consistent with the target, and good quality of the grown film. However, this method has not been used to grow Na-doped p-type ZnO films. The invention is a method for growing p-type ZnO crystal thin film by using the pulse laser deposition technology and taking the Na-doped oxide target as the laser target material.
发明内容Contents of the invention
本发明的目的是克服目前p型ZnO掺杂所存在的不足,提供Na掺杂生长p型ZnO晶体薄膜的方法。The purpose of the present invention is to overcome the deficiency existing in p-type ZnO doping at present, and provide a method for growing p-type ZnO crystal film by Na doping.
本发明的Na掺杂生长p型ZnO晶体薄膜的方法,采用的是脉冲激光沉积法,其步骤如下:The method for Na-doped growth p-type ZnO crystal thin film of the present invention, what adopted is the pulsed laser deposition method, and its steps are as follows:
1)将纯氧化锌和碳酸钠粉末经球磨混合后压制成型,在600-800℃预烧结2小时以上,再在1000-1500℃烧结2小时以上,制得掺Na2O的ZnO靶材,Na的摩尔含量为0.2-1.0%;1) Mix pure zinc oxide and sodium carbonate powders by ball milling, press them into shape, pre-sinter at 600-800°C for more than 2 hours, and then sinter at 1000-1500°C for more than 2 hours to prepare Na 2 O-doped ZnO targets, The molar content of Na is 0.2-1.0%;
2)将衬底表面清洗后放入脉冲激光沉积装置的生长室中,生长室真空度抽到至少10-3Pa,然后加热衬底,使衬底温度为500-700℃,以掺Na2O的ZnO为靶材,以纯O2为生长气氛,控制O2压强15-45pa,激光频率为1-5Hz,进行生长,生长后在氧气保护气氛下冷却。2) Clean the surface of the substrate and put it into the growth chamber of the pulsed laser deposition device. The vacuum degree of the growth chamber is evacuated to at least 10 -3 Pa, and then the substrate is heated so that the substrate temperature is 500-700°C to dope Na 2 O ZnO is used as the target material, pure O2 is used as the growth atmosphere, the O2 pressure is controlled at 15-45pa, the laser frequency is 1-5Hz, and the growth is carried out. After growth, it is cooled in an oxygen protective atmosphere.
上述的衬底可以是氧化锌、硅、蓝宝石、玻璃或石英。所说的氧化锌的纯度为99.99%以上。The aforementioned substrate can be zinc oxide, silicon, sapphire, glass or quartz. The purity of said zinc oxide is above 99.99%.
本发明通过调节掺Na的摩尔含量和温度,可以制备不同掺杂浓度的p型ZnO晶体薄膜,生长的时间由所需的厚度决定。The invention can prepare p-type ZnO crystal films with different doping concentrations by adjusting the molar content and temperature of doped Na, and the growth time is determined by the required thickness.
本发明的优点:Advantages of the present invention:
1)可以实现实时掺杂,在ZnO晶体薄膜生长过程中同时实现p型掺杂;1) Real-time doping can be realized, and p-type doping can be realized simultaneously during the growth process of ZnO crystal film;
2)掺杂浓度较高,由于脉冲激光沉积技术可以把靶材的成分完全复制到所生长的薄膜中,因此只要制备的靶材的掺杂剂浓度高就获得很高的掺杂浓度;2) The doping concentration is high, because the pulsed laser deposition technology can completely copy the composition of the target material into the grown film, so as long as the dopant concentration of the prepared target material is high, a high doping concentration can be obtained;
3)掺杂浓度可以通过调节生长温度和靶材中Na的摩尔含量来控制;3) The doping concentration can be controlled by adjusting the growth temperature and the molar content of Na in the target;
4)制备的p型薄膜具有良好的电学性能,重复性和稳定性。4) The prepared p-type film has good electrical properties, repeatability and stability.
附图说明Description of drawings
图1是Na掺杂的p型ZnO晶体薄膜的x射线衍射(XRD)图谱;Fig. 1 is the x-ray diffraction (XRD) pattern of the p-type ZnO crystal film of Na doping;
图2是Na掺杂的p型ZnO晶体薄膜得光致发光谱;Fig. 2 is the photoluminescence spectrum of Na-doped p-type ZnO crystal film;
图3是Na掺杂的p型ZnO晶体薄膜得光学透射谱。Fig. 3 is the optical transmission spectrum of Na-doped p-type ZnO crystal film.
具体实施方式Detailed ways
以下结合具体实例进一步说明本发明。The present invention is further described below in conjunction with specific examples.
实施例1Example 1
1)取纯度为99.99%的氧化锌和碳酸钠粉末,Na摩尔含量为0.5%,将ZnO和Na2CO3的混合粉末倒入玛瑙球杯中,放在球磨机上进行球磨,球磨的时间为四个小时。球磨的目的有两个:首先是为了将ZnO、Na2CO3粉末混合均匀,以保证制备出来的靶材的均匀性。其次,是为了将ZnO和Na2CO3粉末细化,以利于随后ZnO和Na2CO3混合粉末的成型和烧结。1) Take zinc oxide and sodium carbonate powder with a purity of 99.99 % , and the molar content of Na is 0.5%. Pour the mixed powder of ZnO and Na2CO3 into an agate ball cup, and put it on a ball mill for ball milling. The time for ball milling is four hours. There are two purposes of ball milling: the first is to mix ZnO and Na 2 CO 3 powders evenly to ensure the uniformity of the prepared targets. Secondly, it is to refine the ZnO and Na 2 CO 3 powder, so as to facilitate the subsequent molding and sintering of the ZnO and Na 2 CO 3 mixed powder.
球磨结束后,将粉末压制成厚度为3mm,直径为4cm的圆片。然后在800℃预烧结2小时,在1250℃下烧结3小时,保证Na2CO3的分解。After ball milling, the powder was pressed into discs with a thickness of 3 mm and a diameter of 4 cm. Then pre-sinter at 800°C for 2 hours and sinter at 1250°C for 3 hours to ensure the decomposition of Na 2 CO 3 .
2)以石英为衬底,将衬底表面清洗后放入脉冲激光沉积装置的生长室中,生长室真空度抽到5×10-3Pa,然后加热衬底,使衬底温度为600℃,以掺Na2O的ZnO为靶材,调整衬底和靶材的距离为5cm,以纯O2为生长气氛,控制O2压强45pa,激光频率为5Hz,激光工作电压为27 KV,进行生长,生长的时间为60min。生长后在氧气保护气氛下冷却,得到厚度为300nm的Na掺杂p型ZnO晶体薄膜。2) Using quartz as the substrate, clean the surface of the substrate and put it into the growth chamber of the pulsed laser deposition device. The vacuum degree of the growth chamber is pumped to 5×10 -3 Pa, and then the substrate is heated to make the
制得的Na掺杂p型ZnO晶体薄膜在室温下有优异的电学性能,电阻率为27.7Ωcm,载流子浓度为4.64×1017cm2/Vs,迁移率为0.76cm-3。并且放置两个月后电学性能无明显变化。The prepared Na-doped p-type ZnO crystal film has excellent electrical properties at room temperature, with a resistivity of 27.7Ωcm, a carrier concentration of 4.64×10 17 cm 2 /Vs, and a mobility of 0.76cm -3 . And there is no significant change in electrical performance after two months of storage.
图1显示了薄膜的X射线衍射图(XRD)图,只有ZnO的(0002)和(0004)峰的出现,并且半高宽较小,表明薄膜良好的结晶性能。Figure 1 shows the X-ray diffraction pattern (XRD) of the film, only the (0002) and (0004) peaks of ZnO appear, and the half maximum width is small, indicating that the film has good crystallization properties.
图2是上述薄膜的光致发光谱,位于3.23eV很强的带边峰和微弱的绿光峰证明了制备的Na掺杂型薄膜的良好光致发光性能,为进步制备电致发光器件奠定基础。Fig. 2 is the photoluminescence spectrum of above-mentioned thin film, be positioned at 3.23eV very strong edge peak and weak green light peak have proved the good photoluminescent property of the prepared Na-doped thin film, lay the foundation for the further preparation of electroluminescent device Base.
图3是上述薄膜的光学透射谱。由图可见,在可见光区域的透射率高达90%,在380nm附近有陡峭的带边吸收边,显示了良好的光学透射性能。Figure 3 is the optical transmission spectrum of the above film. It can be seen from the figure that the transmittance in the visible light region is as high as 90%, and there is a steep band-edge absorption edge near 380nm, showing good optical transmittance performance.
实施例2Example 2
1)取纯度为99.99%的氧化锌和碳酸钠粉末,Na摩尔含量为1.0%,将ZnO和Na2CO3的混合粉末倒入玛瑙球杯中,放在球磨机上进行球磨,球磨的时间为四个小时。球磨结束后,将粉末压制成厚度为3mm,直径为4cm的圆片。然后在600℃预烧结2小时,在1400℃下烧结3小时。1) Take zinc oxide and sodium carbonate powder with a purity of 99.99 % , and the molar content of Na is 1.0%. Pour the mixed powder of ZnO and Na2CO3 into an agate ball cup and put it on a ball mill for ball milling. The time for ball milling is four hours. After ball milling, the powder was pressed into discs with a thickness of 3 mm and a diameter of 4 cm. Then pre-sinter at 600°C for 2 hours and sinter at 1400°C for 3 hours.
2)以玻璃为衬底,将衬底表面清洗后放入脉冲激光沉积装置的生长室中,生长室真空度抽到5×10-3Pa,然后加热衬底,使衬底温度为550℃,以掺Na2O的ZnO为靶材,调整衬底和靶材的距离为5cm,以纯O2为生长气氛,控制O2压强30pa,激光频率为3Hz,激光工作电压为27KV,进行生长,生长的时间为60min。生长后在氧气保护气氛下冷却,得到厚度为300nm的Na掺杂p型ZnO晶体薄膜。2) Using glass as the substrate, clean the substrate surface and put it into the growth chamber of the pulsed laser deposition device. The vacuum degree of the growth chamber is pumped to 5×10 -3 Pa, and then the substrate is heated to make the substrate temperature 550°C , using Na2O -doped ZnO as the target, adjusting the distance between the substrate and the target to 5cm, using pure O2 as the growth atmosphere, controlling the O2 pressure to 30pa, the laser frequency at 3Hz, and the laser working voltage at 27KV for growth. The growth time was 60min. After growth, it is cooled under an oxygen protective atmosphere to obtain a Na-doped p-type ZnO crystal thin film with a thickness of 300 nm.
制得的Na掺杂p型ZnO晶体薄膜在室温下有优异的电学性能,电阻率为63.8Ωcm,载流子浓度为1.72×1017cm2/Vs,迁移率为0.57cm-3。并且放置两个月后电学性能无明显变化。The prepared Na-doped p-type ZnO crystal film has excellent electrical properties at room temperature, with a resistivity of 63.8Ωcm, a carrier concentration of 1.72×10 17 cm 2 /Vs, and a mobility of 0.57cm -3 . And there is no significant change in electrical performance after two months of storage.
实施例3Example 3
1)取纯度为99.99%的氧化锌和碳酸钠粉末,Na摩尔含量为0.2%,将ZnO和Na2CO3的混合粉末倒入玛瑙球杯中,放在球磨机上进行球磨,球磨的时间为四个小时。球磨结束后,将粉末压制成厚度为3mm,直径为4cm的圆片。然后在600℃预烧结2小时,在1400℃下烧结3小时。1) Take zinc oxide and sodium carbonate powder with a purity of 99.99 % , and the molar content of Na is 0.2%. Pour the mixed powder of ZnO and Na2CO3 into an agate ball cup, and put it on a ball mill for ball milling. The time of ball milling is four hours. After ball milling, the powder was pressed into discs with a thickness of 3 mm and a diameter of 4 cm. Then pre-sinter at 600°C for 2 hours and sinter at 1400°C for 3 hours.
2)以玻璃为衬底,将衬底表面清洗后放入脉冲激光沉积装置的生长室中,生长室真空度抽到5×10-3Pa,然后加热衬底,使衬底温度为700℃,以掺Na2O的ZnO为靶材,调整衬底和靶材的距离为5cm,以纯O2为生长气氛,控制O2压强30pa,激光频率为3Hz,激光工作电压为27 KV,进行生长,生长的时间为60min。生长后在氧气保护气氛下冷却,得到厚度为300nm的Na掺杂p型ZnO晶体薄膜。2) Using glass as the substrate, clean the substrate surface and put it into the growth chamber of the pulsed laser deposition device. The vacuum degree of the growth chamber is pumped to 5×10 -3 Pa, and then the substrate is heated to make the
制得的Na掺杂p型ZnO晶体薄膜在室温下有优异的电学性能,电阻率为49Ωcm,载流子浓度为1.52×1017cm2/Vs,迁移率为0.84cm-3。并且放置两个月后电学性能无明显变化。The prepared Na-doped p-type ZnO crystal film has excellent electrical properties at room temperature, with a resistivity of 49Ωcm, a carrier concentration of 1.52×10 17 cm 2 /Vs, and a mobility of 0.84cm -3 . And there is no significant change in electrical performance after two months of storage.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710156587A CN100582321C (en) | 2007-11-09 | 2007-11-09 | Method for growing Na doping p type ZnO crystal thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710156587A CN100582321C (en) | 2007-11-09 | 2007-11-09 | Method for growing Na doping p type ZnO crystal thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101235536A true CN101235536A (en) | 2008-08-06 |
CN100582321C CN100582321C (en) | 2010-01-20 |
Family
ID=39919429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710156587A Expired - Fee Related CN100582321C (en) | 2007-11-09 | 2007-11-09 | Method for growing Na doping p type ZnO crystal thin film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100582321C (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481817B (en) * | 2008-12-31 | 2010-08-25 | 浙江大学 | Growth method of nonpolar ZnO crystal film |
CN101831701A (en) * | 2010-04-13 | 2010-09-15 | 浙江大学 | Method for growing n-type transparent conducting ZnO crystal thin film by F doping |
CN101671842B (en) * | 2009-10-26 | 2011-07-20 | 浙江大学 | Method for growing Na-N co-doping p-type ZnO crystal film by annealing |
CN102373425A (en) * | 2011-11-03 | 2012-03-14 | 浙江大学 | Method for preparing Na-doped p-type NnO film |
WO2012037729A1 (en) * | 2010-09-25 | 2012-03-29 | Ye Zhizhen | METHOD FOR MANUFACTURING P-TYPE ZnO-BASED MATERIAL |
CN102496578A (en) * | 2011-12-07 | 2012-06-13 | 中国科学院长春光学精密机械与物理研究所 | Method for preparing p-type zinc oxide (ZnO) based thin film in lithium-nitrogen (Li-N) double-acceptor co-doping mode |
CN106400114A (en) * | 2016-09-09 | 2017-02-15 | 昆明理工大学 | Method for preparing non-polar preferred orientation ZnO based multi-crystal sheet |
CN107188218A (en) * | 2017-06-26 | 2017-09-22 | 华南理工大学 | A kind of natrium doping p-type zinc-oxide nano bar material and preparation method and application |
CN108570643A (en) * | 2018-05-18 | 2018-09-25 | 华南师范大学 | A kind of preparation method of Er doping ZnO transparent conductive thin film |
-
2007
- 2007-11-09 CN CN200710156587A patent/CN100582321C/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481817B (en) * | 2008-12-31 | 2010-08-25 | 浙江大学 | Growth method of nonpolar ZnO crystal film |
CN101671842B (en) * | 2009-10-26 | 2011-07-20 | 浙江大学 | Method for growing Na-N co-doping p-type ZnO crystal film by annealing |
CN101831701A (en) * | 2010-04-13 | 2010-09-15 | 浙江大学 | Method for growing n-type transparent conducting ZnO crystal thin film by F doping |
CN103180491B (en) * | 2010-09-25 | 2016-02-17 | 叶志镇 | A kind of preparation method of p-type zno-based material |
WO2012037729A1 (en) * | 2010-09-25 | 2012-03-29 | Ye Zhizhen | METHOD FOR MANUFACTURING P-TYPE ZnO-BASED MATERIAL |
CN103180491A (en) * | 2010-09-25 | 2013-06-26 | 叶志镇 | Method for preparing p-type zno-based material |
CN102373425B (en) * | 2011-11-03 | 2013-04-24 | 浙江大学 | Method for preparing Na-doped p-type NnO film |
CN102373425A (en) * | 2011-11-03 | 2012-03-14 | 浙江大学 | Method for preparing Na-doped p-type NnO film |
CN102496578A (en) * | 2011-12-07 | 2012-06-13 | 中国科学院长春光学精密机械与物理研究所 | Method for preparing p-type zinc oxide (ZnO) based thin film in lithium-nitrogen (Li-N) double-acceptor co-doping mode |
CN106400114A (en) * | 2016-09-09 | 2017-02-15 | 昆明理工大学 | Method for preparing non-polar preferred orientation ZnO based multi-crystal sheet |
CN106400114B (en) * | 2016-09-09 | 2018-10-23 | 昆明理工大学 | A kind of non-polarized preferred orientation zno-based polycrystalline preparation of sections method |
CN107188218A (en) * | 2017-06-26 | 2017-09-22 | 华南理工大学 | A kind of natrium doping p-type zinc-oxide nano bar material and preparation method and application |
CN108570643A (en) * | 2018-05-18 | 2018-09-25 | 华南师范大学 | A kind of preparation method of Er doping ZnO transparent conductive thin film |
Also Published As
Publication number | Publication date |
---|---|
CN100582321C (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101235536A (en) | Na-doped growth method of p-type ZnO crystal film | |
CN100432302C (en) | Sb doped P-type ZnO crystal film and preparation method thereof | |
Guan et al. | Influence of anneal temperature in air on surface morphology and photoluminescence of ZnO thin films | |
CN102586748A (en) | P-type conductive Sb-doped SnO2 thin film and tin oxide homogeneous pn junction containing the thin film and preparation method thereof | |
CN105734491A (en) | BeZnOS compound semiconductor material as well as preparation method and application thereof | |
TW201706230A (en) | Sputtering target and oxide semiconductor film and preparation method thereof | |
CN101603199A (en) | Method for growing p-type ZnO crystal film by co-doping with Li and Na | |
CN101368288B (en) | A kind of manufacturing method of p-type ZnO thin film | |
CN111910158B (en) | Ultra-wide forbidden band p-type SnO2Film and preparation method thereof | |
CN104388898A (en) | MgZnOS quaternary ZnO alloy semi-conductor material and preparation method thereof | |
CN103060757B (en) | Method for Li-doped growth of p-type transparent conductive Ni1-xMgxO crystal film | |
CN100406620C (en) | Li-doped p-Zn1-xMgxO crystal film and method for preparing same | |
CN102226264B (en) | Method for producing ZnSO alloy film with adjustable sulfur-doped growth band gap | |
CN114597269B (en) | Gallium oxide-based deep ultraviolet transparent conductive film and preparation method and application thereof | |
CN101538734B (en) | Method for growing Zn(1-x)MgxO crystal thin film on Si substrate | |
CN101824597B (en) | Method for growing p-type ZnO crystal thin film by Li-F codoping | |
CN112210755B (en) | p-type transparent conductive SnO2Semiconductor film, preparation method and application thereof | |
CN101481817B (en) | Growth method of nonpolar ZnO crystal film | |
CN100537855C (en) | The method of growing p-type Zn1-xMgxO crystal film by Sb doping | |
CN101671842B (en) | Method for growing Na-N co-doping p-type ZnO crystal film by annealing | |
CN101403094A (en) | Method for growth of type n ZnMgO Ga semiconductor film on flexible substrate | |
CN1542915A (en) | p-Zn1-XMgXO crystal film and method for making same | |
CN101319384A (en) | Method for Na-doped growing p type Zn(1-x)MgxO crystal thin film | |
CN1772974A (en) | A Li-N co-doped method for growing p-type ZnO crystal thin films | |
CN103031597A (en) | The method of growing p-ZnO film by Na-Be co-doping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100120 Termination date: 20201109 |