[go: up one dir, main page]

CN101231369B - Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator - Google Patents

Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator Download PDF

Info

Publication number
CN101231369B
CN101231369B CN2008100207020A CN200810020702A CN101231369B CN 101231369 B CN101231369 B CN 101231369B CN 2008100207020 A CN2008100207020 A CN 2008100207020A CN 200810020702 A CN200810020702 A CN 200810020702A CN 101231369 B CN101231369 B CN 101231369B
Authority
CN
China
Prior art keywords
waveguide
magneto
polarization
polarization mode
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100207020A
Other languages
Chinese (zh)
Other versions
CN101231369A (en
Inventor
孙小菡
赵俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2008100207020A priority Critical patent/CN101231369B/en
Publication of CN101231369A publication Critical patent/CN101231369A/en
Application granted granted Critical
Publication of CN101231369B publication Critical patent/CN101231369B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种基于偏振模式分离器的波导型偏振无关光环行器,其特征在于包括第一偏振模式分离器(1)和第二偏振模式分离器(2),两个偏振模式分离器之间设置了相互连接的波导型法拉第旋转镜(3)和半波片(4),所述第一偏振模式分离器(1)和第二偏振模式分离器(2)分别包括第一光功分器(5)、第二光功分器(6)、第一磁光波导(7)、第二磁光波导(8)。本发明的有益效果在于结构简单、容易集成,相对于分离相位调节器而言,大大降低了插入损耗;低插损,高带宽且偏振不敏感,易于和光通信系统集成;有效降低了偏振串音。

Figure 200810020702

The invention discloses a waveguide type polarization-independent optical circulator based on a polarization mode splitter, which is characterized in that it comprises a first polarization mode splitter (1) and a second polarization mode splitter (2). A waveguide-type Faraday rotator mirror (3) and a half-wave plate (4) connected to each other are arranged between them, and the first polarization mode splitter (1) and the second polarization mode splitter (2) respectively include a first optical power splitter device (5), second optical power splitter (6), first magneto-optical waveguide (7), and second magneto-optical waveguide (8). The beneficial effect of the present invention is that the structure is simple and easy to integrate, and compared with the separated phase adjuster, the insertion loss is greatly reduced; the insertion loss is low, the bandwidth is high and the polarization is insensitive, and it is easy to integrate with the optical communication system; the polarization crosstalk is effectively reduced .

Figure 200810020702

Description

基于偏振模式分离器的波导型偏振无关光环形器 Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator

技术领域technical field

本发明涉及一种基于偏振模式分离器的波导型偏振无关光环行器,尤其涉及一种基于马赫-曾德型集成波导偏振模式分离器的光环形器,属于光通信应用领域和集成光学领域。The invention relates to a waveguide-type polarization-independent optical circulator based on a polarization mode separator, in particular to an optical circulator based on a Mach-Zehnder type integrated waveguide polarization mode separator, which belongs to the field of optical communication applications and the field of integrated optics.

背景技术Background technique

磁光材料在外加磁场作用下,会对经过其中的偏振光的偏振态产生影响,即产生法拉第磁光效应。而对于横向构型的磁光波导,在与光传播方向垂直的外加磁场的作用下,TM模正向传播及反向传播的传播常数有所不同,因而会产生非互易相移,利用磁光材料的非互易特性可以制作光环形器,光隔离器等器件。Under the action of an external magnetic field, the magneto-optical material will affect the polarization state of the polarized light passing through it, that is, produce the Faraday magneto-optic effect. For a magneto-optical waveguide with a transverse configuration, under the action of an external magnetic field perpendicular to the direction of light propagation, the propagation constants of the forward and reverse propagation of the TM mode are different, so a non-reciprocal phase shift will occur. The non-reciprocal properties of optical materials can make optical circulators, optical isolators and other devices.

TE-TM偏振模式分离器用以将波导中偏振态垂直的TE(横电场)、TM(横磁场)模式分开,在光纤通信系统和光纤传感系统中扮演重要角色,基于偏振模式分离器可以构成光开关、光隔离器、光环形器、声光可调谐滤波器、滤波器等器件,在WDM(Wavelength Division Multiplexing,波分复用)光网络及相干光检测等各种光通信应用领域中有重要应用。The TE-TM polarization mode separator is used to separate the TE (transverse electric field) and TM (transverse magnetic field) modes with vertical polarization in the waveguide, and plays an important role in optical fiber communication systems and optical fiber sensing systems. Based on polarization mode separators, it can form Optical switches, optical isolators, optical circulators, acousto-optic tunable filters, filters and other devices are widely used in various optical communication applications such as WDM (Wavelength Division Multiplexing) optical networks and coherent optical detection. important application.

目前,已有多种不同结构的TE-TM偏振模式分离器。采用特殊折射率材料玻璃及多层膜的胶合工艺可以制成偏振分束棱镜,对不同偏振光分别进行投射和反射,可以实现偏振束的分离。但偏振分束棱镜构成的偏振束分离器型偏振模式分离器不利于与波导及光通信系统集成,同时,对棱镜及多层膜的胶合工艺要求较高。基于耦合模原理设计的定向耦合器型偏振模式分离器利用两个分支波导的非对称性来实现,在一个分支波导的耦合区覆盖了金属层,有效地改变波导传播常数的实部和虚部,而且对TM模的这种改变远大于TE模,利用覆盖金属层的分支波导对TM模的吸收来抑制TM模的耦合,从而实现TE、TM模的分离。但这种结构需要特殊工艺来减小TM的损耗和偏振串音,并且要求耦合器波导间有很大的间距,不利于集成。Y分支型偏振模式分离器由于分支角较小,不仅加工精度要求较高,而且器件尺寸较大,不利于集成。At present, there are many kinds of TE-TM polarization mode separators with different structures. The gluing process of special refractive index material glass and multi-layer film can be made into a polarization beam splitting prism, which can project and reflect different polarized lights respectively, and can realize the separation of polarized beams. However, the polarizing beam splitter-type polarization mode splitter composed of polarizing beam splitting prisms is not conducive to integration with waveguides and optical communication systems. At the same time, the gluing process of prisms and multilayer films requires high requirements. The directional coupler-type polarization mode separator designed based on the coupled-mode principle is realized by utilizing the asymmetry of the two branch waveguides. The coupling region of one branch waveguide is covered with a metal layer, which effectively changes the real and imaginary parts of the waveguide propagation constant. , and the change to the TM mode is much greater than that of the TE mode. The absorption of the TM mode by the branched waveguide covered with the metal layer is used to suppress the coupling of the TM mode, thereby realizing the separation of the TE and TM modes. However, this structure requires a special process to reduce TM loss and polarization crosstalk, and requires a large distance between the coupler waveguides, which is not conducive to integration. Due to the small branch angle of the Y-branched polarization mode separator, not only the processing precision is high, but also the device size is large, which is not conducive to integration.

光环形器是光通信系统的重要组成部分,在WDM系统中扮演着重要的角色,而波导型光环形器因为低价位和易于集成的特性,成为研究热点。大多数波导型光环形器只工作于TM模,而偏振无关光环形器对输入光的模式无要求,既可以工作于TM模,也可以工作于TE模。Optical circulators are an important part of optical communication systems and play an important role in WDM systems. Waveguide optical circulators have become a research hotspot because of their low price and easy integration. Most waveguide optical circulators only work in TM mode, while polarization-independent optical circulators have no requirement on the mode of the input light, and can work in both TM mode and TE mode.

目前,波导型偏振无关光环形器多基于Y分支和定向耦合器等类型,少数采用光子晶体、闪耀光栅等器件实现。由于Y分支型、定向耦合器型等结构上的特点,器件尺寸较大,不利于光环形器结构的集成。At present, waveguide-type polarization-independent optical circulators are mostly based on Y-branches and directional couplers, and a few are realized by photonic crystals, blazed gratings and other devices. Due to the structural characteristics of the Y branch type and the directional coupler type, the size of the device is large, which is not conducive to the integration of the optical circulator structure.

磁光材料在外加磁场作用下,会对经过其中的偏振光的偏振态产生影响,即产生法拉第磁光效应。而对于横向构型的磁光波导,在与光传播方向垂直的外加磁场的作用下,TM模正向传播及反向传播的传播常数有所不同,因而会产生非互易相移,而对TE模则无此影响。Under the action of an external magnetic field, the magneto-optical material will affect the polarization state of the polarized light passing through it, that is, produce the Faraday magneto-optic effect. For the magneto-optical waveguide with transverse configuration, under the action of an external magnetic field perpendicular to the direction of light propagation, the propagation constants of the forward propagation and reverse propagation of the TM mode are different, so a non-reciprocal phase shift will occur, while for TE mode has no such effect.

采用两个光功分器及夹在光功分器之间的两个相移臂可构成马赫-曾德型偏振模式分离器,目前,功分器多采用定向耦合器来实现,但不利于集成。多模干涉(MMI)耦合器因为其结构简单,低插损,高带宽和偏振不敏感的特性获得了越来越多的关注,其结构紧凑的优点在集成光学中有广泛的应用。Two optical power splitters and two phase shift arms sandwiched between the optical power splitters can form a Mach-Zehnder type polarization mode splitter. At present, power splitters are mostly realized by directional couplers, but it is not conducive to integrated. Multimode interference (MMI) couplers have attracted more and more attention because of their simple structure, low insertion loss, high bandwidth and polarization insensitivity, and their compact structure has a wide range of applications in integrated optics.

发明内容Contents of the invention

本发明针对上述问题提供一种基于偏振模式分离器的波导型偏振无关光环行器,以马赫-曾德型集成波导偏振模式分离器为基础,结合法拉第旋转镜(FR)及半波片(HW)来实现。The present invention provides a waveguide-type polarization-independent optical circulator based on a polarization mode separator to address the above problems, based on a Mach-Zehnder type integrated waveguide polarization mode separator, combined with a Faraday rotator (FR) and a half-wave plate (HW )to fulfill.

本发明采用如下技术方案:The present invention adopts following technical scheme:

一种基于偏振模式分离器的波导型偏振无关光环行器,其特征在于包括第一偏振模式分离器和第二偏振模式分离器,两个偏振模式分离器之间设置了相互连接的波导型法拉第旋转镜和半波片,所述第一偏振模式分离器和第二偏振模式分离器分别包括第一光功分器、第二光功分器、第一磁光波导和第二磁光波导,第一光功分器的两个输入端口分别与其第一输入波导和第二输入波导连接,用于输入正向传输光或输出反向传输光,所述第一磁光波导、第二磁光波导采用横向构型磁光波导,所述第一磁光波导构成第一相位调节单元,所述第二磁光波导构成第二相位调节单元,第一相位调节单元和第二相位调节单元对TM模产生的相位移相差π,对TE模产生的相位移相等,第一光功分器的两个输出端口分别通过第一相位调节单元和第二相位调节单元与第二光功分器的两个输入端口连接,第二光功分器的两个输出端口分别与其第一输出波导和第二输出波导连接,用于输出正向传输光或输入反向传输光。A waveguide type polarization-independent optical circulator based on a polarization mode splitter, characterized in that it includes a first polarization mode splitter and a second polarization mode splitter, and a waveguide type Faraday connected to each other is arranged between the two polarization mode splitters. A rotating mirror and a half-wave plate, the first polarization mode splitter and the second polarization mode splitter respectively include a first optical power splitter, a second optical power splitter, a first magneto-optical waveguide and a second magneto-optical waveguide, The two input ports of the first optical power splitter are respectively connected to the first input waveguide and the second input waveguide for inputting the forward transmission light or outputting the reverse transmission light, the first magneto-optical waveguide, the second magneto-optic waveguide The waveguide adopts a magneto-optical waveguide with a transverse configuration, the first magneto-optical waveguide constitutes a first phase adjustment unit, and the second magneto-optic waveguide constitutes a second phase adjustment unit, and the first phase adjustment unit and the second phase adjustment unit are a pair of TM The phase shifts generated by the TE mode are different by π, and the phase shifts generated by the TE mode are equal. The two output ports of the first optical power splitter pass through the first phase adjustment unit and the second phase adjustment unit and the two ports of the second optical power splitter respectively. The two output ports of the second optical power splitter are respectively connected to the first output waveguide and the second output waveguide for outputting the forward transmission light or inputting the reverse transmission light.

优选地,所述第一光功分器、第二光功分器采用多模干涉仪。Preferably, the first optical power splitter and the second optical power splitter use multimode interferometers.

优选地,所述第一磁光波导、第二磁光波导分别采用在相反方向的磁场作用下对正向传输光的TM模分别产生-π/2相位移、π/2相位移,对反向传输光的TM模分别产生π/2相位移、-π/2相位移,而对正、反向传输光的TE模均产生相等相位移的横向构型磁光波导。Preferably, the first magneto-optical waveguide and the second magneto-optical waveguide respectively adopt -π/2 phase shift and π/2 phase shift for the TM mode of the forward propagating light under the action of the magnetic field in the opposite direction, respectively. Transverse-configuration magneto-optical waveguides that generate π/2 phase shifts and -π/2 phase shifts respectively for the TM modes that transmit light, and produce equal phase shifts for the TE modes that transmit light in forward and reverse directions.

优选地,所述波导型法拉第旋转镜采用能使相位顺时针偏转π/4的非互易波导型法拉第旋转镜,所述半波片采用慢轴方向与水平方向夹角为π/8的半波片。Preferably, the waveguide type Faraday rotating mirror adopts a non-reciprocal waveguide type Faraday rotating mirror capable of shifting the phase clockwise by π/4, and the half-wave plate adopts a half wave plate whose angle between the slow axis direction and the horizontal direction is π/8. wave plate.

本发明采用两个马赫-曾德型集成波导偏振模式分离器结合波导型法拉第旋转镜及半波片来实现波导型偏振无关光环形器。其中,马赫-曾德型集成波导偏振模式分离器采用两个光功分器、两个非互易横向构型磁光波导构成。TM模的相位在与光传播方向垂直的磁场作用下产生非互易相位变化,结合波导自身长度产生的互易相位变化,从而与TE模在不同输出端口干涉相长,最终实现模式分离。The invention adopts two Mach-Zehnder type integrated waveguide polarization mode separators in combination with a waveguide type Faraday rotating mirror and a half-wave plate to realize a waveguide type polarization-independent optical circulator. Among them, the Mach-Zehnder integrated waveguide polarization mode separator is composed of two optical power splitters and two non-reciprocal transverse configuration magneto-optical waveguides. The phase of the TM mode produces a non-reciprocal phase change under the action of a magnetic field perpendicular to the direction of light propagation. Combined with the reciprocal phase change produced by the length of the waveguide itself, it interferes with the TE mode at different output ports and achieves mode separation.

对于横向构型的磁光波导,外加磁场与光传播方向垂直,对应的介电张量为:For a magneto-optical waveguide with a transverse configuration, the applied magnetic field is perpendicular to the direction of light propagation, and the corresponding dielectric tensor is:

ϵϵ ^^ == ϵϵ xxxx 00 iϵiϵ xzxz 00 ϵϵ yyyy 00 -- iϵiϵ xzxz 00 ϵϵ zzzz

介电张量的非对角元会耦合电磁场在x、y、z轴上的分量,由于εxy、εyz都为0,只有εxz存在,并耦合电磁场在x轴及z轴上的分量,从而使沿x轴方向的TM模的相位发生改变,而对沿y轴方向的TE模不产生影响。εxz与法拉第旋转角θF之间的关系为:εxz=2nθF/k0,其中,n为薄膜折射率,k0为真空中波数。εxz会导致TM模在正、反向传输时,传播常数有所不同,从而产生非互易相移

Figure G2008100207020D00032
,其中L为TM模在磁光波导中的传输长度,Δβ为传播常数的差,显然,在正向传输和反向传输时,TM模会产生大小相等,符号相反的相位改变量。The off-diagonal elements of the dielectric tensor will couple the components of the electromagnetic field on the x, y, and z axes. Since εxy and εyz are both 0, only εxz exists, and couple the components of the electromagnetic field on the x and z axes, so that The phase of the TM mode along the x-axis direction changes without affecting the TE mode along the y-axis direction. The relationship between εxz and the Faraday rotation angle θ F is: εxz=2nθ F /k 0 , where n is the refractive index of the film, and k 0 is the wave number in vacuum. εxz will cause the propagation constants of the TM mode to be different during forward and reverse transmission, resulting in a non-reciprocal phase shift
Figure G2008100207020D00032
, where L is the transmission length of the TM mode in the magneto-optical waveguide, and Δβ is the difference of the propagation constant. Obviously, the TM mode will produce phase changes of equal magnitude and opposite sign during forward and reverse transmission.

本发明的有益效果在于:The beneficial effects of the present invention are:

1.本发明采用两个马赫-曾德型集成波导偏振模式分离器结合波导型法拉第旋转镜及半波片来实现波导型偏振无关光环形器,其中,采用两个光功分器、两个非互易横向构型磁光波导构成的马赫-曾德型4端口偏振模式分离器,可以实现TE、TM模的分离及合成,从而容易构成4端口环形器,结构简单。偏振模式分离器采用易于与半导体器件集成的磁光材料实现相位的调节,容易集成,相对于分离相位调节器而言,大大降低了插入损耗。1. The present invention adopts two Mach-Zehnder type integrated waveguide polarization mode splitters to combine waveguide type Faraday rotating mirror and half-wave plate to realize waveguide type polarization-independent optical circulator, wherein, adopt two optical power splitters, two The Mach-Zehnder type 4-port polarization mode separator composed of non-reciprocal transverse magneto-optical waveguides can realize the separation and synthesis of TE and TM modes, thereby easily forming a 4-port circulator with a simple structure. The polarization mode splitter adopts magneto-optical materials that are easy to integrate with semiconductor devices to realize phase adjustment, and is easy to integrate. Compared with the separated phase adjuster, the insertion loss is greatly reduced.

2.本发明中采用多模干涉仪作为马赫-曾德型集成波导偏振模式分离器的功分器,结构简单,低插损,高带宽且偏振不敏感,易于和光通信系统集成。2. In the present invention, a multimode interferometer is used as the power divider of the Mach-Zehnder type integrated waveguide polarization mode separator, which has simple structure, low insertion loss, high bandwidth and polarization insensitivity, and is easy to integrate with optical communication systems.

3.本发明采用的偏振模式分离器避免了使用3dB耦合器、Y分支等结构所带来的体积大、分支角不容易控制等缺点,体积小,容易制造。3. The polarization mode separator adopted in the present invention avoids the disadvantages of large volume and difficult control of branch angle caused by the use of 3dB coupler, Y branch and other structures, and is small in size and easy to manufacture.

4.本发明采用的偏振模式分离器避免了采用金属覆盖层结构改变TM模的耦合状态所带来的制造工艺上的困难,降低了偏振串音。4. The polarization mode separator adopted in the present invention avoids the difficulties in the manufacturing process caused by changing the coupling state of the TM mode by using a metal covering layer structure, and reduces polarization crosstalk.

附图说明Description of drawings

下面结合附图和具体实施方式对本发明作进一步的阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings and specific embodiments.

图1:本发明基于偏振模式分离器的波导型偏振无关光环行器结构示意图;Figure 1: Schematic diagram of the structure of the waveguide-type polarization-independent optical circulator based on the polarization mode separator of the present invention;

图2:本发明采用的马赫-曾德型集成波导偏振模式分离器结构示意图。Figure 2: Schematic diagram of the structure of the Mach-Zehnder integrated waveguide polarization mode separator used in the present invention.

具体实施方式Detailed ways

如图1所示,一种基于偏振模式分离器的波导型偏振无关光环行器,包括第一偏振模式分离器1和第二偏振模式分离器2,两个偏振模式分离器之间设置了相互连接的波导型法拉第旋转镜3和半波片4。第一偏振模式分离器1和第二偏振模式分离器2采用马赫-曾德型集成波导偏振模式分离器。波导型法拉第旋转镜3采用能使相位顺时针偏转π/4的非互易波导型法拉第旋转镜,半波片4采用慢轴方向与水平方向夹角为π/8的半波片。第一偏振模式分离器1的两输出端口与波导型法拉第旋转镜3的两输入端口相连,波导型法拉第旋转镜3的两输出端口与半波片4的两输入端口相连,半波片4的两输出端口与第二偏振模式分离器2的两输入端口相连。As shown in Figure 1, a waveguide-type polarization-independent optical circulator based on polarization mode separators includes a first polarization mode separator 1 and a second polarization mode separator 2, and mutual Connected waveguide type Faraday rotating mirror 3 and half-wave plate 4. The first polarization mode separator 1 and the second polarization mode separator 2 adopt Mach-Zehnder integrated waveguide polarization mode separators. The waveguide Faraday rotating mirror 3 adopts a non-reciprocal waveguide Faraday rotating mirror capable of deflecting the phase clockwise by π/4, and the half-wave plate 4 adopts a half-wave plate whose angle between the slow axis direction and the horizontal direction is π/8. The two output ports of the first polarization mode separator 1 are connected with the two input ports of the waveguide type Faraday rotating mirror 3, and the two output ports of the waveguide type Faraday rotating mirror 3 are connected with the two input ports of the half-wave plate 4, and the two input ports of the half-wave plate 4 are connected. The two output ports are connected with the two input ports of the second polarization mode separator 2 .

基于偏振模式分离器的波导型偏振无关光环行器的工作原理如下:The working principle of the waveguide polarization-independent optical circulator based on the polarization mode separator is as follows:

对于正向传输光(按图1中从左向右的方向定义),光从第一偏振模式分离器1的输入端口输入,经过第一偏振模式分离器1以后分成TM、TE模,顺次经过波导型法拉第旋转镜3及半波片4后相互转换,TM模变成TE模,而TE模变成TM模,再经过第二偏振模式分离器2耦合后输出,实现交叉态传输。即,若光从第一偏振模式分离器1的端口101输入,则从第二偏振模式分离器2的端口202输出,若光从第一偏振模式分离器1的端口102输入,则从第二偏振模式分离器2的端口201输出。For forward transmission light (defined according to the direction from left to right in Figure 1), the light is input from the input port of the first polarization mode separator 1, and after passing through the first polarization mode separator 1, it is divided into TM and TE modes, sequentially After the waveguide-type Faraday rotating mirror 3 and the half-wave plate 4 are converted to each other, the TM mode becomes the TE mode, and the TE mode becomes the TM mode, and then output after being coupled by the second polarization mode separator 2 to realize cross-state transmission. That is, if the light is input from the port 101 of the first polarization mode splitter 1, it will be output from the port 202 of the second polarization mode splitter 2, if the light is input from the port 102 of the first polarization mode splitter 1, then it will be output from the second Port 201 output of polarization mode separator 2.

对于反向传输光(按图1中从右向左的方向定义),光从第二偏振模式分离器2的输入端口输入,经过第二偏振模式分离器2以后分成TM、TE模,顺次经过半波片4及波导型法拉第旋转镜3后,TM模、TE模保持不变,再经过第一偏振模式分离器1耦合后输出,实现直通态传输。即,若光从第二偏振模式分离器2的端口201输入,则从第一偏振模式分离器1的端口101输出,若光从第二偏振模式分离器2的端口202输入,则从第一偏振模式分离器1的端口102输出。For the reverse propagating light (defined by the direction from right to left in Fig. 1), the light is input from the input port of the second polarization mode splitter 2, and after passing through the second polarization mode splitter 2, it is divided into TM and TE modes, sequentially After passing through the half-wave plate 4 and the waveguide-type Faraday rotating mirror 3, the TM mode and the TE mode remain unchanged, and then output after being coupled by the first polarization mode separator 1 to realize straight-through transmission. That is, if the light is input from the port 201 of the second polarization mode splitter 2, it will be output from the port 101 of the first polarization mode splitter 1, and if the light is input from the port 202 of the second polarization mode splitter 2, then it will be output from the first Port 102 of the polarization mode separator 1 is output.

如图2所示为本发明采用的马赫-曾德型集成波导偏振模式分离器结构示意图,包括第一光功分器5、第二光功分器6、第一磁光波导7和第二磁光波导8。第一光功分器5的两个输入端口分别与其第一输入波导501和第二输入波导502连接,用于输入正向传输光或输出反向传输光。第一磁光波导7、第二磁光波导8采用横向构型磁光波导,第一磁光波导7构成第一相位调节单元,第二磁光波导8构成第二相位调节单元。第一光功分器5的两个输出端口分别通过第一相位调节单元和第二相位调节单元与第二光功分器6的两个输入端口连接,第二光功分器6的两个输出端口分别与其第一输出波导601和第二输出波导602连接,用于输出正向传输光或输入反向传输光。通过选择合适的磁光波导长度,可使第一相位调节单元和第二相位调节单元对TM模产生的相位移相差π,对TE模产生的相位移相等,使TM模在该偏振模式分离器中实现直通态传输,而TE模实现交叉态传输,从而实现TM模和TE模的分离。As shown in Figure 2, it is a schematic structural diagram of the Mach-Zehnder type integrated waveguide polarization mode separator adopted in the present invention, including a first optical power splitter 5, a second optical power splitter 6, a first magneto-optical waveguide 7 and a second optical power splitter. Magneto-optical waveguides8. The two input ports of the first optical power splitter 5 are connected to the first input waveguide 501 and the second input waveguide 502 respectively, and are used for inputting forward transmission light or outputting reverse transmission light. The first magneto-optical waveguide 7 and the second magneto-optical waveguide 8 adopt transverse configuration magneto-optical waveguides, the first magneto-optical waveguide 7 constitutes the first phase adjustment unit, and the second magneto-optic waveguide 8 constitutes the second phase adjustment unit. The two output ports of the first optical power splitter 5 are respectively connected to the two input ports of the second optical power splitter 6 through the first phase adjustment unit and the second phase adjustment unit, and the two output ports of the second optical power splitter 6 The output ports are connected to the first output waveguide 601 and the second output waveguide 602 respectively, and are used for outputting forward propagating light or inputting reverse propagating light. By selecting the appropriate length of the magneto-optical waveguide, the phase shifts produced by the first phase adjustment unit and the second phase adjustment unit to the TM mode are different by π, and the phase shifts to the TE mode are equal, so that the TM mode is in the polarization mode separator The straight-through state transmission is realized in the medium, and the cross-state transmission is realized in the TE mode, thereby realizing the separation of the TM mode and the TE mode.

更具体地,本实施方式采用如下连接方式:第一光功分器5的两个输出端口分别与第一磁光波导7、第二磁光波导8的输入端口连接,第一磁光波导7、第二磁光波导8的输出端口分别与第二光功分器6的两个输入端口连接。More specifically, this embodiment adopts the following connection mode: the two output ports of the first optical power splitter 5 are respectively connected to the input ports of the first magneto-optical waveguide 7 and the second magneto-optical waveguide 8, and the first magneto-optical waveguide 7 1. The output ports of the second magneto-optical waveguide 8 are respectively connected to the two input ports of the second optical power splitter 6 .

本实施方式中,第一光功分器5、第二光功分器6均采用多模干涉仪。通过选择合适的磁光波导长度,第一磁光波导7、第二磁光波导8在相反方向的磁场作用下对正向传输光的TM模分别产生-π/2相位移、π/2相位移,对反向传输光的TM模分别产生π/2相位移、-π/2相位移,而对正、反向传输光的TE模均产生相等相位移的横向构型磁光波导。即:正向传输光的TM模在经过第一磁光波导7、第二磁光波导8时分别产生-π/2相位移、π/2相位移,而其TE模在经过第一磁光波导7、第二磁光波导8时产生相等相位移;反向传输光的TM模在经过第一磁光波导7、第二磁光波导8时分别产生π/2相位移、-π/2相位移,而其TE模在经过第一磁光波导7、第二磁光波导8时产生相等相位移。In this embodiment, both the first optical power splitter 5 and the second optical power splitter 6 use multi-mode interferometers. By selecting the appropriate length of the magneto-optical waveguide, the first magneto-optic waveguide 7 and the second magneto-optic waveguide 8 respectively produce -π/2 phase shift and π/2 phase shift to the TM mode of the forwardly propagating light under the action of the magnetic field in the opposite direction. Transverse configuration magneto-optical waveguide that produces π/2 phase shift and -π/2 phase shift for the TM mode of the reverse propagating light, respectively, and produces equal phase shifts for the TE mode of the forward and reverse propagating light. That is: the TM mode of forward propagating light produces -π/2 phase shift and π/2 phase shift when passing through the first magneto-optical waveguide 7 and the second magneto-optical waveguide 8, while its TE mode passes through the first magneto-optical waveguide The waveguide 7 and the second magneto-optical waveguide 8 produce equal phase shifts; the TM mode of the reverse propagating light produces a phase shift of π/2 and -π/2 respectively when passing through the first magneto-optic waveguide 7 and the second magneto-optic waveguide 8 phase shift, and its TE mode produces equal phase shift when passing through the first magneto-optical waveguide 7 and the second magneto-optic waveguide 8 .

该偏振模式分离器的工作原理如下:The working principle of this polarization mode separator is as follows:

对于正向传输光(按图2中从左向右的方向定义),第一磁光波导7在外加磁场的作用下使TM模产生-π/2相位移,第二磁光波导8在相反方向的外加磁场作用下使TM模产生π/2相位移,则第一磁光波导7构成的第一相位调节单元使TM模改变的相位大小为-π/2,第二磁光波导8构成的第二相位调节单元使TM模改变的相位大小为π/2,两个相位调节单元对于TM模所改变的相位大小相差π,因此TM模在第二光功分器6处实现直通态传输。横向构型磁光波导对TE模相位不产生非互易相移,两个相位调节单元对于TE模所改变的相位大小相等,在第二光功分器6处实现交叉态传输。因此,若光从第一光功分器5的端口501输入,则TM模从第二光功分器6的端口601输出,TE模从第二光功分器6的端口602输出;若光从第一光功分器5的端口502输入,则TM模从第二光功分器6的端口602输出,TE模从端口601输出。For forward light (defined from left to right in Fig. 2), the first magneto-optical waveguide 7 makes the TM mode produce a -π/2 phase shift under the action of an external magnetic field, and the second magneto-optic waveguide 8 is in the opposite direction. Under the action of an applied magnetic field in the direction, the TM mode produces a phase shift of π/2, then the first phase adjustment unit formed by the first magneto-optical waveguide 7 makes the phase size of the TM mode change to be -π/2, and the second magneto-optical waveguide 8 constitutes The second phase adjustment unit makes the phase size of the TM mode change be π/2, and the phase size changed by the two phase adjustment units for the TM mode differs by π, so the TM mode realizes straight-through state transmission at the second optical power splitter 6 . The transverse configuration magneto-optical waveguide does not produce non-reciprocal phase shift to the phase of TE mode, the phases changed by the two phase adjustment units for TE mode are equal, and the cross-state transmission is realized at the second optical power splitter 6 . Therefore, if the light is input from the port 501 of the first optical power splitter 5, then the TM mode is output from the port 601 of the second optical power splitter 6, and the TE mode is output from the port 602 of the second optical power splitter 6; Input from the port 502 of the first optical power splitter 5 , the TM mode is output from the port 602 of the second optical power splitter 6 , and the TE mode is output from the port 601 .

对于反向传输光(按图2中从右向左的方向定义),第一磁光波导7在外加磁场的作用下使TM模产生π/2相位移,第二磁光波导8在相反方向的外加磁场作用下使TM模产生-π/2相位移,则第一磁光波导7构成的第一相位调节单元和第二磁光波导8构成的第二相位调节单元对于TM模所改变的相位大小相差同样为π,因此TM模在第一光功分器5处实现直通态传输。横向构型磁光波导对TE模相位不产生非互易相移,两个相位调节单元对于TE模所改变的相位大小相等,在第一光功分器5处实现交叉态传输。因此,若光从第二光功分器6的端口601输入,则TM模从第一光功分器5的端口501输出,TE模从第一光功分器5的端口502输出;若光从第二光功分器6的端口602输入,则TM模从第一光功分器5的端口502输出,TE模从端口501输出。For the reverse propagating light (defined by the direction from right to left in Fig. 2), the first magneto-optical waveguide 7 makes the TM mode produce π/2 phase shift under the effect of the applied magnetic field, and the second magneto-optic waveguide 8 in the opposite direction Under the action of an applied magnetic field, the TM mode produces a -π/2 phase shift, then the first phase adjustment unit formed by the first magneto-optical waveguide 7 and the second phase adjustment unit formed by the second magneto-optical waveguide 8 will change the TM mode The phase difference is also π, so the TM mode realizes straight-through state transmission at the first optical power splitter 5 . The transverse configuration magneto-optical waveguide does not produce non-reciprocal phase shift to the phase of TE mode, the phases changed by the two phase adjustment units for TE mode are equal, and the cross state transmission is realized at the first optical power splitter 5 . Therefore, if the light is input from the port 601 of the second optical power splitter 6, the TM mode is output from the port 501 of the first optical power splitter 5, and the TE mode is output from the port 502 of the first optical power splitter 5; Input from the port 602 of the second optical power splitter 6, the TM mode is output from the port 502 of the first optical power splitter 5, and the TE mode is output from the port 501.

Claims (3)

1. waveguide type polarization irrelevant optical circulator based on the polarization mode separation vessel, it is characterized in that comprising the first polarization mode separation vessel (1) and the second polarization mode separation vessel (2), be provided with interconnective waveguide type faraday rotation mirror (3) and half-wave plate (4) between two polarization mode separation vessels, the described first polarization mode separation vessel (1) and the second polarization mode separation vessel (2) comprise first optical power distributor (5) respectively, second optical power distributor (6), first magneto-optic waveguide (7) and second magneto-optic waveguide (8), two input ports of first optical power distributor (5) are connected with second input waveguide (502) with its first input waveguide (501) respectively, be used to import forward transmitted light or output reverse transfer light, described first magneto-optic waveguide (7), the transverse configurations magneto-optic waveguide is adopted in second magneto-optic waveguide (8), described first magneto-optic waveguide (7) constitutes first phase adjustment unit, described second magneto-optic waveguide (8) constitutes second phase adjustment unit, the phase shift phase difference of pi that first phase adjustment unit and second phase adjustment unit produce the TM mould, the phase shift that the TE mould is produced equates, two output ports of first optical power distributor (5) are connected with two input ports of second optical power distributor (6) with second phase adjustment unit by first phase adjustment unit respectively, two output ports of second optical power distributor (6) are connected with second output waveguide (602) with its first output waveguide (601) respectively, be used to export forward transmitted light or input reverse transfer light, described first optical power distributor (5), second optical power distributor (6) adopts the multiple-mode interfence instrument.
2. the waveguide type polarization irrelevant optical circulator based on the polarization mode separation vessel as claimed in claim 1, it is characterized in that described first magneto-optic waveguide (7), second magneto-optic waveguide (8) adopt respectively that the TM mould to forward transmission light produces respectively under in the opposite direction the action of a magnetic field-pi/2 phase moves, pi/2 phase moves, to the TM mould of reverse transfer light produce respectively pi/2 phase move ,-pi/2 phase moves, and align, the TE mould of reverse transfer light all produces the transverse configurations magneto-optic waveguide that equal phase is moved.
3. the waveguide type polarization irrelevant optical circulator based on the polarization mode separation vessel as claimed in claim 1, it is characterized in that described waveguide type faraday rotation mirror (3) adopts the nonreciprocal waveguide type faraday rotation mirror that can make the clockwise deflection π of phase place/4, it is the half-wave plate of π/8 that described half-wave plate adopts slow-axis direction and horizontal direction angle.
CN2008100207020A 2008-02-22 2008-02-22 Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator Expired - Fee Related CN101231369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100207020A CN101231369B (en) 2008-02-22 2008-02-22 Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100207020A CN101231369B (en) 2008-02-22 2008-02-22 Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator

Publications (2)

Publication Number Publication Date
CN101231369A CN101231369A (en) 2008-07-30
CN101231369B true CN101231369B (en) 2010-06-02

Family

ID=39897989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100207020A Expired - Fee Related CN101231369B (en) 2008-02-22 2008-02-22 Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator

Country Status (1)

Country Link
CN (1) CN101231369B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339922B1 (en) 2016-12-23 2023-07-26 Huawei Technologies Research & Development Belgium NV Optical chip and method for coupling light
CN109379143B (en) * 2018-09-04 2020-09-15 武汉光迅科技股份有限公司 Wavelength tunable light receiving component
CN110007314A (en) * 2019-04-04 2019-07-12 深圳市速腾聚创科技有限公司 Light beam splitting die group, laser radar system and its control method
CN212905793U (en) * 2020-07-29 2021-04-06 武汉光迅科技股份有限公司 Integrated optical circulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235570A (en) * 1989-03-06 1993-08-10 Eastman Kodak Company Magneto-optic readout method and apparatus using polarization switching of readout beam
US6075596A (en) * 1998-05-19 2000-06-13 E-Tek Dynamics, Inc. Low cost fiber optic circulator
CN1651950A (en) * 2004-01-26 2005-08-10 林克斯光化网络公司 High-tolerance broadband-optical switch in planar lightwave circuits
CN1731149A (en) * 2005-08-11 2006-02-08 浙江大学 A Mach-Zehnder Interferometer Sensor Based on Asymmetric Interference Arm
CN1828349A (en) * 2006-04-10 2006-09-06 浙江大学 Waveguide Nonreciprocal Optical Beamsplitter
CN101126827A (en) * 2007-10-09 2008-02-20 浙江大学 Optical Isolator Based on MZ Interference Structure Assisted by Resonant Ring
CN201159780Y (en) * 2008-02-22 2008-12-03 东南大学 Mach-Zehnder Multimode Interferometric Polarization-Independent Optical Circulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235570A (en) * 1989-03-06 1993-08-10 Eastman Kodak Company Magneto-optic readout method and apparatus using polarization switching of readout beam
US6075596A (en) * 1998-05-19 2000-06-13 E-Tek Dynamics, Inc. Low cost fiber optic circulator
CN1651950A (en) * 2004-01-26 2005-08-10 林克斯光化网络公司 High-tolerance broadband-optical switch in planar lightwave circuits
CN1731149A (en) * 2005-08-11 2006-02-08 浙江大学 A Mach-Zehnder Interferometer Sensor Based on Asymmetric Interference Arm
CN1828349A (en) * 2006-04-10 2006-09-06 浙江大学 Waveguide Nonreciprocal Optical Beamsplitter
CN101126827A (en) * 2007-10-09 2008-02-20 浙江大学 Optical Isolator Based on MZ Interference Structure Assisted by Resonant Ring
CN201159780Y (en) * 2008-02-22 2008-12-03 东南大学 Mach-Zehnder Multimode Interferometric Polarization-Independent Optical Circulator

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
关铁梁,何钰泉.偏振无关型光环行器的研究.中国激光11 4.1984,11(4),第212-214页.
关铁梁,何钰泉.偏振无关型光环行器的研究.中国激光11 4.1984,11(4),第212-214页. *
刘瑞斌 等.光纤通信中的偏振无关光环行器.长春光学精密机械学院学报24 4.2001,24(4),第48-50页.
刘瑞斌 等.光纤通信中的偏振无关光环行器.长春光学精密机械学院学报24 4.2001,24(4),第48-50页. *
田燕宁 等.多功能光环行器结构与特性分析.光电子 激光15 12.2004,15(12),第1389-1393页.
田燕宁 等.多功能光环行器结构与特性分析.光电子 激光15 12.2004,15(12),第1389-1393页. *
阮银兰 等.高隔离度偏振无关光环行器.光通信研究 3.1998,(3),第54-56页.
阮银兰 等.高隔离度偏振无关光环行器.光通信研究 3.1998,(3),第54-56页. *
陆蓉.一种四端口高隔离度光环行器的特性分析.西安邮电学院学报11 3.2006,11(3),第46-49页.
陆蓉.一种四端口高隔离度光环行器的特性分析.西安邮电学院学报11 3.2006,11(3),第46-49页. *

Also Published As

Publication number Publication date
CN101231369A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US8923660B2 (en) System and method for an optical phase shifter
Dai et al. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction
US4998793A (en) Adiabatic polarization manipulating device
Eldada Advances in telecom and datacom optical components
CN101672987B (en) Optical isolator, optical add/drop multiplexer and optical combiner
CA2825540C (en) Waveguide-type polarization beam splitter exhibiting reduced temperature-related wavelength dependent variation of the polarization extinction ratio
Xu et al. Methods and applications of on-chip beam splitting: A review
CN103091869B (en) Integrated coherent light communication electrooptical modulator structure
JP2012058696A (en) Waveguide type optical device and dp-qpsk type ln optical modulator
CN201159780Y (en) Mach-Zehnder Multimode Interferometric Polarization-Independent Optical Circulator
JP2724098B2 (en) Optical wavelength filter device
CN111399118A (en) An integrated polarizing beam splitter based on thin-film lithium niobate waveguide
CN101231369B (en) Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator
EP0848278B1 (en) Optical circulator
Saber et al. Integrated polarisation handling devices
Mehrabi et al. Silicon-based dual-mode polarization beam splitter for hybrid mode/polarization-division-multiplexed systems
CN104317071B (en) Graphene-based planar optical waveguide polarization beam splitter
JPH04259801A (en) mach zehnder interferometer
CN108873176B (en) Compact three-way wavelength division multiplexing/demultiplexing device and implementation method
CN108761648B (en) A Hybrid Integrated Three-Port Optical Circulator
Bai et al. O-band reconfigurable silicon polarization rotator
CN211454119U (en) Polarization beam splitter of silicon-based multimode interferometer
Shahwar et al. Polarization management in silicon photonics
CN1258100C (en) NZ external modulator based on microoptical and planar waveguide technique
Shuhrawardy et al. Reconfigurable Three-Mode Converter for Flexible Mode Division Multiplexing Optical Networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100602

CF01 Termination of patent right due to non-payment of annual fee