CN101231266A - A detection system for an electromagnetic non-destructive testing probe - Google Patents
A detection system for an electromagnetic non-destructive testing probe Download PDFInfo
- Publication number
- CN101231266A CN101231266A CNA2008100572753A CN200810057275A CN101231266A CN 101231266 A CN101231266 A CN 101231266A CN A2008100572753 A CNA2008100572753 A CN A2008100572753A CN 200810057275 A CN200810057275 A CN 200810057275A CN 101231266 A CN101231266 A CN 101231266A
- Authority
- CN
- China
- Prior art keywords
- detection
- signal
- unit
- signal processing
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 title claims description 115
- 238000009659 non-destructive testing Methods 0.000 title claims description 22
- 230000005291 magnetic effect Effects 0.000 claims abstract description 75
- 238000012545 processing Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 9
- 230000005284 excitation Effects 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 16
- 230000003750 conditioning effect Effects 0.000 claims description 12
- 230000001143 conditioned effect Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 abstract description 4
- 230000005307 ferromagnetism Effects 0.000 abstract 2
- 238000012360 testing method Methods 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 9
- 230000005672 electromagnetic field Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电磁无损检测探头的检测系统,尤其涉及一种具有涡流检测、漏磁检测与磁记忆检测功能的电磁无损检测探头的检测系统。The invention relates to a detection system of an electromagnetic non-destructive detection probe, in particular to a detection system of an electromagnetic non-destructive detection probe with the functions of eddy current detection, magnetic flux leakage detection and magnetic memory detection.
背景技术Background technique
随着质量监控的要求越来越严格,对无损检测技术也提出了更高的要求。无损检测技术能反映部门、行业、地区甚至国家整体工业技术水平,能带来明显的效益,在工业发达国家,无损检测已成为与设计、材料、制造(工艺)并列的四大关键技术,对机械、石化、航空、航天、汽车、压力容器、铁路、道路、核工业等诸多相关行业和技术领域的进步起重要作用。As the requirements for quality monitoring become more and more stringent, higher requirements are also put forward for non-destructive testing technology. Non-destructive testing technology can reflect the overall industrial technology level of departments, industries, regions and even countries, and can bring obvious benefits. In industrially developed countries, non-destructive testing has become the four key technologies alongside design, materials, and manufacturing (process). Advances in machinery, petrochemicals, aviation, aerospace, automobiles, pressure vessels, railways, roads, nuclear industries and many other related industries and technical fields play an important role.
涡流检测、漏磁检测和磁记忆检测均为基于电磁场的无损检测方式。传统的涡流方法在大面积扫描和深层缺陷检测两方面都存在问题,对于高分辨力的大面积涡流检测,阵列涡流探头比传统的机械式扫描探头更具优势。漏磁检测是对磁化后的铁磁性材料表面及近表面的检测,在缺陷处形成漏磁场,通过对漏磁场的检测就可以研究和分析缺陷。磁记忆检测技术是基于铁磁体的磁弹性效应和漏磁场的不可逆效应,对铁磁性金属部件进行早期诊断的行之有效的方法,可以快速检测出缺陷的位置。涡流检测是基于动态电磁场检测方式;漏磁检测采用直流、交流或永磁体对所测区域励磁,利用静态磁场或动态磁场检测方式;磁记忆则利用静态电磁场作为磁化源。在这几种电磁无损检测系统方式中,对电磁场的准确测量成为关键。涡流检测、漏磁检测及磁记忆检测等电磁无损检测技术也在不断完善与发展,但是当前普遍将这几种技术独立看待,分别发展,没有将这几种检测技术有机地统一起来,使得采用这几种技术的用户成本翻倍增加。Eddy current testing, magnetic flux leakage testing and magnetic memory testing are all non-destructive testing methods based on electromagnetic fields. Traditional eddy current methods have problems in both large-area scanning and deep defect detection. For high-resolution large-area eddy current testing, array eddy current probes have more advantages than traditional mechanical scanning probes. Magnetic flux leakage detection is the detection of the surface and near surface of the magnetized ferromagnetic material, and the leakage magnetic field is formed at the defect. Through the detection of the leakage magnetic field, the defect can be studied and analyzed. Magnetic memory detection technology is an effective method for early diagnosis of ferromagnetic metal parts based on the magnetoelastic effect of ferromagnets and the irreversible effect of leakage magnetic field, and can quickly detect the location of defects. Eddy current detection is based on dynamic electromagnetic field detection method; magnetic flux leakage detection uses DC, AC or permanent magnets to excite the measured area, and uses static magnetic field or dynamic magnetic field detection method; magnetic memory uses static electromagnetic field as the magnetization source. In these kinds of electromagnetic nondestructive testing system methods, the accurate measurement of the electromagnetic field becomes the key. Electromagnetic nondestructive testing technologies such as eddy current testing, magnetic flux leakage testing, and magnetic memory testing are also being continuously improved and developed. However, these technologies are generally regarded independently and developed separately. The user cost of these technologies has doubled.
发明内容Contents of the invention
为解决上述中存在的问题与缺陷,本发明提供了一种电磁无损检测系统。In order to solve the above problems and defects, the present invention provides an electromagnetic nondestructive testing system.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明所涉及的一种电磁无损检测系统,包括:An electromagnetic nondestructive testing system involved in the present invention includes:
检测设备,发送该设备的各个特性参数到信号处理设备,并接收信号处理设备处理后与检测设备相关的参数,并根据相关参数对该检测设备的特性参数进行修正;The detection device sends each characteristic parameter of the device to the signal processing device, and receives the parameters related to the detection device processed by the signal processing device, and corrects the characteristic parameters of the detection device according to the relevant parameters;
信号处理设备,向检测设备发送相应的工作参数,并设定其检测方式,且根据该检测方式启动该信号处理设备的相关部件,然后将接收到的检测信号进行调理与转换,并将转换后的信号进行分析与处理,且将处理后的信号输出到打印单元或存储单元。The signal processing equipment sends the corresponding working parameters to the detection equipment, and sets its detection mode, and starts the relevant components of the signal processing equipment according to the detection mode, then adjusts and converts the received detection signal, and converts the converted The signal is analyzed and processed, and the processed signal is output to a printing unit or a storage unit.
所述检测设备还包括:存储单元,存储检测设备的各个各部件的特性参数;控制单元,控制存储单元与多路转换单元的运行,实现检测设备与信号处理设备之间的通信,对各参数进行相互传输;巨磁传感单元,包括X向磁场巨磁传感单元与Y向磁场巨磁传感单元,并将各阵元输出的检测信号传输到多路转换单元;多路转换单元,将接收到的各阵元的检测信号经前置放大器传输到信号处理设备。The detection device also includes: a storage unit, which stores the characteristic parameters of each component of the detection device; a control unit, which controls the operation of the storage unit and the multiplexing unit, realizes the communication between the detection device and the signal processing device, and controls each parameter carry out mutual transmission; the giant magnetic sensing unit includes the X-direction magnetic field giant magnetic sensing unit and the Y-direction magnetic field giant magnetic sensing unit, and transmits the detection signals output by each array element to the multi-channel conversion unit; the multi-channel conversion unit, The received detection signals of each array element are transmitted to the signal processing equipment through the preamplifier.
所述信号处理设备包括:信号调理单元,接收所述检测设备中巨磁传感单元的各阵元输出的检测信号,并对该信号进行调理,使调理后的信号适合于转换单元所需的工作范围,然后输出到转换单元;转换单元,接收调理单元调理后的检测信号,并对该检测信号进行模拟-数字的转换,然后将转换后的模拟信号传输到现场可编程门阵列;存储单元,将通过FPGA(Field ProgrammableGate Array,现场可编程门阵列)与中央处理器对检测信号进行储存,并提供数据处理所需的工作空间。The signal processing device includes: a signal conditioning unit, which receives the detection signal output by each array element of the giant magnetic sensing unit in the detection device, and conditions the signal so that the signal after conditioning is suitable for the conversion unit. The working range is then output to the conversion unit; the conversion unit receives the detection signal conditioned by the conditioning unit, and performs analog-to-digital conversion on the detection signal, and then transmits the converted analog signal to the field programmable gate array; the storage unit , the detection signal will be stored through the FPGA (Field Programmable Gate Array) and the central processing unit, and the work space required for data processing will be provided.
本发明提供的技术方案的有益效果是:The beneficial effects of the technical solution provided by the invention are:
通过检测系统在不改变传感探头的条件下,采用二维磁场巨磁传感阵列的探头可以进行涡流、漏磁和磁记忆检测,将基于动态电磁场和静态电磁场的无损检测技术统一起来,可进行多种方式协同检测,提高检测的可靠性。Through the detection system, under the condition of not changing the sensing probe, the probe using the two-dimensional magnetic field giant magnetic sensing array can perform eddy current, magnetic flux leakage and magnetic memory detection, and unify the nondestructive testing technology based on dynamic electromagnetic field and static electromagnetic field. Carry out multiple methods of collaborative detection to improve the reliability of detection.
附图说明Description of drawings
图1是检测系统结构图。Figure 1 is a structural diagram of the detection system.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述:In order to make the purpose, technical solutions and advantages of the present invention clearer, the implementation of the present invention will be further described in detail below in conjunction with the accompanying drawings:
本实施例提供了一种电磁无损检测系统。This embodiment provides an electromagnetic nondestructive testing system.
参见图1,该系统是通过模拟与数字信号处理实现涡流检测、漏磁检测以及磁记忆检测等不同电磁无损检测系统的检测功能,并通过对动态与静态的磁场进行传感,实现涡流检测、漏磁检测和磁记忆检测等一体化检测。主要包括:检测设备与信号处理设备,其中检测设备包括:巨磁传感单元、控制单元、存储单元与多路转换单元。所述巨磁传感单元包括:X向磁场巨磁传感阵列2与Y向磁场巨磁传感阵列3,且将该信号传输到多路转换单元5,并经前置放大器9传输到信号处理设备。所述检测设备还包括控制单元,由CPLD控制单元6控制FLASH存储单元4与多路转换单元5的运行,并对检测设备与信号处理设备之间的参数进行相互传输,其中控制单元还连接光电编码器1用来进行检测设备位置的检测,实现检测设备的定位。Referring to Figure 1, the system realizes the detection functions of different electromagnetic non-destructive testing systems such as eddy current testing, magnetic flux leakage testing and magnetic memory testing through analog and digital signal processing, and realizes eddy current testing, Integrated detection such as magnetic flux leakage detection and magnetic memory detection. It mainly includes: detection equipment and signal processing equipment, wherein the detection equipment includes: giant magnetic sensing unit, control unit, storage unit and multiplex conversion unit. The giant magnetic sensing unit includes: an X-direction magnetic field giant magnetic sensor array 2 and a Y-direction magnetic field giant magnetic sensor array 3, and the signal is transmitted to the
信号处理设备:包括信号调理单元、转换单元与存储单元。所述检测设备的检测信号输出到信号处理设备时,首先由信号调理单元11对该信号进行调理后传输到转换单元中的A/D转换器13中进行模拟-数字转换后,传输到FPGA14(Field Programmable Gate Array,现场可编程门阵列)中进行处理,并将处理后的信号通过中央处理器16由FLASH存储器17和SDRAM存储器15进行储存或经过通信接口18由打印机进行打印19。所述FPGA14根据检测方式将相应信号通过D/A转换器12进行数字-模拟转换后传输到功率放大单元10,然后输出到检测设备中的磁场偏置线圈7和励磁线圈8。Signal processing equipment: including signal conditioning unit, conversion unit and storage unit. When the detection signal of the detection equipment is output to the signal processing equipment, at first the signal is conditioned by the
所述电磁无损检测系统进行涡流检测、漏磁检测及磁记忆检测方式是通过如下技术方案实现的:The electromagnetic nondestructive testing system performs eddy current testing, magnetic flux leakage testing and magnetic memory testing through the following technical solutions:
涡流检测:CPU16根据检测要求设定涡流检测的激励波形,包括正弦波、脉冲波或其他任意波形,并将波形离散后输出到FPGA14内,FPGA14根据离散后的波形数据按照一定的时序和频率输出到D/A转换器12中,D/A转换器12输出的波形经过功率放大单元10放大以后分别输出到检测设备中的磁场偏置线圈7、激励线圈8,偏置线圈7产生的磁场用于提供y向磁场巨磁传感阵列3的工作磁场,激励线圈8用于产生涡流检测所需的激励磁场;y向磁场巨磁传感阵列3用于接收涡流检测信号,接收的检测信号通过多路转换单元5经前置放大器9放大后输出到信号调理单元11,使之适合A/D转换器13的工作范围,调理后的涡流检测信号通过A/D转换器13进行模拟-数字的转换,转换后的数字信号输出到FPGA14内,进行数字滤波、信号分析处理后输出到CPU16内,CPU16将处理后的接收信号显示与打印单元19进行显示,或通过通信接口18输出到其他存储器、网络等,实现任意波形的涡流检测。Eddy current detection: CPU16 sets the excitation waveform of eddy current detection according to the detection requirements, including sine wave, pulse wave or other arbitrary waveforms, and outputs the waveform to FPGA14 after discrete, and FPGA14 outputs according to a certain timing and frequency according to the discrete waveform data In the D/
漏磁检测:待测铁磁性零部件经过直流、交流或永磁体磁化后进行检测,探头内x向磁场巨磁传感阵列2用于接收漏磁检测信号,接收的检测信号通过多路转换单元5经前置放大器9放大后输出到信号调理单元11,使之适合A/D转换器13的工作范围,调理后的检测信号通过A/D转换器13进行模拟-数字的转换,转换后的模拟信号输出到FPGA14内,进行数字滤波、信号分析与处理后输出到CPU16内,CPU16将处理后的接收信号显示与打印单元19进行显示,或通过通信接口18输出到其他存储器、网络等,实现漏磁检测。Magnetic flux leakage detection: The ferromagnetic parts to be tested are detected after being magnetized by DC, AC or permanent magnets. The x-direction magnetic field giant magnetic sensor array 2 in the probe is used to receive the magnetic flux leakage detection signal, and the received detection signal passes through the
磁记忆检测:对经地磁场磁化后的待测铁磁性零部件进行检测,探头内x向磁场巨磁传感阵列2用于接收磁记忆检测信号,接收的检测信号通过多路转换单元5经前置放大器9放大后输出到信号调理单元11,使之适合A/D转换器13的工作范围,调理后的检测信号通过A/D转换器13进行模拟-数字的转换,转换后的模拟信号输出到FPGA14内,进行数字滤波、信号分析与处理后输出到CPU16内,CPU16将处理后的接收信号显示与打印单元19进行显示,或通过通信接口18输出到其他存储器、网络等,实现磁记忆检测。Magnetic memory detection: detect the ferromagnetic parts to be tested after being magnetized by the earth’s magnetic field, the x-direction magnetic field giant magnetic sensor array 2 in the probe is used to receive the magnetic memory detection signal, and the received detection signal passes through the
本实施例提供了一种能够实现涡流检测、漏磁检测以及磁记忆检测等多种电磁无损检测功能于一体的检测系统,不仅简化了检测系统设计,而且降低了检测的成本。This embodiment provides a testing system capable of integrating various electromagnetic nondestructive testing functions such as eddy current testing, magnetic flux leakage testing, and magnetic memory testing, which not only simplifies the design of the testing system, but also reduces testing costs.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100572753A CN101231266A (en) | 2008-01-31 | 2008-01-31 | A detection system for an electromagnetic non-destructive testing probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100572753A CN101231266A (en) | 2008-01-31 | 2008-01-31 | A detection system for an electromagnetic non-destructive testing probe |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101231266A true CN101231266A (en) | 2008-07-30 |
Family
ID=39897911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100572753A Pending CN101231266A (en) | 2008-01-31 | 2008-01-31 | A detection system for an electromagnetic non-destructive testing probe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101231266A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995432A (en) * | 2010-11-04 | 2011-03-30 | 重庆大学 | Hall element differential array based ferromagnetic construction member surface crack detector |
CN101696954B (en) * | 2009-10-29 | 2011-05-04 | 北京交通大学 | Electromagnetic tomography nondestructive inspection device for severe fault of rail and method thereof |
CN102182933A (en) * | 2011-03-22 | 2011-09-14 | 江南大学 | Nondestructive detection system and method for pulsed magnetic flux leakage defects and stresses |
CN102435668A (en) * | 2011-08-31 | 2012-05-02 | 重庆大学 | Array ferromagnetic member surface defect detector based on leakage magnetic field double component |
CN103675094A (en) * | 2013-12-16 | 2014-03-26 | 无锡乐尔科技有限公司 | Non-destructive testing device |
CN104820015A (en) * | 2015-05-08 | 2015-08-05 | 北京华航无线电测量研究所 | Detection system of metal surface defect and detection method thereof |
WO2019047397A1 (en) * | 2017-09-11 | 2019-03-14 | 清华大学 | Dynamic magnetic detection probe and electromagnetic array control method |
-
2008
- 2008-01-31 CN CNA2008100572753A patent/CN101231266A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101696954B (en) * | 2009-10-29 | 2011-05-04 | 北京交通大学 | Electromagnetic tomography nondestructive inspection device for severe fault of rail and method thereof |
CN101995432A (en) * | 2010-11-04 | 2011-03-30 | 重庆大学 | Hall element differential array based ferromagnetic construction member surface crack detector |
CN102182933A (en) * | 2011-03-22 | 2011-09-14 | 江南大学 | Nondestructive detection system and method for pulsed magnetic flux leakage defects and stresses |
CN102435668A (en) * | 2011-08-31 | 2012-05-02 | 重庆大学 | Array ferromagnetic member surface defect detector based on leakage magnetic field double component |
CN102435668B (en) * | 2011-08-31 | 2015-05-27 | 重庆大学 | Array ferromagnetic member surface defect detector based on leakage magnetic field double component |
CN103675094A (en) * | 2013-12-16 | 2014-03-26 | 无锡乐尔科技有限公司 | Non-destructive testing device |
CN104820015A (en) * | 2015-05-08 | 2015-08-05 | 北京华航无线电测量研究所 | Detection system of metal surface defect and detection method thereof |
CN104820015B (en) * | 2015-05-08 | 2018-05-15 | 北京华航无线电测量研究所 | A kind of cracks of metal surface detecting system and its detection method |
WO2019047397A1 (en) * | 2017-09-11 | 2019-03-14 | 清华大学 | Dynamic magnetic detection probe and electromagnetic array control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101231266A (en) | A detection system for an electromagnetic non-destructive testing probe | |
US9146214B2 (en) | Leakage magnetic flux flaw inspection method and device | |
KR101909768B1 (en) | Surface property inspection device and surface property inspection method | |
CN109407018A (en) | High-resolution Barkhausen noise and incremental permeability scanning imaging system | |
CN107389782B (en) | Helical magnetic matrix high-precision imaging detection device for detection of small defects in pipelines | |
CN104903718A (en) | Apparatus and method for detecting inner defects of steel plate | |
Hwang et al. | The application of a differential-type Hall sensors array to the nondestructive testing of express train wheels | |
CN103675094A (en) | Non-destructive testing device | |
CN101231265A (en) | An electromagnetic non-destructive testing probe | |
CN108982659B (en) | Full-automatic defect detection device based on low-frequency electromagnetism | |
WO2008072508A1 (en) | Nondestructive test instrument and nondestructive test method | |
CN106707206A (en) | Metal magnetic memory triaxial array sensor based on GMR effect | |
JP2017150904A (en) | Flaw detection device and flaw detection method | |
CN107356664A (en) | A kind of ferrimagnet defect detecting device based on low frequency leakage field | |
KR101107757B1 (en) | The complicated type nondestructive inspection apparatus using the hybrid magnetic induction thin film sensor | |
KR101339117B1 (en) | Apparatus and method for detecting the defects of reverse side using pulsed eddy current | |
CN105223266B (en) | A kind of electromagnetic acoustic detection method and device from perception operating point | |
CN101231264A (en) | A detection method of an electromagnetic non-destructive testing probe | |
CN208937535U (en) | A fully automatic defect detection device based on low frequency electromagnetic | |
CN107884473A (en) | A kind of multi frequency detection system | |
CN113093289A (en) | High-resolution nondestructive testing device for parameters of metal body in embedded structure | |
CN105874329B (en) | Detect the device and method of the defect of steel plate | |
CN114764086B (en) | Pipeline internal detection method for detecting differential permeability based on eddy current under bias magnetization | |
CN112097634A (en) | Carburized layer detector and detection method thereof | |
CN203191354U (en) | Eddy current flaw detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20080730 |