CN101222057A - A manufacturing process for preparing a metal flow field plate for a micro fuel cell - Google Patents
A manufacturing process for preparing a metal flow field plate for a micro fuel cell Download PDFInfo
- Publication number
- CN101222057A CN101222057A CNA2007101587893A CN200710158789A CN101222057A CN 101222057 A CN101222057 A CN 101222057A CN A2007101587893 A CNA2007101587893 A CN A2007101587893A CN 200710158789 A CN200710158789 A CN 200710158789A CN 101222057 A CN101222057 A CN 101222057A
- Authority
- CN
- China
- Prior art keywords
- flow field
- field plate
- fuel cell
- micro
- micro fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 26
- 239000002184 metal Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000005260 corrosion Methods 0.000 claims abstract description 26
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 16
- 239000010935 stainless steel Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000003486 chemical etching Methods 0.000 claims abstract description 9
- 230000000873 masking effect Effects 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 7
- 238000004528 spin coating Methods 0.000 claims description 7
- 238000005121 nitriding Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 238000000866 electrolytic etching Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 229920001940 conductive polymer Polymers 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 3
- 230000004913 activation Effects 0.000 claims 1
- 239000002322 conducting polymer Substances 0.000 claims 1
- 238000005137 deposition process Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000007776 silk screen coating Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 24
- 238000005530 etching Methods 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000000206 photolithography Methods 0.000 abstract description 7
- 238000005520 cutting process Methods 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 238000005238 degreasing Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- ing And Chemical Polishing (AREA)
Abstract
本发明一种制备微型燃料电池金属流场板的制作工艺属于对微型燃料电池技术的研究,尤其涉及一种微型燃料电池金属流场板的制作方法。其制作工艺是在金属片表面通过光刻技术制作掩蔽层,通过化学蚀刻或者电化学蚀刻的方法加工出微细结构,以及在金属表面制作导电耐蚀层。所用材料为金属板,包括不锈钢、钛及其合金、铝合金、或铜及其合金。能加工微孔、微沟道、微突起结构,通过多次的光刻、蚀刻工艺,制作三维微细结构的金属流场板。采用此工艺制作的流场板具有电阻小、耐蚀、耐磨、无加工变质层、无切削残余应力、一致性好。微结构的最小线宽可以达到50μm,结合大尺幅光刻蚀刻技术,可以实现低成本,大批量生产。
The invention discloses a manufacturing process for preparing a metal flow field plate of a micro fuel cell, which belongs to the research on the technology of a micro fuel cell, and in particular relates to a method for manufacturing a metal flow field plate of a micro fuel cell. The manufacturing process is to make a masking layer on the surface of the metal sheet by photolithography, process a microstructure by chemical etching or electrochemical etching, and make a conductive corrosion-resistant layer on the metal surface. The materials used are metal plates, including stainless steel, titanium and its alloys, aluminum alloys, or copper and its alloys. It can process micro-holes, micro-channels, and micro-protrusion structures, and produce metal flow field plates with three-dimensional fine structures through multiple photolithography and etching processes. The flow field plate produced by this process has low resistance, corrosion resistance, wear resistance, no processing deterioration layer, no cutting residual stress, and good consistency. The minimum line width of the microstructure can reach 50 μm, combined with large-scale photolithography and etching technology, low-cost, mass production can be achieved.
Description
技术领域technical field
本发明属于对微型燃料电池技术的研究,尤其涉及一种微型燃料电池金属流场板的制作方法。The invention belongs to the research on micro-fuel cell technology, and in particular relates to a manufacturing method of a metal flow field plate of a micro-fuel cell.
背景技术Background technique
随着电子技术的飞速发展,诸如笔记本电脑、手机、MP3等便携式电子设备层出不穷,然而便携式电源技术已远远落后于微电子的发展速度。随着微型燃料电池(Micro Fuel Cell,MFC)在关键材料方面取得的进展,其作为新一代便携式电源越来越受到关注。这类电池一般以聚合物膜作为质子传导介质,以醇或者氢气为燃料,以氧气为氧化剂,反应产物是水和二氧化碳。微型燃料电池具有高比能、高效率、使用方便、清洁环保等优点,是目前锂电池、镍氢、镍镉电池等理想的替代品。With the rapid development of electronic technology, portable electronic devices such as notebook computers, mobile phones, and MP3 players emerge in an endless stream. However, portable power supply technology has lagged far behind the development speed of microelectronics. With the progress in key materials of Micro Fuel Cell (MFC), it has attracted more and more attention as a new generation of portable power source. This type of battery generally uses a polymer membrane as a proton-conducting medium, alcohol or hydrogen as a fuel, oxygen as an oxidant, and the reaction products are water and carbon dioxide. Micro fuel cells have the advantages of high specific energy, high efficiency, convenient use, clean and environmental protection, etc., and are ideal substitutes for current lithium batteries, nickel metal hydride batteries, nickel cadmium batteries, etc.
微型燃料电池区别于一般意义燃料电池的特点之一是其流场板的微型化。流场板是燃料电池中的重要部件,在燃料电池中起着分配流场、收集电流、支撑电池结构等作用。如附图1所示,燃料(如甲醇、氢气等)和氧化剂(如氧气、空气等)分别通过阳极流场板[1]和阴极流场板[4]上的流场进入燃料电池;经催化剂分解后产生的电子,也需要流场板的导电作用流向外部负载。同时流场板还需要保证电池结构的坚固,起到保护内部膜电极的作用。流场板中流场的形状一般分为三类:一类是上下贯通的孔阵列,如附图2所示;另一类是具有入口[1]和出口[2]的连续沟道,如附图3所示;还有一类是沟道和小孔的复合,如附图4所示。随着流场板的微型化,流场中的沟道尺寸从毫米级下降到微米级,原有的材料(如石墨),原有的加工方法(如铣削、冲压等)不再能满足需要,需要在材料和工艺两个方面,探索流场板的制作方法。One of the characteristics that distinguishes micro fuel cells from general fuel cells is the miniaturization of their flow field plates. The flow field plate is an important part of the fuel cell, which plays the role of distributing the flow field, collecting current, and supporting the cell structure in the fuel cell. As shown in Figure 1, fuel (such as methanol, hydrogen, etc.) and oxidant (such as oxygen, air, etc.) enter the fuel cell through the flow field on the anode flow field plate [1] and the cathode flow field plate [4] respectively; The electrons generated after the decomposition of the catalyst also need the conduction effect of the flow field plate to flow to the external load. At the same time, the flow field plate also needs to ensure the firmness of the battery structure and protect the internal membrane electrodes. The shape of the flow field in the flow field plate is generally divided into three categories: one is a hole array that penetrates up and down, as shown in Figure 2; the other is a continuous channel with an inlet [1] and an outlet [2], such as Shown in accompanying
此外,燃料电池系统是一个复杂的电化学系统,流场板作为电流的收集器需要在存在电场的电解质中工作,因此极易发生腐蚀,还需要考虑表面改性处理。出于减小电阻的考虑,表面改性不仅要提高金属的耐蚀性还要保证较高的电导率,因此还需要针对不同材料和应用场合对材料进行表面改性。In addition, the fuel cell system is a complex electrochemical system. As a current collector, the flow field plate needs to work in an electrolyte with an electric field, so it is extremely prone to corrosion, and surface modification treatment also needs to be considered. In order to reduce the resistance, the surface modification should not only improve the corrosion resistance of the metal but also ensure a higher electrical conductivity. Therefore, it is also necessary to modify the surface of the material for different materials and applications.
申请号为200510086751.0的专利申请说明书,介绍了一种基于单晶硅微细加工工艺以及溅射集电层方法制作的燃料电池流场板。对于单晶硅的微细加工目前已经相对成熟,可以制作高深宽比的微细结构,但是,单晶硅是脆性材料,不能施加足够的封装压力。另一方面,硅流场板表面溅射的集电层受工艺限制,厚度一般不到1μm,因此电池内阻很大,电池输出性能难以提高,距离实用化尚有一段距离。The patent application description with application number 200510086751.0 introduces a fuel cell flow field plate based on single crystal silicon microfabrication technology and sputtering collector layer method. The microfabrication of monocrystalline silicon is relatively mature at present, and microstructures with high aspect ratios can be produced. However, monocrystalline silicon is a brittle material, and sufficient packaging pressure cannot be applied. On the other hand, the collector layer sputtered on the surface of the silicon flow field plate is limited by the process, and the thickness is generally less than 1 μm. Therefore, the internal resistance of the battery is very large, and the output performance of the battery is difficult to improve, and there is still a long way to go before practical use.
相对于硅流场板而言,金属流场板本体电阻率小、韧性好,易获得理想的封装效果,从而有利于降低电池内阻和减小电池尺寸。但是,采用传统加工方法很难在金属薄板上实现对微流场的加工。Compared with the silicon flow field plate, the metal flow field plate has a small body resistivity and good toughness, and it is easy to obtain an ideal packaging effect, which is conducive to reducing the internal resistance of the battery and reducing the size of the battery. However, it is difficult to realize the processing of the micro flow field on the metal sheet by traditional processing methods.
发明内容Contents of the invention
本发明要解决的技术问题是克服上述技术的不足,采用光刻技术和化学蚀刻和电化学蚀刻的微细加工方法,能有效地解决这一难题。通过这种方法,不仅可以在金属板上加工微孔、微沟道、微凸起等常规加工难以实现的结构,还可以实现对工件的剪裁,保证流场和流场板外形之间的定位精度,并且加工后无加工变质层也无切削残余应力。The technical problem to be solved by the present invention is to overcome the deficiencies of the above-mentioned technologies, and the microfabrication method of photolithography technology and chemical etching and electrochemical etching can effectively solve this difficult problem. Through this method, not only can the micro-holes, micro-channels, micro-protrusions and other structures that are difficult to achieve in conventional processing be processed on the metal plate, but also the cutting of the workpiece can be realized to ensure the positioning between the flow field and the shape of the flow field plate Precision, and there is no processing deterioration layer and no cutting residual stress after processing.
本发明采用的技术方案是一种制备微型燃料电池金属流场板的制作工艺,在金属片表面通过光刻技术制作掩蔽层,通过化学蚀刻或者电化学蚀刻的方法加工出微细结构,以及在金属表面制作导电耐蚀层,具体工艺步骤如下:The technical scheme adopted by the present invention is a manufacturing process for preparing a metal flow field plate of a micro fuel cell, a masking layer is made on the surface of the metal sheet by photolithography, a microstructure is processed by chemical etching or electrochemical etching, and the Make a conductive corrosion-resistant layer on the surface, the specific process steps are as follows:
1)首先将金属片下料、抛光,采用碱性溶液或有机溶剂浸泡或超声清洗,清洗后用大量水冲净,110℃-150℃烘30-60分钟;1) First, blank and polish the metal sheet, soak it in an alkaline solution or an organic solvent or clean it ultrasonically, rinse it with plenty of water after cleaning, and bake it at 110°C-150°C for 30-60 minutes;
2)然后采用光刻工艺在单面或者双面制作掩蔽层,基本步骤包括:旋涂或空丝网涂布20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘10-30分钟;2) Then use photolithography to make a masking layer on one side or both sides. The basic steps include: spin coating or empty screen coating of about 20-60 microns of corrosion-resistant photoresist, and pre-baking at 75°C-85°C for 20-30 Minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution for 30-90 seconds, rinse with deionized water, and then bake at 85°C for 10-30 minutes;
3)采用化学蚀刻或者电解蚀刻的方法加工出所需结构,化学蚀刻的步骤包括:采用5%-30%浓度盐酸或硫酸浸泡活化3-10分钟,采用化学溶液喷淋或静态蚀刻至所需深度,用大量清水冲净残液;3) The required structure is processed by chemical etching or electrolytic etching. The chemical etching steps include: immersing and activating with 5%-30% concentration of hydrochloric acid or sulfuric acid for 3-10 minutes, using chemical solution spray or static etching to the desired structure. depth, rinse off the residual liquid with plenty of water;
4)最后去除金属片上的掩蔽层,抛光或打磨后制作导电耐蚀层。4) Finally, remove the masking layer on the metal sheet, and make a conductive corrosion-resistant layer after polishing or grinding.
所述的微型燃料电池金属流场板的制作工艺,所用材料为0.05-3mm厚度的金属板,包括不锈钢、钛及其合金、铝合金或铜及其合金。The manufacturing process of the metal flow field plate of the micro-fuel cell uses a metal plate with a thickness of 0.05-3 mm, including stainless steel, titanium and its alloys, aluminum alloy or copper and its alloys.
微型燃料电池金属流场板的制作工艺,能加工微孔、微沟道、微突起结构,通过多次的光刻、蚀刻工艺,制作三维微细结构的金属流场板。The manufacturing process of metal flow field plates for micro-fuel cells can process micro-holes, micro-channels, and micro-protrusion structures. Through multiple photolithography and etching processes, metal flow field plates with three-dimensional fine structures can be produced.
微型燃料电池金属流场板的制作工艺,根据流场板材料的不同,可以选择采用电镀、扩散、离子注入、溅射或者沉积方法制作导电耐蚀层。导电耐蚀层的材料可以为金、银、铂、氮化钛,或是不锈钢渗氮改性层或导电聚合物。The manufacturing process of the metal flow field plate of the micro-fuel cell can choose electroplating, diffusion, ion implantation, sputtering or deposition to make the conductive corrosion-resistant layer according to the different materials of the flow field plate. The material of the conductive anti-corrosion layer can be gold, silver, platinum, titanium nitride, or stainless steel nitriding modified layer or conductive polymer.
本发明的有益效果是:采用此工艺制作的微型燃料电池流场板具有电阻小、耐蚀、耐磨、无加工变质层、无切削残余应力、一致性好等特点。微结构的最小线宽可以达到50μm,结合大尺幅光刻-蚀刻技术,可以实现低成本,大批量生产。The beneficial effects of the invention are: the micro-fuel cell flow field plate produced by this process has the characteristics of small resistance, corrosion resistance, wear resistance, no process deterioration layer, no cutting residual stress, good consistency and the like. The minimum line width of the microstructure can reach 50 μm, combined with large-scale photolithography-etching technology, low-cost, mass production can be achieved.
附图说明Description of drawings
图1为燃料电池的原理图,其中:1-阳极流场板 2-膜电极三合一组件 3-负载 4-阴极流场板。图2为孔阵列微型燃料电池流场板的结构示意图,图3为连续沟道的微型燃料电池流场板的结构示意图,其中:1-入口 2-出口 3-蛇形流场。图4为孔和沟道复合的微型燃料电池流场板的结构示意图,图5带小孔阵列的微型燃料电池流场板的照片,图6小孔和沟道复合的流场板中的微流场的显微镜照片。Figure 1 is the schematic diagram of the fuel cell, in which: 1-anode flow field plate 2-membrane electrode three-in-one assembly 3-load 4-cathode flow field plate. Fig. 2 is a schematic diagram of the structure of a hole array micro-fuel cell flow field plate, and Fig. 3 is a structural schematic diagram of a micro-fuel cell flow field plate with continuous channels, wherein: 1-inlet 2-outlet 3-serpentine flow field. Fig. 4 is a structural schematic diagram of a micro-fuel cell flow field plate with holes and channels combined, Fig. 5 is a photo of a micro-fuel cell flow field plate with small hole arrays, and Fig. 6 is a composite micro-hole and channel flow field plate Microscope photo of the flow field.
具体实施方式Detailed ways
结合附图详细说明本发明的实施:Implementation of the present invention is described in detail in conjunction with accompanying drawing:
实施例1:以厚度为0.1mm的SUS316L不锈钢板为原材料制作自呼吸式微型燃料电池流场板,流场为由Φ300μm的通孔组成的阵列,其结构如附图2所示。具体步骤如下:将下料、抛光后的不锈钢板用丙酮、乙醇超声清洗除油,110℃烘干,然后单面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟,在另一面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,双面图形对准,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟;然后用17%浓度HCl活化30秒后,装入双面喷淋蚀刻机,采用不锈钢蚀刻液加工至微孔贯通,蚀刻后的不锈钢板用去离子水冲净残液,采用80℃10g/LNaOH浸泡去除光刻胶;对清洗后的工件表面渗氮处理,以提高耐蚀性。Example 1: A self-breathing micro-fuel cell flow field plate is made from a SUS316L stainless steel plate with a thickness of 0.1 mm. The flow field is an array composed of Φ300 μm through holes, and its structure is shown in Figure 2. The specific steps are as follows: Ultrasonic cleaning and degreasing of the blanked and polished stainless steel plate with acetone and ethanol, drying at 110°C, then spin-coating 20-60 micron corrosion-resistant photoresist on one side, and pre-baking at 75°C-85°C 20-30 minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution for 30-90 seconds, rinse with deionized water, and bake at 85°C for 30 minutes , Spin-coat 20-60 microns of corrosion-resistant photoresist on the other side, bake at 75°C-85°C for 20-30 minutes, use mask exposure method, double-sided pattern alignment, exposure dose is 20mJ/cm 2 -35mJ /cm 2 , 1% Na 2 CO 3 solution, developed for 30-90 seconds, rinsed with deionized water, and then baked at 85°C for 30 minutes; then activated with 17% HCl for 30 seconds, and then loaded into a double-sided spray etching machine , use stainless steel etching solution to process until the micropores are penetrated, rinse the residual liquid with deionized water on the etched stainless steel plate, and remove the photoresist by soaking in 10g/L NaOH at 80°C; nitriding treatment on the surface of the cleaned workpiece to improve the resistance corrosion.
实施例2:以厚度为O.4mm的SUS304不锈钢板为原材料,制作主动式微型燃料电池流场板,流场沟道宽300μm,深100μm,蛇形布局,如附图3所示。具体步骤如下:将下料、抛光后的不锈钢板用丙酮、乙醇超声清洗除油,110℃烘干,然后单面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟,背面用耐蚀胶带掩蔽保护,装入喷淋蚀刻机中,采用不锈钢蚀刻液加工至所需深度。蚀刻后的不锈钢板用去离子水冲净残液,背面胶带揭下,然后用酒精将残留部分擦洗干净,采用80℃10g/LNaOH浸泡去除光刻胶;最后对清洗后的工件表面渗氮处理,以提高耐蚀性。Example 2: Using SUS304 stainless steel plate with a thickness of 0.4mm as the raw material, an active micro fuel cell flow field plate is made. The flow field channel is 300 μm wide and 100 μm deep, with a serpentine layout, as shown in Figure 3. The specific steps are as follows: Ultrasonic cleaning and degreasing of the blanked and polished stainless steel plate with acetone and ethanol, drying at 110°C, then spin-coating 20-60 micron corrosion-resistant photoresist on one side, and pre-baking at 75°C-85°C 20-30 minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution for 30-90 seconds, rinse with deionized water, and bake at 85°C for 30 minutes , the back is covered with corrosion-resistant tape for protection, loaded into a spray etching machine, and processed to the required depth with stainless steel etching solution. Rinse the etched stainless steel plate with deionized water to remove the residual liquid, remove the tape on the back, then wipe the residual part with alcohol, and remove the photoresist by immersing it in 10g/L NaOH at 80°C; finally, nitriding the surface of the cleaned workpiece , to improve corrosion resistance.
实施例3:以厚度为0.5mm的铜板为原材料制作主动式微型燃料电池流场板,流场沟道宽300μm,深100μm,蛇形布局,如附图3所示。具体步骤如下:将下料、抛光后的铜板用丙酮、乙醇超声清洗除油,110℃烘干,然后单面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟,背面用耐蚀胶带掩蔽保护,装入喷淋蚀刻机中,采用三氯化铁溶液,加工至所需深度。蚀刻后的铜板用去离子水冲净残液,背面胶带揭下,然后用酒精将残留部分擦洗干净,采用80℃10g/LNaOH浸泡去除光刻胶;对清洗后的工件表面电镀金,以提高耐蚀性,降低电阻。Example 3: An active micro-fuel cell flow field plate is made from a copper plate with a thickness of 0.5 mm. The flow field channel is 300 μm wide and 100 μm deep in a serpentine layout, as shown in Figure 3. The specific steps are as follows: Ultrasonic cleaning and degreasing of the blanked and polished copper plate with acetone and ethanol, drying at 110°C, then spin-coating a 20-60 micron corrosion-resistant photoresist on one side, and pre-baking at 75°C-85°C for 20 -30 minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution development for 30-90 seconds, rinse with deionized water, and bake at 85°C for 30 minutes, Cover and protect the back with corrosion-resistant tape, put it into a spray etching machine, and use ferric chloride solution to process to the required depth. Rinse the residual liquid on the etched copper plate with deionized water, peel off the tape on the back, then wipe the residual part with alcohol, and remove the photoresist by immersing it in 10g/L NaOH at 80°C; electroplate gold on the surface of the cleaned workpiece to improve Corrosion resistance, lower electrical resistance.
实施例4:以厚度为0.5mm的钛板为原材料制作主动式微型燃料电池流场板,场沟道宽300μm,深100μm,蛇形布局,如附图3所示。具体步骤如下:将下料、抛光后的钛板用丙酮、乙醇超声清洗除油,110℃烘干,然后单面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟,背面用耐蚀胶带掩蔽保护,装入电解蚀刻装置中,电解加工至所需深度。蚀刻后的钛板用去离子水冲净残液,背面胶带揭下,然后用酒精将残留部分擦洗干净,采用80℃10g/LNaOH浸泡去除光刻胶;对清洗后的工件表面渗氮,形成氮化钛耐蚀层。Example 4: An active micro-fuel cell flow field plate is made from a titanium plate with a thickness of 0.5 mm. The field channel is 300 μm wide and 100 μm deep in a serpentine layout, as shown in Figure 3 . The specific steps are as follows: Ultrasonic cleaning and degreasing of the blanked and polished titanium plate with acetone and ethanol, drying at 110°C, and then spin-coating a corrosion-resistant photoresist of about 20-60 microns on one side, and pre-baking at 75°C-85°C 20-30 minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution for 30-90 seconds, rinse with deionized water, and bake at 85°C for 30 minutes , the back is covered with corrosion-resistant tape for protection, placed in an electrolytic etching device, and electrolytically processed to the required depth. Rinse the etched titanium plate with deionized water to remove the residual liquid, remove the adhesive tape on the back, then wipe the residual part with alcohol, and remove the photoresist by immersing it in 10g/L NaOH at 80°C; nitriding the surface of the cleaned workpiece to form Titanium nitride corrosion resistant layer.
实施例5:以厚度为0.4mm的SUS316L不锈钢板为原材料制作主动式微型燃料电池流场板,流场为小孔和沟道混合的三维流场,如附图4所示,小孔尺寸为Φ900μm,沟道宽300μm,深100μm。具体步骤如下:将下料、抛光后的不锈钢板用丙酮、乙醇超声清洗除油,110℃烘干,然后单面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟,在另一面旋涂20-60微米左右耐蚀光刻胶,75℃-85℃前烘20-30分钟,采用掩模曝光方法,双面图形对准,曝光剂量为20mJ/cm2-35mJ/cm2,1%Na2CO3溶液显影30-90秒,去离子水冲洗干净后,85℃后烘30分钟。之后,沟道面用胶带保护,小孔面用17%浓度HCl活化30秒后,装入双面喷淋蚀刻机,蚀刻200,去除胶带,17%浓度HCl活化30秒,双面蚀刻100μm至小孔贯通,蚀刻后的不锈钢板用去离子水冲净残液,采用80℃10g/LNaOH浸泡去除光刻胶;对清洗后的工件表面渗氮处理,以提高耐蚀性。Embodiment 5: Using SUS316L stainless steel plate with a thickness of 0.4mm as raw material to make an active micro fuel cell flow field plate, the flow field is a three-dimensional flow field mixed with small holes and channels, as shown in Figure 4, the small hole size is Φ900μm, channel width 300μm, depth 100μm. The specific steps are as follows: Ultrasonic cleaning and degreasing of the blanked and polished stainless steel plate with acetone and ethanol, drying at 110°C, then spin-coating 20-60 micron corrosion-resistant photoresist on one side, and pre-baking at 75°C-85°C 20-30 minutes, using the mask exposure method, the exposure dose is 20mJ/cm 2 -35mJ/cm 2 , 1% Na 2 CO 3 solution for 30-90 seconds, rinse with deionized water, and bake at 85°C for 30 minutes , Spin-coat 20-60 microns of corrosion-resistant photoresist on the other side, bake at 75°C-85°C for 20-30 minutes, use mask exposure method, double-sided pattern alignment, exposure dose is 20mJ/cm 2 -35mJ /cm 2 , developed with 1% Na 2 CO 3 solution for 30-90 seconds, rinsed with deionized water, and post-baked at 85°C for 30 minutes. Afterwards, the channel surface was protected with adhesive tape, and the small hole surface was activated with 17% HCl for 30 seconds, then installed in a double-sided spray etching machine, etched for 200°, the tape was removed, activated with 17% HCl for 30 seconds, and double-sided etched 100 μm to The small holes are penetrated, the etched stainless steel plate is rinsed with deionized water, and the photoresist is removed by soaking in 10g/L NaOH at 80°C; the surface of the cleaned workpiece is nitriding to improve corrosion resistance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101587893A CN100561786C (en) | 2007-12-04 | 2007-12-04 | A manufacturing process for preparing a metal flow field plate for a micro fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101587893A CN100561786C (en) | 2007-12-04 | 2007-12-04 | A manufacturing process for preparing a metal flow field plate for a micro fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101222057A true CN101222057A (en) | 2008-07-16 |
CN100561786C CN100561786C (en) | 2009-11-18 |
Family
ID=39631730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101587893A Expired - Fee Related CN100561786C (en) | 2007-12-04 | 2007-12-04 | A manufacturing process for preparing a metal flow field plate for a micro fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100561786C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101764229B (en) * | 2010-01-26 | 2011-09-21 | 江苏大学 | Forming method and device for metal flow field plate of micro proton exchange membrane fuel cell with complex shape flow channel |
CN101794886B (en) * | 2010-01-08 | 2011-10-19 | 大连理工大学 | Manufacturing technique of micro fuel cell flow field plate |
CN102229266A (en) * | 2010-06-10 | 2011-11-02 | 鸿富锦精密工业(深圳)有限公司 | Compound of aluminum or aluminum alloy and plastics and manufacturing method thereof |
CN103352224A (en) * | 2013-07-01 | 2013-10-16 | 广东工业大学 | Double-face etching method for metal product |
CN103956509A (en) * | 2014-05-19 | 2014-07-30 | 哈尔滨工业大学 | Ceramic aluminum alloy-based self-breathing alcohol fuel cell |
CN107039658A (en) * | 2017-03-08 | 2017-08-11 | 同济大学 | A kind of method of low cost batch production metal polar plate |
CN108123145A (en) * | 2016-11-30 | 2018-06-05 | 绍兴俊吉能源科技有限公司 | A kind of flow-field plate |
CN109360998A (en) * | 2018-10-22 | 2019-02-19 | 吕伟 | Ultra-thin metal composite bipolar plate, preparation method thereof, and fuel cell comprising the same |
CN110299543A (en) * | 2019-07-08 | 2019-10-01 | 宝鸡市金凯科工贸有限公司 | A kind of hydrogen fuel titanium solar panel and preparation method thereof |
CN110931819A (en) * | 2018-09-19 | 2020-03-27 | 北京科技大学 | A method of electrochemical etching to prepare flow field of metal bipolar plate of fuel cell |
CN111952615A (en) * | 2020-08-17 | 2020-11-17 | 浙江大学 | An arrangement structure of a fuel cell fine flow field for enhanced mass transfer |
CN112349924A (en) * | 2020-09-21 | 2021-02-09 | 中国科学院大连化学物理研究所 | Etching processing method of conductive partition plate with gas-liquid distribution flow field |
CN113823543A (en) * | 2021-08-02 | 2021-12-21 | 中国科学院空天信息创新研究院 | Processing method for control electrode in multi-beam klystron |
CN115142114A (en) * | 2022-07-06 | 2022-10-04 | 惠州市锡泽美文化创意有限公司 | Metal utensil surface corrosion process and auxiliary treatment equipment thereof |
CN116230979A (en) * | 2022-09-06 | 2023-06-06 | 中南大学 | A kind of composite molding titanium carbon bipolar plate and preparation method thereof |
-
2007
- 2007-12-04 CN CNB2007101587893A patent/CN100561786C/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101794886B (en) * | 2010-01-08 | 2011-10-19 | 大连理工大学 | Manufacturing technique of micro fuel cell flow field plate |
CN101764229B (en) * | 2010-01-26 | 2011-09-21 | 江苏大学 | Forming method and device for metal flow field plate of micro proton exchange membrane fuel cell with complex shape flow channel |
CN102229266A (en) * | 2010-06-10 | 2011-11-02 | 鸿富锦精密工业(深圳)有限公司 | Compound of aluminum or aluminum alloy and plastics and manufacturing method thereof |
CN103352224A (en) * | 2013-07-01 | 2013-10-16 | 广东工业大学 | Double-face etching method for metal product |
CN103352224B (en) * | 2013-07-01 | 2015-09-23 | 广东工业大学 | A kind of two-sided engraving method for metal products |
CN103956509A (en) * | 2014-05-19 | 2014-07-30 | 哈尔滨工业大学 | Ceramic aluminum alloy-based self-breathing alcohol fuel cell |
CN103956509B (en) * | 2014-05-19 | 2015-11-11 | 哈尔滨工业大学 | Ceramic is Al-alloy based from breathing alcohol fuel cell |
CN108123145B (en) * | 2016-11-30 | 2020-06-19 | 绍兴俊吉能源科技有限公司 | Flow field plate |
CN108123145A (en) * | 2016-11-30 | 2018-06-05 | 绍兴俊吉能源科技有限公司 | A kind of flow-field plate |
CN107039658A (en) * | 2017-03-08 | 2017-08-11 | 同济大学 | A kind of method of low cost batch production metal polar plate |
CN107039658B (en) * | 2017-03-08 | 2020-07-28 | 同济大学 | A low-cost method for mass production of metal plates |
CN110931819A (en) * | 2018-09-19 | 2020-03-27 | 北京科技大学 | A method of electrochemical etching to prepare flow field of metal bipolar plate of fuel cell |
CN110931819B (en) * | 2018-09-19 | 2022-03-25 | 北京科技大学 | A method of electrochemical etching to prepare flow field of metal bipolar plate of fuel cell |
CN109360998A (en) * | 2018-10-22 | 2019-02-19 | 吕伟 | Ultra-thin metal composite bipolar plate, preparation method thereof, and fuel cell comprising the same |
CN110299543A (en) * | 2019-07-08 | 2019-10-01 | 宝鸡市金凯科工贸有限公司 | A kind of hydrogen fuel titanium solar panel and preparation method thereof |
CN111952615B (en) * | 2020-08-17 | 2021-07-30 | 浙江大学 | An arrangement structure of a fuel cell fine flow field for enhanced mass transfer |
CN111952615A (en) * | 2020-08-17 | 2020-11-17 | 浙江大学 | An arrangement structure of a fuel cell fine flow field for enhanced mass transfer |
CN112349924A (en) * | 2020-09-21 | 2021-02-09 | 中国科学院大连化学物理研究所 | Etching processing method of conductive partition plate with gas-liquid distribution flow field |
CN112349924B (en) * | 2020-09-21 | 2022-03-18 | 中国科学院大连化学物理研究所 | Etching processing method of conductive partition plate with gas-liquid distribution flow field |
CN113823543A (en) * | 2021-08-02 | 2021-12-21 | 中国科学院空天信息创新研究院 | Processing method for control electrode in multi-beam klystron |
CN113823543B (en) * | 2021-08-02 | 2024-03-01 | 中国科学院空天信息创新研究院 | Processing method for control electrode in multi-beam klystron |
CN115142114A (en) * | 2022-07-06 | 2022-10-04 | 惠州市锡泽美文化创意有限公司 | Metal utensil surface corrosion process and auxiliary treatment equipment thereof |
CN115142114B (en) * | 2022-07-06 | 2023-10-24 | 惠州市锡泽美文化创意有限公司 | Metal vessel surface corrosion process and auxiliary treatment equipment thereof |
CN116230979A (en) * | 2022-09-06 | 2023-06-06 | 中南大学 | A kind of composite molding titanium carbon bipolar plate and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100561786C (en) | 2009-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100561786C (en) | A manufacturing process for preparing a metal flow field plate for a micro fuel cell | |
Park et al. | Ultra-low loading of IrO2 with an inverse-opal structure in a polymer-exchange membrane water electrolysis | |
CN110284102B (en) | Metal carbide crystal composite coating and preparation method thereof | |
TWI243505B (en) | Method of manufacturing a flat panel direct methanol fuel cell | |
JP5614861B2 (en) | Process for manufacturing electrodes used in fuel cells | |
CN107634231B (en) | A kind of preparation method of proton exchange membrane fuel cell | |
WO2007121619A1 (en) | Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus | |
CN105655610A (en) | Ultrathin catalytic layer attached to anion exchange membrane, preparation and application thereof | |
CN109755615A (en) | The preparation method of full solid thin film fuel cell with three-dimensional micro-nano structure | |
CN107039658B (en) | A low-cost method for mass production of metal plates | |
CN115928017A (en) | High-conductivity corrosion-resistant protective composite coating and preparation method and application thereof | |
CN105529469A (en) | Graphene lithium battery and preparation method thereof | |
CN102306804B (en) | High-sp2 hybridization compact carbon coating layer for proton exchange membrane fuel cell bipolar plate and preparation method of high-sp2 hybridization compact carbon coating layer | |
CN1816932A (en) | Fuel cell comprising current collectors integrated in the electrode/membrane/electrode stack | |
CN100517838C (en) | A gas flow field for a proton exchange membrane fuel cell | |
CN103361660A (en) | Method for pre-treating stainless steel bipolar plate of proton exchange membrane fuel cell | |
CN103628102A (en) | Electroplating solution, Pt-Ru catalyst membrane as well as preparation method thereof and membrane fuel cell | |
CN209947951U (en) | A flow field structure bipolar plate, single battery, green energy vehicle, electronic equipment, mobile communication terminal | |
CN208189716U (en) | planar fuel cell module | |
CN109980242B (en) | Bipolar plate with harp-shaped flow field structure in liquid fuel cell and design method thereof | |
CN101425586B (en) | A kind of modification method of thin-layer aluminum bipolar plate of proton exchange membrane fuel cell | |
CN114525511A (en) | Preparation method of nano porous metal electrode material | |
CN101579632A (en) | Nickel palladium/ silicon microchannel catalyst and application thereof on preparing electrode of integratable direct methanol fuel cell | |
CN102005580B (en) | Surface-modifying treatment method of stainless steel bipolar plate of proton exchange membrane fuel cell | |
JPWO2004054019A1 (en) | Method for forming reaction layer on electrolyte membrane of fuel cell and electrolyte membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091118 Termination date: 20151204 |
|
EXPY | Termination of patent right or utility model |