[go: up one dir, main page]

CN101218554B - 一种用于调整功率变换器输出端子处的输出电压的方法 - Google Patents

一种用于调整功率变换器输出端子处的输出电压的方法 Download PDF

Info

Publication number
CN101218554B
CN101218554B CN2006800072249A CN200680007224A CN101218554B CN 101218554 B CN101218554 B CN 101218554B CN 2006800072249 A CN2006800072249 A CN 2006800072249A CN 200680007224 A CN200680007224 A CN 200680007224A CN 101218554 B CN101218554 B CN 101218554B
Authority
CN
China
Prior art keywords
centerdot
control signal
conduction control
output voltage
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800072249A
Other languages
English (en)
Other versions
CN101218554A (zh
Inventor
米尔顿·D·里贝罗
肯特·科纳罕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FyreStorm Inc
Original Assignee
FyreStorm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FyreStorm Inc filed Critical FyreStorm Inc
Publication of CN101218554A publication Critical patent/CN101218554A/zh
Application granted granted Critical
Publication of CN101218554B publication Critical patent/CN101218554B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/62Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using bucking or boosting DC sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种控制开关功率变换器的方法提供了有效算法以控制跨负载的输出电压,这些负载是具有小的瞬变的相对轻的负载。当输出电压处于或低于预定的第一量值,确定一个或多个脉冲所需的电荷,以将输出电压提高到大于目标输出电压的预定第二量值。采取修正动作将输出电压提高到第二个量值,并且除非输出电压确定为处于或低于第一个量值,系统将不采取进一步的修正动作。该方法可用于降压、升压、降压/升压或其他布局的同步或非同步功率变换器。该方法进一步提供确定从电池释放的电荷量的简单方法。

Description

一种用于调整功率变换器输出端子处的输出电压的方法
相关申请的前后参照 
本申请涉及由Kent Kernahan,David F.Fraser和Jack Roan于2002年11月14日提交的、标题为“switching Power Converter”、共同转让的美国专利申请序列号10/295,580,该专利在此全文并入作为参考。由Kent Kernahan和John Carl Thomas于2002年11月14日提交的、标题为“Switching Power Converter”、专利申请序列No.10/295,739,现于2004年11月30日公布的美国专利6,825,644也在此全文并入作为参考。 
技术领域
本发明涉及开关功率变换器(switching power converter),该开关功率变换器的运行由计算机控制。 
背景技术
数字开关电源控制器通过使用执行逻辑判断的算法而不是采用现有技术(利用由各种比例因子确定的模拟信号)提供控制电源的能力。与现有技术相反,本发明涉及一种对开关电源的数字逻辑控制器的输出电压进行调整的方法和电路。 
一些产品具有睡眠、低功率或待机模式。当产品使用电池供电,这些模式旨在延长电池寿命。因此希望使用一种尽可能有效的控制方法。而且希望提供一种系统和方法以保持相对稳定负载的电压调整,从而可以最大化电源效率。相对于现有技术的另一个改进是提供电池电能管理的简单、低功率方法。 
发明内容
本发明提供一种控制方法,其可应用于开关功率变换器,并且可以用于降压、升压和降压/升压布局(topology),其中的任何一个可以是同步的或非同步的。 
在本发明的方法中,检测(sense)开关功率变换器的输出电压的量值(magnitude),并将其与预定的电压下限进行比较。在输出电压的量值等于或小于预定的电压下限之前,将不采取任何动作。如果输出电压的量值等于或小于预定下限,将采取修正动作以使输出电压增加至高于目标输出电压量值的量值。监测输出电压的量值,直到输出电压的量值等于或小于预定的输出电压下限,再作进一步的修正。因此修正动作事件的间隔时间是可依据例如开关功率变换器所供给的负载而变化。该方法称之为脉冲频率调制控制,或“PFM”控制。根据本发明的一个实施例,开关功率变换器中的控制器可以使用PFM控制。 
本文描述的PFM控制用于包括同步降压、非同步升压、和四场效应晶体管降压/升压的布局。本领域的技术人员将认识到PFM控制可用于例如非同步降压、同步升压的其它布局。 
当用于负载相对小并且稳定的系统,本发明的优点尤其突出。该方法的策略可以归纳为: 
1.基于需要而使用传导的PFM控制 
2.只要确定输出电压的量值等于或小于预定下限,就激活PFM控制用于修正。 
3.PFM控制使用输入电压并计算必须注入驱动电路并足以将输出电压提升到预定上限电压的能量大小,该预定的上电压大于目标输出电压。 
4.PFM系统返回到闲置模式进行等待,直到确定输出电压的量值等于或小于预定下限。 
再次使用PFM控制方法所使用的参数,以提供一种便捷、低功率方法,用于通过计算每秒的PFM事件次数从而确定从一个或更多电池汲取了多少能量。 
附图说明
图1是典型的同步降压功率变换器。 
图2显示了输出电压随时间与目标电压、电压上限、下限之间的关系。 
图3是PFM方法的流程图。 
图4表示了时间周期T期间电流和时间的关系,其中,单组控制信号应用至图1的转换器。 
图5显示了一个实施例,其中,通过在修正期间使用多个较短持续时间的脉冲而不是如图4所示的单组脉冲获得修正。 
图6是本发明实施例中使用的查找表中的数值实例。 
图7是用于计算图6表格内容的图1设备的电压和电路值的表。 
图8阐述了非同步升压转换器。 
图9阐述了一个四晶体管降压/升压转换器。 
具体实施方式
定义、首字母缩写字和缩写字 
CCM 连续电流模式
Coss FET输出电容
周期跳步(cycleskipping) 其中在一个或多个时段没有应用脉冲的步骤
DCM 不连续电流模式
DPC 数字脉冲控制器
dX X值的变化,其中,X可以是I、V、Tp、Ts等任何参数
Icoil 线圈电流
L 电感值(h)
REG 稳压系统,其包含REG_Eng、REG_Sch、SC、SV、变量、和到DPC、DAS、NFETDVR和SYS的接口,如上述美国专利申请No.10/295,580和美国专利申请No.6,825,644所述。
SYS 基于微控制器的系统控制,如上述美国专利申请No.10/295,580和美国专利No.6,825,644所述
T 一个时间周期
Tp,tp 控制FET处于开启状态的时段
Ts,ts 同步FET处于开启状态或“低端”二极管导通的时段
Vdbh 死区上限(High dead band limit)
Vdbl 死区下限(Low dead band limit)
Vdb 死区宽度(dead band width);等于(Vdbh-Vdbl)
Vo 输出电压;负载两端的电压
Vtar 目标电压
参考美国专利6,825,464的图12,根据本发明的一个实施例,PFM控制使用ADC1206模块的数据,通过DPC1201提出控制。PFM控制软件驻留在REG1211中,并与SYS1205交互。通过本发明,这些功能都合并到图1控制器112的动作中。 
参考图1,降压开关功率变换器的基本操作是通过控制FET114,在“Tp”时段内,在输入端子100的输入电压“Vin”和电感L1之间进行的间歇性连接。在时间“Tp”结束时,控制FET114关闭,在时段“Ts”,同步FET116处于开启状态。这是通过控制器112经由连接到FET114和FET116的线路128和130为FET提供传导控制信号来实现的。这将导致电流通过电感L1流到负载126。在输出端子122处测量的输出电压“Vo”通过电容C2120进行平滑。FET116可以用二极管替换,从而形成非同步降压源,在这种情况下不需要线路130。或者,如美国专利6,825,644所描述的,时段T内不开启FET116。图1布局中,在Ts时段内,当FET114关掉后,电流继续从电感L1流出。换句话说,Ts是Tp完成后电流回到零所需的时间。本领域的技术人员将认识到本发明的方法可以用于任意开关功率变换器布局,包含但不限于降压、升压、和降压/升压,其中任意一个都可以实现为同步或非同步设计。 
图2阐述了PFM控制方法,其中,在时刻T1,Vo降至死区下限“Vdbl”202。控制器112采取修正动作,将Vo提升到约为死区上限“Vdbh”201。电压摆幅是“Vdb”(203)=(Vdbh-Vdbl)。Vdbh和Vdbl是相对于所需输出电压“Vtar”200定义的。当控制器112再次采取修正动作时,Vo将在T3时期降落,同样通过参考符号205表示,直到T2时刻再次达到Vdbl202。 
本发明的方法用图3的流程图表示。沿着开始300,系统采样受到控制的功率变换器的Vo。在步骤302,Vo与Vdbl202进行比较。这个过程一直进行到Vo等于或小于Vdbl202。在这一点上,过程移至步骤304。在步骤304,对Vin进行采样,使用Vin的量值来计算将Vo提升Vdb203所需的脉冲时间Tp。同样计算Ts。在图1的同步电路中,将FET驱动Ts时长的时间。在非同步布局中,例如图1所示的电路类型但是没有FET116,Ts 表示控制FET114关掉后,电流继续从线圈流到负载126的时间。在步骤306,经由线路128,控制器将时长为Tp的传导控制信号应用到控制FET114。在此之后,Ts时段的传导控制信号经由线路130应用到FET116。然后PFM控制过程返回到步骤300,在步骤302再继续比较Vo和Vdbl202。 
PFM控制方法可应用于各种布局。在各个情况下,有可供选择的实施策略,根据最终产品的波纹容限(tolerance for ripple),计算可用功率、功率预算和其他因素,可选择实施策略。三个PFM控制实施例包括:a)使用存储的一组预先计算的Tp和Ts脉冲时间的PFM控制,由此基于输入变量选择脉冲时间(“方法_1”);b)使用目前的输入变量和预先存储的系统模型参数,初始化基于每次修正动作的Tp和Ts计算的PFM控制(“方法_2”);和c)使用目前的输入变量和系统模型参数估计,初始化基于每次修正动作的Tp和Ts计算的PFM控制,其作为系统响应的函数被计算(“方法_3”)。 
图4示出了通过电感L1的随时间变化的电流。如参考符号402表示,线圈电流Icoi1在时段Tp内升高,其具有斜率V1/L,时段Ts内以斜率V2/L下降,其中V1是Tp时段电感L1两端的电压,V2是Ts时段内电感L1两端的电压,L是电感L1的感抗。以下关系由电荷守恒定律导出: 
ΔQ = 1 2 · ( T p + T s ) · ΔI = 1 2 · Δt · ΔI = C · ΔV
然而,考虑到电感L1电流在零处开始并返回到零,从而有: 
EQ_1: V 1 · T p L = V 2 · T s L ⇒ V 1 · T p = V 2 · T s
扩展该等式,得到: 
Δt = T p + T s = T p + V 1 V 2 · T p = T p · ( 1 + V 1 V 2 )
峰值线圈电流ΔI400为: 
ΔI = V 1 · T p L = V 1 · Δt L · ( 1 + V 1 V 2 )
因此,使用之前得到的关系: 
C · ΔV = 1 2 · Δt · ΔI = 1 2 · Δt · V 1 · Δt L · ( 1 + V 1 V 2 ) = 1 2 · L · Δt 2 · V 1 · V 2 V 1 + V 2
最后得到: 
ΔV = Δt 2 ( 2 · L · C ) · ( V 1 · V 2 ) ( V 1 + V 2 ) ,或者 
EQ_2: Δt = 2 · L · C · Δ V · ( V 1 + V 2 ) ( V 1 · V 2 )
对于图1的布局: 
ΔV=Vdbh-Vdbl
V1=Vin-Vout=Vin-Vtar
V2=Vout=Vtar
因此,结合EQ_1和EQ_2,求解Tp和Ts得到: 
EQ_3: T p = 2 · L · C · ( V dbh - V dbl ) · V tar V in · ( V in - V tar ) 和 
EQ_4: T s = V in - V tar V tar · T p - GB 1 - GB 2 ,其中 
GB1是为FET114提供的传导控制信号的结束点和为FET116提供的传导控制信号的开始点之间的时间防护带,GB2是为FET116提供的传导控制信号的结束点和为FET114提供的下一个传导控制脉冲的开始点之间的时间防护带。当然,希望避免控制FET114和同步FET116的重叠传导。防护带宽度是FET114和FET116在目标系统中使用的FET的开启和关闭时间的函数,如数据表规范所确定。 
在一些设计中,长度为Tp的单个传导控制信号可以造成相关电感的最大电流超过最大容限,如电感的最大电流量。例如,可选择相关电感使其具有小的物理尺寸或符合设计的其他要求。图5阐述的实施例中,Tp所要求的时间被分成多个短的时段,由适当的Ts时段隔开,以获得所需的充电。在这个实例中,Tp1、Tp2、Tp3时段选为Tp,Ts1、Ts2、Ts3时段选为Ts,从而获得较小的ΔI500。这个实施例可以应用于本文描述的任意 PFM方法和布局。 
控制方法_1由EQ_3和EQ_4实现,从而建立一个查询表格,其中在每个激活时使用PFM控制,表格的输入是Vin。Vo是激活时刻的Vdbl202。图6所示为该表格的Tp数值实例。实例的具体数据列于图7中的标有“图1电路细节”的块中。计算出的准确值在列“Tp Calc”中(图6)。 
在方法_2的实施例中,每个激活时,由PFM再次使用EQ_3和EQ_4计算Tp和Ts。为了加速计算,可以使用二阶反向多项式近似(a/(1+b*VIN+c*VIN 2))。在这个实例中,使用泰勒级数计算的常数a,b和c为: 
a=6.658E-07 
b=.5349 
c=.0039 
方法_2的结果示于图6的列“Tp Approx”中。比较图6的两列,可以认识到近似造成的误差非常小。 
方法_1和方法_2(实际为EQ_3和EQ_4)忽略了目标应用的物理电路中寄生阻抗的效应,该效应将造成多达20%的ΔV误差。寄生阻抗在Tp期间减小横跨电感L1两端的电压,而在Ts期间增大横跨电感L1两端的负电压。这使传导控制信号所准许的传导产生的电荷比使用上述计算所预期的要少。为了理解这些效应,图4中作了参考,其中可以由电荷守恒定律获得以下关系: 
ΔQ = 1 2 · ( T p + T s ) · ΔI = C · ΔV ,和 
Δ Q 1 = 1 2 · T p · ΔI = C · Δ V 1
然而,考虑到电感L1电流从零开始并返回到零,可以得到: 
ΔI = 1 L · ∫ 0 T p V 1 · dt = 1 L · ∫ 0 T s V 2 · dt
假设在Tp和Ts内,输入输出电压不会显著变化,从而有: 
V1=Vin-Vout-Rp·I和V2=Vout+Rs·I 
其中Rp是Tp期间电流路径中的寄生阻抗,Rs是Ts期间电流路径中 的寄生阻抗。求解积分得到: 
ΔI = 1 L · ∫ 0 T p V 1 · dt
= 1 L · ∫ 0 T p ( V in - V out - R p · I ) · dt
= T p · ( V in - V out ) L - R p L · ∫ 0 T p I · dt
= T p · ( V in - V out ) L - R p L · Δ Q 1
然而假设: 
Δ Q 1 ≅ T p · ΔI 2
将会有: 
ΔI = T p · ( V in - V out ) L - R p L · T p · ΔI 2
最终, 
EQ_5: ΔI = T p · ( V in - V out ) L · ( 1 + T p · R p 2 · L ) ≅ T p · ( 1 - T p · R p 2 · L ) · ( V in - V out ) L
重复对电感L1电流的第二个斜率(Ts期间)相同的推导,得到: 
EQ_6: ΔI = T s · V out L · ( 1 - T s · R s 2 · L ) ≅ T s · ( 1 + T s · R s 2 · L ) · V out L
从EQ_5和EQ_6可以推导Tp和Ts之间的关系,具体为: 
T s · V out L · ( 1 - T s · R s 2 · L ) = T p · ( V in - V out ) L · ( 1 + T p · R p 2 · L ) ⇒
⇒ T s = T p · ( V in - V out ) V out · ( 1 - T s · R s 2 · L ) ( 1 + T p · R p 2 · L )
≅ T p · ( V in - V out ) V out · [ 1 - 1 2 · L · ( T s · R s + T p · R p ) ]
忽略二阶效应: 
T s ≅ T p · ( V in - V out ) V out
因此有: 
T s ≅ T p · ( V in - V out ) V out · [ 1 - T p 2 · L · ( R p + ( V in - V out ) V out · R s ) ]
传送到输出的总电荷可以由下式得到: 
EQ_7: ΔQ = C · ΔV ≅ ( T p + T s ) · ΔI 2
现在,假设R=Rp≌Rs,并且Tp仅在小范围Tp(min)≤Tp≤Tp(max)内调节,或者 
T pa = T p ( min ) + T p ( max ) 2
由上面的公式可以得到: 
EQ_8: ΔI ≅ T p · ( 1 - k p ) · ( V in - V out ) L
其中 k p = T pa · R 2 · L ,和 
EQ_9: T s ≅ T p · ( V in - V out ) V out · [ 1 - k p · ( V in V out ) ]
结合EQ_7,EQ_8和EQ_9可以得到: 
T p + T s ≅ T p · { 1 + ( V in - V out ) V out · [ 1 - k p · ( V in V out ) ] } =
Figure S2006800072249D00102
= T p · ( V in V out ) · ( 1 - k p · V in - V out V out )
ΔQ = C · ΔV ≅ 1 2 · T p · ( V in V out ) · ( 1 - k p · V in - V out V out ) · T p · ( 1 - k p ) · ( V in - V out ) L
= 1 2 · L · T p 2 · ( V in V out ) · ( V in - V out ) · ( 1 - k p · V in - V out V out ) · ( 1 - k p )
≅ 1 2 · L · T p 2 · ( V in V out ) · ( V in - V out ) · ( 1 - k p · V in V out )
使用与上面相同的名称惯例,Tp和Ts可以求解为: 
EQ_10: T p ≅ ( 1 + k p 2 · V in V tar ) · 2 · L · C · V tar V in - V tar · V dbh - V dbl V in
EQ_11: T s ≅ T p · V in - V tar V tar · ( 1 - k p · V in V tar ) - GB 1 - GB 2 ,其中 
EQ_12: k p = R 4 · L · ( T p ( min ) + T p ( max ) )
等式EQ_10、EQ_11和EQ_12表示PFM方法_3实施例,基本上是方法_2,再对寄生效应作精细调整。然而方法_3使用设计者估计的静止部件数值。 
模型参数的精确值不能预先知道,从而导致显著变化,尤其是L和C的值。它们每个都可以变化多达20%,可能会造成与假定值有40%的联合变化。 
方法_3更为精确的实施例比较输出电压的实际变化ΔVactual,Vo变化的量作为一个脉冲的结果,与应用到控制FET114的传导控制信号的配置脉冲宽度有关,每L和C的有效值为: 
ΔQ = C · Δ V actual ≅ 1 2 · L · T p 2 · ( V in V out ) · ( V in - V out ) · ( 1 - k p · V in V out )
因此: 2 · L · C ≅ T p · V in - V tar Δ V actual · ( V in V tar - k p )
由此可以认识到不需要确定L和C的具体值,只需要乘积LC。可以通过在使用每个脉冲之后测量Vo并更新模型(EQ_10)估计参数 
Figure S2006800072249D00113
。在其他实施例中,EQ_10用继动平均(rolling average)技术慢慢地适应,或者每隔一段时间或以其它方案做周期性调整。这个方法调整实际部件数值,包含运行过程中的温度效应和部件老化造成的更长期的变化。 
在另一个实施例中,PFM控制方法由非同步升压转换器使用,如图8所示。控制器800经由线路810为FETQ3提供传导控制信号,因此可以让电流在Tp长的时间内流进电感L2。此后终止传导控制信号,电感L2的电流在Ts长的时间内流经二极管D1。 
用本发明的方法(PFM)计算电流脉冲的宽度(Tp+Ts),可以用以下方法中的任意一个实现:a)使用存储的预先计算的一组脉冲的PFM控制,由此基于输入变量进行选择;b)使用目前的输入变量和预先存储的系统模型参数,初始化基于每次修正动作的Tp和Ts时长计算的PFM控制;c)使用目前的输入变量和系统模型参数估计,初始化基于每次修正动作的Tp和Ts计算的PFM控制,其计算为系统响应的函数。给出了第一个实施例;本领域的技术人员会理解类似于之前讨论的方法_2和方法_3的其它实施例。 
假设Vin在电压的限定范围Vin(min)≤Vin≤Vin(max)内。看图8,由电荷守恒定律可以推导以下关系: 
ΔQ = 1 2 · T s · ΔI = C · ΔV
然而,考虑到电感L2中的电流从0开始并回到0,因此有: 
V 1 · T p L = V 2 · T s L ⇒ V 1 · T p = V 2 · T s
其中V1是Tp期间横跨电感L2两端的电压,V2是在Ts期间横跨电感 L2两端的电压。 
电感L2的峰值电流(ΔI)为: 
ΔI = V 2 · T s L = V 1 · T p L
因此,使用之前获得的关系: 
C · ΔV = 1 2 · T s · ΔI = 1 2 · V 1 · T p V 2 · V 1 · T p L
现在 ΔV = T p 2 2 · L · C · V 1 2 V 2 ,或者 
T p = 1 V 1 · 2 · L · C · ΔV · V 2
对于图8的实现,有: 
ΔV=Vabh-Vdbl
V1=Vin,和 
V2=Vout+VD-Vin=Vtar+VD-Vin,其中VD是横跨二极管808两端的压降。因此,非同步实现的唯一控制参数Tp可以计算为: 
T p = 2 · L · C ( V abh - V dbl ) V in · V tar + V D - V in
在本发明的另一个实施例中,PFM控制用于调整多个晶体管降压/升压电源变换器,如图9所示,可用于产生比输入电压Vin高或低的输出电压Vo。 
使用PFM控制方法计算的时间,控制器900通过闭合开关Q4和Q6在电感L3中注入电流脉冲一段Tp的时长;此后打开开关,让线圈电流在Ts时长内流经MOSFETQ5和Q7。MOSFETQ5和Q7可以用二极管替换。 
再看图9,由电荷守恒定律获得以下关系: 
ΔQ = 1 2 · ( T p + T s ) · ΔI = C · ΔV
Δ Q 1 = 1 2 · T p · ΔI = C · Δ V 1
然而,考虑到电感L3中电流从0开始并回到0,因此有: 
ΔI = 1 L · ∫ 0 T p V 1 · dt = 1 L · ∫ 0 T s V 2 · dt
假设输入输出电压在Tp和Ts内不会显著变化,从而有: 
V1=Vin-Rp·I 
v2=Vout+Rs·I 
其中Rp是Tp期间电流路径中的寄生阻抗,Rs是Ts期间电流路径中的寄生阻抗。 
求解积分得到: 
ΔI = 1 L · ∫ 0 T p V 1 · dt
= 1 L · ∫ 0 T p ( V in - R p · I ) · dt
= T p · V in L - R p L · ∫ 0 T p I · dt
= T p · V in L - R p L · Δ Q 1
然而假设 
Δ Q 1 ≅ T p · ΔI 2 ,会发现 
ΔI = T p · V in L - R p L · T p · ΔI 2
最终有 
EQ_13: ΔI = T p · V in L · ( 1 + T p · R p 2 · L ) ≅ T p · ( 1 - T p · R p 2 · L ) · V in L
在Ts时段,重复对电感L3的斜率相同的推导,可以有: 
EQ_14: ΔI = T s · V out L · ( 1 - T s · R s 2 · L ) ≅ t s · ( 1 + T s · R s 2 · L ) · V out L
由EQ_13和EQ_14可以得到Tp和Ts的关系为: 
T s · V out L · ( 1 - T s · R s 2 · L ) = T p · V in L · ( 1 + T p · R p 2 · L ) ⇒
⇒ T s = T p · V in V out · ( 1 - T s · R s 2 · L ) ( 1 + T p · R p 2 · L )
≅ T p · V in V out · [ 1 - 1 2 · L · ( T s · R s + T p · R p ) ]
忽略二阶效应: T s ≅ T p · V in V out
因此 
T s ≅ T p · V in V out · [ 1 - T p 2 · L · ( R p + V in V out · R s ) ]
传送到输出的总电荷为: 
EQ_15: ΔQ = C · ΔV ≅ ( T p + T s ) · ΔI 2
现在假设以下条件: 
R=Rp≌Rs
并且Tp(min)≤Tp≤Tp(max)仅在小范围内调整,给定  T pa = T p ( min ) + T p ( max ) 2 ,将会有: 
EQ_16: ΔI ≅ T p · ( 1 - k p ) · V in L
其中 k p = T pa · R 2 · L ,和 
EQ_17: T s ≅ T p · V in V out · [ 1 - k p · ( 1 + V in V out ) ]
结合EQ_15、EQ_16和EQ_17可以得到: 
T p + T s ≅ T p · { 1 + V in V out · [ 1 - k p · ( 1 + V in V out ) ] }
= T p · [ 1 + V in V out - k p · V in V out · ( 1 + V in V out ) ]
= T p · ( 1 + V in V out ) · ( 1 - k p · V in V out )
ΔQ = C · ΔV ≅ 1 2 · T p · ( 1 + V in V out ) · ( 1 - k p · V in V out ) · T p · ( 1 - k p ) · V in L
= 1 2 · T p 2 · V in L · ( 1 + V in V out ) · [ 1 - k p · ( 1 + V in V out ) ]
使用方法1中以上所用的相同名称惯例,图9电路的解为: 
T p ≅ [ 1 + k p 2 · ( 1 + V in V tar ) ] · 2 · L · C · V tar V in · V dbh - V dbl V in + V tar
Figure S2006800072249D00159
k p = R 4 · L · ( T p ( min ) + T p ( max ) )
PFM控制方法的另一个优点是可以使用在PFM控制中使用的信息来估计传送到功率变换器的电流。对于电池供电的设备,这可用于“电量计量(fuel gauging)”,如追踪一个或更多供电的电池中剩余有多少能量。 
使用的方法是累积电压变化,保存每秒钟使用了多少脉冲的计数(PR)。每个脉冲的电荷量为: 
ΔQ=C·ΔVactual=C·(Vdbh-Vdbl
因此负载电流的估计为: 
Iload=PR·ΔQ=PR·C·(Vdbb-Vdbl
对于图1的电路,计算的准确性取决于电容C2的容限。由于所有的项是相对固定的,可以仅通过计算脉冲数来追踪电流,从而追踪从电池中消除的能量。 

Claims (14)

1.一种用于调整功率变换器输出端子处的应用于负载的输出电压的方法,所述功率变换器包含连接在所述输出端子和接地参考之间的输出电容,所述方法包括:
检测所述输出电压的量值;
将所述输出电压的所述量值与第一预定电压值进行比较,如果所述输出电压的所述量值等于或小于所述第一预定电压值,确定使所述输出电压达到第二预定电压值所需要的传导控制信号的特性;并且
提供具有所述特性的传导控制信号给所述功率变换器;
其中所述功率变换器包含用于连接到电位源的输入端子,并进一步地,其中确定所述传导控制信号的特性的步骤包括:
检测所述输入端子处电压的量值;和
计算作为所述输入端子处的所述电压的所述量值的函数的所述传导控制信号的时间长度。
2.如权利要求1所述的方法,其中提供所述传导控制信号的步骤包括向所述功率变换器中的一个开关提供所述传导控制信号。
3.如权利要求2所述的方法,其中确定传导控制信号的特性的步骤包括在一转换周期内为应用而计算一个传导控制信号的时间长度。
4.如权利要求2所述的方法,其中确定传导控制信号的特性的步骤包括在一转换周期内为应用而计算多个传导控制信号的时间长度。
5.如权利要求2所述的方法,其中提供传导控制信号的步骤包含:
在存储器中存储对应于电压的量值的多个传导控制信号的特性;
检测所述输入端子处电压的量值,并基于所检测的电压的量值与所述存储器中存储的所述量值的比较,提供与所述输入端子处的所述检测的电压的量值对应的所述传导控制信号。
6.如权利要求1所述的方法,其中计算传导控制信号的时间长度的步骤包括:
将所述功率变换器中的一个或更多电路元件的参数存储到存储器中;和
计算作为所存储的电路参数的函数的所述传导控制信号的所述时间长度。
7.如权利要求1所述的方法,计算传导控制信号的时间长度的步骤包括:
将所述功率变换器中的电路元件的估计参数存储到存储器中;和
计算作为所存储的估计电路参数的函数的所述传导控制信号的所述时间长度。
8.如权利要求1所述的方法,其中所述功率变换器包含第一和第二开关,并进一步地,其中确定传导控制信号的特性的步骤包括:
确定待应用到所述第一和第二开关的、作为所述功率变换器输入电压值的函数的传导控制信号的时间长度。
9.如权利要求8所述的方法,其中确定所述传导控制信号的时间长度的步骤包括:
计算作为所述功率变换器中电路元件的存储的模型电路参数的函数的所述传导控制信号的所述时间长度。
10.如权利要求8所述的方法,其中确定所述传导控制信号的时间长度的步骤包括:
计算作为所述功率变换器中电路元件的估计电路参数的函数的所述传导控制信号的所述时间长度。
11.如权利要求1所述的方法,其中计算作为所述输入端子处的所述电压的所述量值的函数的传导控制信号的时间长度的步骤包括:
为即将进行的输出电压调整,在所述传导控制信号的所述时间长度的所述计算中,使用之前输出电压调整的运行结果。
12.如权利要求11所述的方法,进一步包括:
存储多个输出电压调整的运行结果;和
为即将进行的输出电压调整,计算作为所述多个输出电压调整的所述运行结果的函数的所述传导控制信号的所述时间长度。
13.如权利要求11所述的方法,进一步包含:
由之前输出电压调整的所述运行结果,确定用于计算所述传导控制信号的时间长度的计算算法中的一项的量值。
14.如权利要求13所述的方法,其中所述项是所述功率变换器中的电路的电感特性和电容特性的函数。
CN2006800072249A 2005-01-05 2006-01-05 一种用于调整功率变换器输出端子处的输出电压的方法 Expired - Fee Related CN101218554B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/030,688 US7221130B2 (en) 2005-01-05 2005-01-05 Switching power converter employing pulse frequency modulation control
US11/030,688 2005-01-05
PCT/US2006/000466 WO2006074371A2 (en) 2005-01-05 2006-01-05 Switching power converter employing pulse frequency modulation control

Publications (2)

Publication Number Publication Date
CN101218554A CN101218554A (zh) 2008-07-09
CN101218554B true CN101218554B (zh) 2012-01-25

Family

ID=36639649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800072249A Expired - Fee Related CN101218554B (zh) 2005-01-05 2006-01-05 一种用于调整功率变换器输出端子处的输出电压的方法

Country Status (6)

Country Link
US (1) US7221130B2 (zh)
KR (1) KR101148238B1 (zh)
CN (1) CN101218554B (zh)
GB (1) GB2437043B (zh)
TW (1) TW200636423A (zh)
WO (1) WO2006074371A2 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405551B2 (en) * 2006-05-08 2008-07-29 Intel Corporation Method and an apparatus to adjust duty cycle for voltage supply regulation
US7449966B2 (en) * 2006-05-09 2008-11-11 Intel Corporation Method and an apparatus to sense supply voltage
US7506184B2 (en) * 2006-05-09 2009-03-17 Intel Corporation Current detection for microelectronic devices using source-switched sensors
US7586762B2 (en) * 2006-12-12 2009-09-08 O2Micro International Limited Power supply circuit for LCD backlight and method thereof
US8362838B2 (en) * 2007-01-19 2013-01-29 Cirrus Logic, Inc. Multi-stage amplifier with multiple sets of fixed and variable voltage rails
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US8018171B1 (en) 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US8076920B1 (en) 2007-03-12 2011-12-13 Cirrus Logic, Inc. Switching power converter and control system
US7804256B2 (en) * 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US20080224631A1 (en) * 2007-03-12 2008-09-18 Melanson John L Color variations in a dimmable lighting device with stable color temperature light sources
US7696913B2 (en) 2007-05-02 2010-04-13 Cirrus Logic, Inc. Signal processing system using delta-sigma modulation having an internal stabilizer path with direct output-to-integrator connection
US7554473B2 (en) * 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US8102127B2 (en) * 2007-06-24 2012-01-24 Cirrus Logic, Inc. Hybrid gas discharge lamp-LED lighting system
US7719251B2 (en) * 2007-08-06 2010-05-18 Intel Corporation Enhancement of power conversion efficiency using dynamic load detecting and tracking
US7804697B2 (en) * 2007-12-11 2010-09-28 Cirrus Logic, Inc. History-independent noise-immune modulated transformer-coupled gate control signaling method and apparatus
JP2009148111A (ja) * 2007-12-17 2009-07-02 Panasonic Corp Dc−dcコンバータ
US8760141B2 (en) * 2008-01-04 2014-06-24 The Hong Kong University Of Science And Technology Frequency-hopping pulse-width modulator for switching regulators
US8022683B2 (en) 2008-01-30 2011-09-20 Cirrus Logic, Inc. Powering a power supply integrated circuit with sense current
US7755525B2 (en) 2008-01-30 2010-07-13 Cirrus Logic, Inc. Delta sigma modulator with unavailable output values
US8576589B2 (en) 2008-01-30 2013-11-05 Cirrus Logic, Inc. Switch state controller with a sense current generated operating voltage
US8008898B2 (en) * 2008-01-30 2011-08-30 Cirrus Logic, Inc. Switching regulator with boosted auxiliary winding supply
US7759881B1 (en) 2008-03-31 2010-07-20 Cirrus Logic, Inc. LED lighting system with a multiple mode current control dimming strategy
US8008902B2 (en) * 2008-06-25 2011-08-30 Cirrus Logic, Inc. Hysteretic buck converter having dynamic thresholds
US8212491B2 (en) 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8344707B2 (en) 2008-07-25 2013-01-01 Cirrus Logic, Inc. Current sensing in a switching power converter
US8279628B2 (en) 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
US8143865B2 (en) * 2008-08-22 2012-03-27 Active-Semi, Inc. Average current mode controlled converter having a buck mode, a boost mode, and a partial four-switch mode
US8487546B2 (en) 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
US8179110B2 (en) * 2008-09-30 2012-05-15 Cirrus Logic Inc. Adjustable constant current source with continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operation
US8222872B1 (en) 2008-09-30 2012-07-17 Cirrus Logic, Inc. Switching power converter with selectable mode auxiliary power supply
US8288954B2 (en) 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
US8362707B2 (en) 2008-12-12 2013-01-29 Cirrus Logic, Inc. Light emitting diode based lighting system with time division ambient light feedback response
US8299722B2 (en) 2008-12-12 2012-10-30 Cirrus Logic, Inc. Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US7994863B2 (en) 2008-12-31 2011-08-09 Cirrus Logic, Inc. Electronic system having common mode voltage range enhancement
WO2010083202A1 (en) * 2009-01-13 2010-07-22 The Board Of Trustees Of The University Of Alabama Sensor-less operation and detection of ccm and dcm operation modes in synchronous switching power converters
US8482223B2 (en) 2009-04-30 2013-07-09 Cirrus Logic, Inc. Calibration of lamps
US8212493B2 (en) 2009-06-30 2012-07-03 Cirrus Logic, Inc. Low energy transfer mode for auxiliary power supply operation in a cascaded switching power converter
US8248145B2 (en) 2009-06-30 2012-08-21 Cirrus Logic, Inc. Cascode configured switching using at least one low breakdown voltage internal, integrated circuit switch to control at least one high breakdown voltage external switch
US8198874B2 (en) * 2009-06-30 2012-06-12 Cirrus Logic, Inc. Switching power converter with current sensing transformer auxiliary power supply
US8963535B1 (en) 2009-06-30 2015-02-24 Cirrus Logic, Inc. Switch controlled current sensing using a hall effect sensor
TWI398763B (zh) * 2009-07-17 2013-06-11 Delta Electronics Inc 交換式電源轉換電路及其所適用之電源供應器
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US9178415B1 (en) 2009-10-15 2015-11-03 Cirrus Logic, Inc. Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter
US8487591B1 (en) 2009-12-31 2013-07-16 Cirrus Logic, Inc. Power control system with power drop out immunity and uncompromised startup time
US8654483B2 (en) 2009-11-09 2014-02-18 Cirrus Logic, Inc. Power system having voltage-based monitoring for over current protection
US8446133B2 (en) * 2010-01-08 2013-05-21 Mediatek Inc. Methods and control circuits for controlling buck-boost converting circuit to generate regulated output voltage under reduced average inductor current
US8912781B2 (en) 2010-07-30 2014-12-16 Cirrus Logic, Inc. Integrated circuit switching power supply controller with selectable buck mode operation
US8866452B1 (en) 2010-08-11 2014-10-21 Cirrus Logic, Inc. Variable minimum input voltage based switching in an electronic power control system
US9510401B1 (en) 2010-08-24 2016-11-29 Cirrus Logic, Inc. Reduced standby power in an electronic power control system
US9313840B2 (en) 2011-06-03 2016-04-12 Cirrus Logic, Inc. Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter
US9351356B2 (en) 2011-06-03 2016-05-24 Koninklijke Philips N.V. Primary-side control of a switching power converter with feed forward delay compensation
KR101877552B1 (ko) 2011-10-12 2018-07-12 한국전자통신연구원 Dc-dc 컨버터
EP2792059B1 (en) 2011-12-14 2020-07-15 Signify Holding B.V. Isolation of secondary transformer winding current during auxiliary power supply generation
US8896383B2 (en) 2012-04-30 2014-11-25 Qualcomm Incorporated Enhanced pulse frequency modulation (PFM) control mode for switching regulators
US9520794B2 (en) 2012-07-25 2016-12-13 Philips Lighting Holding B.V Acceleration of output energy provision for a load during start-up of a switching power converter
EP2965592A1 (en) 2013-03-07 2016-01-13 Koninklijke Philips N.V. Utilizing secondary-side conduction time parameters of a switching power converter to provide energy to a load
US9523724B2 (en) 2013-04-05 2016-12-20 Texas Instruments Incorporated Tracking energy consumption using a boost technique
US9231476B2 (en) * 2013-05-01 2016-01-05 Texas Instruments Incorporated Tracking energy consumption using a boost-buck technique
WO2014186765A1 (en) 2013-05-17 2014-11-20 Cirrus Logic, Inc. Single pin control of bipolar junction transistor (bjt)-based power stage
WO2014186776A1 (en) 2013-05-17 2014-11-20 Cirrus Logic, Inc. Charge pump-based circuitry for bjt power supply
US9106134B2 (en) * 2013-06-21 2015-08-11 O2Micro, Inc. Power transfer devices
WO2015017317A2 (en) 2013-07-29 2015-02-05 Cirrus Logic, Inc. Two terminal drive of bipolar junction transistor (bjt) for switch-mode operation of a light emitting diode (led)-based bulb
US9504106B2 (en) 2013-07-29 2016-11-22 Cirrus Logic, Inc. Compensating for a reverse recovery time period of a bipolar junction transistor (BJT) in switch-mode operation of a light-emitting diode (LED)-based bulb
US9214862B2 (en) 2014-04-17 2015-12-15 Philips International, B.V. Systems and methods for valley switching in a switching power converter
US9325236B1 (en) 2014-11-12 2016-04-26 Koninklijke Philips N.V. Controlling power factor in a switching power converter operating in discontinuous conduction mode
US9504118B2 (en) 2015-02-17 2016-11-22 Cirrus Logic, Inc. Resistance measurement of a resistor in a bipolar junction transistor (BJT)-based power stage
US9609701B2 (en) 2015-02-27 2017-03-28 Cirrus Logic, Inc. Switch-mode drive sensing of reverse recovery in bipolar junction transistor (BJT)-based power converters
US9603206B2 (en) 2015-02-27 2017-03-21 Cirrus Logic, Inc. Detection and control mechanism for tail current in a bipolar junction transistor (BJT)-based power stage
CN105490534B (zh) * 2015-12-24 2018-08-21 成都信息工程大学 一种电流模控制dcdc升压变化器及其脉冲频率调制方法
WO2017223118A1 (en) 2016-06-21 2017-12-28 Eagle Harbor Technologies, Inc. High voltage pre-pulsing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731694A (en) * 1993-03-23 1998-03-24 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broard current ranges in a switching regulator circuit
US6057675A (en) * 1998-05-11 2000-05-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC/DC converter
CN1061183C (zh) * 1995-03-31 2001-01-24 太空系统/罗拉尔有限公司 功率变换器及其克服振荡的方法
JP2004120940A (ja) * 2002-09-27 2004-04-15 Texas Instr Japan Ltd Dc−dcコンバータ
CN1167183C (zh) * 2002-08-01 2004-09-15 上海交通大学 直流-直流变换集成电路
US6954054B2 (en) * 2003-10-17 2005-10-11 International Business Machines Corporation Total feed forward switching power supply control

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349703A (en) * 1980-03-31 1982-09-14 International Telephone And Telegraph Corporation Programmable ring signal generator
KR100387895B1 (ko) * 1995-02-28 2003-12-18 가부시키가이샤디비이 직류-직류변환기
TW312759B (zh) * 1995-09-27 1997-08-11 Mitsubishi Electric Corp
TW337054B (en) * 1995-09-28 1998-07-21 Toshiba Co Ltd Horizontal synchronous signal oscillation circuit
US5694029A (en) * 1996-01-02 1997-12-02 Dell Usa, L.P. Digital measurement of switching regulator current
US5945820A (en) * 1997-02-06 1999-08-31 The Board Of Trustees Of The Leland Stanford Junior University DC-DC switching regulator with switching rate control
US5870296A (en) * 1997-10-14 1999-02-09 Maxim Integrated Products, Inc. Dual interleaved DC to DC switching circuits realized in an integrated circuit
US6058030A (en) * 1997-11-20 2000-05-02 Intersil Corporation Multiple output DC-to-DC converter having enhanced noise margin and related methods
KR20000004852A (ko) * 1998-06-16 2000-01-25 김철규 골프스윙 보조장치
US6154015A (en) * 1998-07-14 2000-11-28 Ricoh Company, Ltd. DC-DC converter
KR20010085986A (ko) 1998-10-30 2001-09-07 추후제출 디지털 전압 조정을 위한 장치 및 방법
TW428363B (en) * 1999-01-06 2001-04-01 Faraday Tech Corp Digital programmable DC voltage-drop converter
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
JP2001359273A (ja) * 2000-06-14 2001-12-26 Toshiba Corp 電源装置及びこの電源装置を有する情報処理装置
US6448746B1 (en) * 2000-06-30 2002-09-10 Intel Corporation Multiple phase voltage regulator system
US6400127B1 (en) * 2001-02-12 2002-06-04 Philips Electronics North America Corporation Dual mode pulse-width modulator for power control applications
JP3437174B2 (ja) * 2001-04-12 2003-08-18 沖電気工業株式会社 省電力化集積回路および省電力化集積回路の制御方法
JP4163015B2 (ja) * 2003-01-24 2008-10-08 シャープ株式会社 スイッチング電源回路、および、それを用いた電子機器
US6940189B2 (en) * 2003-07-31 2005-09-06 Andrew Roman Gizara System and method for integrating a digital core with a switch mode power supply
US7098640B2 (en) * 2004-07-06 2006-08-29 International Rectifier Corporation Method and apparatus for intelligently setting dead time

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731694A (en) * 1993-03-23 1998-03-24 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broard current ranges in a switching regulator circuit
CN1061183C (zh) * 1995-03-31 2001-01-24 太空系统/罗拉尔有限公司 功率变换器及其克服振荡的方法
US6057675A (en) * 1998-05-11 2000-05-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC/DC converter
CN1167183C (zh) * 2002-08-01 2004-09-15 上海交通大学 直流-直流变换集成电路
JP2004120940A (ja) * 2002-09-27 2004-04-15 Texas Instr Japan Ltd Dc−dcコンバータ
US6954054B2 (en) * 2003-10-17 2005-10-11 International Business Machines Corporation Total feed forward switching power supply control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
同上.

Also Published As

Publication number Publication date
WO2006074371A2 (en) 2006-07-13
WO2006074371A3 (en) 2006-12-21
GB2437043B (en) 2010-06-02
GB2437043A (en) 2007-10-10
KR101148238B1 (ko) 2012-05-21
US7221130B2 (en) 2007-05-22
CN101218554A (zh) 2008-07-09
TW200636423A (en) 2006-10-16
US20060145678A1 (en) 2006-07-06
KR20070107019A (ko) 2007-11-06
GB0715151D0 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
CN101218554B (zh) 一种用于调整功率变换器输出端子处的输出电压的方法
US10992231B1 (en) Buck-boost converter and control method
CN104393758B (zh) 滞后控制降压‑升压变换器
TWI463778B (zh) 電流模式直流轉換器及其直流轉換方法
Zhang et al. Bidirectional DC-DC converter modeling and unified controller with digital implementation
JP4926625B2 (ja) スイッチングレギュレータ及びそのスイッチングレギュレータを有する半導体装置
US9473029B2 (en) Adaptive low-power zero-cross comparator for discontinuous current mode operated switching mode power supply
CN108075656A (zh) Dc-dc转换器控制器
CN101771339A (zh) 一种用于开关电源的软启动电路
CN101164023B (zh) 结合周期跳步调节输入功率耦合时间的功率转换器
US10784783B1 (en) Charge-cycle control for burst-mode DC-DC converters
US20230412076A1 (en) Switched-mode power supply
CN104617771A (zh) 开关电源转换器系统及其控制方法
US11038427B1 (en) Charge-cycle control for burst-mode DC-DC converters
CN104779792A (zh) 车载充电器dc-dc系统的控制电路及控制方法
Pernía et al. A modular strategy for isolated photovoltaic systems based on microcontroller
CN101583918A (zh) 具有省电的有限操作和克服振铃的调节的功率变换器
US9537390B2 (en) Control circuit, control method, DC-DC converter and electronic device
Ma et al. An automatic peak-valley current mode step-up/step-down DC-DC converter with smooth transition
Hsieh et al. A novel precise step-shaped soft-start technique for integrated DC-DC converter
US20210099092A1 (en) Methods and systems of operating power converters
CN104467426B (zh) 一种数字dc‑dc开关电源电路
Wang et al. Low-ripple hysteretic-controlled monolithic buck converter with adapted switching frequency for large step-down ratio applications
Veerachary Digital controller design for fourth-order soft-switching boost converter
Glaser High-efficiency, low-ripple DCS-Control™ offers seamless PWM/power-save transitions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080627

Address after: California, USA

Applicant after: FYRE STORM,Inc.

Address before: California, USA

Applicant before: FYRE STORM, Inc.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120125

Termination date: 20130105