CN101216175A - Oxygen carrier oxidation combustion method and device thereof - Google Patents
Oxygen carrier oxidation combustion method and device thereof Download PDFInfo
- Publication number
- CN101216175A CN101216175A CNA200710190246XA CN200710190246A CN101216175A CN 101216175 A CN101216175 A CN 101216175A CN A200710190246X A CNA200710190246X A CN A200710190246XA CN 200710190246 A CN200710190246 A CN 200710190246A CN 101216175 A CN101216175 A CN 101216175A
- Authority
- CN
- China
- Prior art keywords
- oxygen
- separator
- oxygen carrier
- air
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 239000001301 oxygen Substances 0.000 title claims abstract description 137
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 137
- 230000003647 oxidation Effects 0.000 title claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 7
- 238000009841 combustion method Methods 0.000 title claims description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000446 fuel Substances 0.000 claims abstract description 49
- 238000002309 gasification Methods 0.000 claims abstract description 38
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 30
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 30
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 25
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 7
- 238000006722 reduction reaction Methods 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 230000008929 regeneration Effects 0.000 claims description 38
- 238000011069 regeneration method Methods 0.000 claims description 38
- 239000003546 flue gas Substances 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 239000003245 coal Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000000571 coke Substances 0.000 claims description 12
- 239000002006 petroleum coke Substances 0.000 claims description 12
- 230000002950 deficient Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 7
- 238000005243 fluidization Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 abstract description 10
- 238000010248 power generation Methods 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
本发明公开了一种载氧体载氧气化燃烧方法以及装置,其方法为将载氧体置于空气反应器流化床内,通入流化空气,氧体与空气中的氧气反应后得到被升温的高价态金属氧化物,再使其经两级分离器分离;分离后的高温贫氧空气从分离器的上端排出,分离后的载氧体,经过返料腿,进入混合气化室;在空气反应器循环流化床内,载氧体与空气中的氧气发生栽氧反应:反应生成的载氧体,经两级分离器分离后,进入料腿,与燃料一起,进入燃料反应器流化床下部气化室,在气化室,燃料与水蒸气发生气化反应,生成合成气。同时载氧体释放出氧,与合成气或燃料发生还原反应,生成二氧化碳。
The invention discloses a method and device for oxygen-carrying oxidation combustion of an oxygen carrier. The method is that the oxygen carrier is placed in an air reactor fluidized bed, and fluidized air is passed through, and the oxygen body reacts with oxygen in the air to obtain a The heated high-valence metal oxide is then separated by a two-stage separator; the separated high-temperature oxygen-poor air is discharged from the upper end of the separator, and the separated oxygen carrier passes through the return leg and enters the mixed gasification chamber; In the circulating fluidized bed of the air reactor, the oxygen carrier reacts with the oxygen in the air: the oxygen carrier produced by the reaction enters the dipleg after being separated by the two-stage separator, and enters the fuel reactor together with the fuel The gasification chamber at the lower part of the fluidized bed. In the gasification chamber, fuel and water vapor undergo a gasification reaction to generate syngas. At the same time, the oxygen carrier releases oxygen, which undergoes reduction reaction with synthesis gas or fuel to generate carbon dioxide.
Description
技术领域technical field
本发明涉及一种利用载氧体将煤/天然焦/石油焦进行类似于水蒸气气化和纯氧燃烧的过程,实现燃烧过程中进行二氧化碳分离的方法和装置,尤其涉及一种载氧体载氧气化燃烧方法及其装置。The invention relates to a method and device for separating carbon dioxide during the combustion process by using an oxygen carrier to carry out a process similar to steam gasification and pure oxygen combustion of coal/natural coke/petroleum coke, especially to an oxygen carrier Oxygen-carrying oxidation combustion method and device thereof.
背景技术Background technique
能源利用的可持续发展策略之一,实现能源的高效清洁利用。煤、天然焦以及石油焦等作为能源,在燃烧过程中,减少二氧化碳的排放,实现高效清洁利用是今后发展方向。常规空气直接燃烧,除了伴有氮氧化物生成,烟气中二氧化碳脱除消耗能量大;通过煤气化再进行二氧化碳分离和燃烧的方法,也需要消耗制氧和分离二氧化碳的能量消耗。此方法如用于发电,消耗的能量可占厂用电率10%以上,严重影响能量利用效率。One of the sustainable development strategies of energy utilization is to realize the efficient and clean utilization of energy. Coal, natural coke and petroleum coke are used as energy sources. During the combustion process, reducing carbon dioxide emissions and realizing efficient and clean utilization is the future development direction. Conventional air direct combustion, in addition to the formation of nitrogen oxides, consumes a lot of energy to remove carbon dioxide from the flue gas; the method of carbon dioxide separation and combustion through coal gasification also requires energy consumption for oxygen production and carbon dioxide separation. If this method is used for power generation, the energy consumed can account for more than 10% of the power consumption rate of the factory, which seriously affects the energy utilization efficiency.
发明内容Contents of the invention
本发明提供一种能够分离得到二氧化碳的载氧体载氧气化燃烧方法及其装置,由本发明将煤/天然焦/石油焦进行能量转换的同时能有效分离二氧化碳,具有不需消耗额外的能量消耗且利于环保的优点。The present invention provides an oxygen-carrier oxygen-carrying oxidative combustion method capable of separating and obtaining carbon dioxide and its device. The present invention can effectively separate carbon dioxide while performing energy conversion on coal/natural coke/petroleum coke, and does not need to consume additional energy consumption. And it is beneficial to the advantages of environmental protection.
本发明的方法技术方案如下:Method technical scheme of the present invention is as follows:
一种载氧体载氧气化燃烧方法,将作为载氧体的低价态金属氧化物或金属单质置于空气反应器流化床内,从空气反应器流化床的下端通入流化空气,低价态金属氧化物或金属单质载氧体与空气中的氧气反应后得到被升温的高价态金属氧化物,再使其经两级分离器分离;分离后的高温贫氧空气从分离器的上端排出,分离后的载氧体,经过返料腿,进入燃料反应器流化床的下部混合气化室;燃料反应器流化床的下端通入气化介质蒸汽,在混合气化室中,由载氧体提供煤、天然焦或石油焦与水蒸气气化的热量,气化后的合成气与载氧体发生还原反应,将高价态的金属氧化物还原为低价态的金属氧化物或金属单质,在燃料反应器流化床上部提升管内充分反应,然后进入分离器,分离后的洁净二氧化碳水蒸气混合气从该分离器上端排出,凝结出水后得到纯净的二氧化碳;分离后的载氧体和残碳混合固体物经载氧体循环料腿进入空气反应器流化床,将载氧体再生,实现载氧。An oxygen-carrier oxygen-carrying oxidation combustion method, the low-valence metal oxide or metal element as the oxygen carrier is placed in the fluidized bed of the air reactor, and fluidized air is introduced from the lower end of the fluidized bed of the air reactor, Low-valence metal oxides or metal elemental oxygen carriers react with oxygen in the air to obtain heated high-valence metal oxides, which are then separated by a two-stage separator; the separated high-temperature oxygen-deficient air passes through the The upper end is discharged, and the separated oxygen carrier passes through the return leg and enters the lower mixed gasification chamber of the fluidized bed of the fuel reactor; the lower end of the fluidized bed of the fuel reactor is passed into the gasification medium steam, , the oxygen carrier provides the heat for the gasification of coal, natural coke or petroleum coke and water vapor, and the gasified synthesis gas undergoes a reduction reaction with the oxygen carrier to reduce the high-valence metal oxide to the low-valence metal oxide The substance or metal element reacts fully in the upper riser of the fluidized bed of the fuel reactor, and then enters the separator, and the separated clean carbon dioxide and water vapor mixture is discharged from the upper end of the separator, and pure carbon dioxide is obtained after condensing water; the separated The mixed solid matter of oxygen carrier and carbon residue enters the air reactor fluidized bed through the oxygen carrier circulation material leg, and the oxygen carrier is regenerated to realize oxygen carrying.
本发明的装置技术方案如下:Device technical scheme of the present invention is as follows:
一种用于实施权利要求1所述载氧体方法的装置,由空气反应器流化床、载氧载热返料管、载氧体再生分离器、载氧体再生返料管和燃料反应器流化床组成,空气反应器流化床的上端连接有贫氧空气分离器,贫氧空气分离器下端排料口与载氧载热返料管的一端相连,载氧载热返料管的另一端与燃料反应器流化床的下端相连,燃料反应器流化床的上端与载氧体再生分离器的上端相连,载氧体再生分离器下端与载氧体再生返料管的一端相连,载氧体再生返料管的另一端与空气反应器流化床的下部相连。A device for implementing the oxygen-carrier method described in
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
(1)在空气反应器循环流化床内,载氧体(如:低价态氧化铁、镍、铜、锌等)与空气中的氧气发生栽氧反应:(1) In the circulating fluidized bed of the air reactor, the oxygen carrier (such as: low-valent iron oxide, nickel, copper, zinc, etc.) reacts with the oxygen in the air:
2Ni+O2→2NiO+放热2Ni+O 2 →2NiO+exothermic
2FexOy+O2→2FexOy+1+放热2Fe x O y + O 2 → 2Fe x O y + 1 + exotherm
2Cu+O2→2CuO+放热2Cu+O 2 →2CuO+exothermic
2Zn+O2→2ZnO+放热2Zn+O 2 →2ZnO+exothermic
反应生成的载氧体(如:高价态氧化铁、氧化镍、氧化铜、氧化锌等),经两级分离器分离后,进入料腿,与燃料一起,进入燃料反应器流化床下部气化室,在气化室,燃料与水蒸气发生气化反应,生成合成气。同时载氧体(简化为MexOy)释放出氧,与合成气或燃料发生还原反应,生成二氧化碳:The oxygen carrier generated by the reaction (such as: high-valent iron oxide, nickel oxide, copper oxide, zinc oxide, etc.), after being separated by the two-stage separator, enters the dipleg, and together with the fuel, enters the lower part of the fluidized bed of the fuel reactor. In the gasification chamber, fuel and water vapor undergo a gasification reaction to generate syngas. At the same time, the oxygen carrier (simplified as M x O y ) releases oxygen, which undergoes a reduction reaction with syngas or fuel to generate carbon dioxide:
H2O+C→4H2+CO+吸热H 2 O+C→4H 2 +CO+ endothermic
MexOy+1+CO→CO2+MexOy+吸热Me x O y+1 +CO→CO 2 +Me x O y + endothermic
MexOy+1+H2→H2O+MexOy+吸热Me x O y+1 +H 2 →H 2 O+Me x O y + endothermic
2MexOy+1+C→CO2+2MexOy+吸热2Me x O y+1 +C→CO 2 +2Me x O y + endothermic
产生的烟气,经过两组旋风分离器,排出烟气,烟气经能量回收冷凝即为纯净的二氧化碳,分离器将分离出固体物料分为两股。其中一股固体物料经料腿进入空气反应器流化床,进行氧化再生反应,完成载氧再生过程;另一股进入燃料反应器流化床,进行气化和还原反应,提高碳的转化率。The generated flue gas passes through two sets of cyclone separators to discharge the flue gas. After energy recovery and condensation, the flue gas becomes pure carbon dioxide. The separator separates the separated solid material into two streams. One of the solid materials enters the fluidized bed of the air reactor through the material leg, and undergoes an oxidation regeneration reaction to complete the oxygen-carrying regeneration process; the other enters the fluidized bed of the fuel reactor for gasification and reduction reactions to increase the conversion rate of carbon .
(2)本发明采用了两组烟气分离器,可以将燃料反应器流化床分离器的固体物料分离分为两股,通过连接管道,将固体物料分别送入空气反应器流化床和燃料反应器流化床。空气反应器流化床运行温度可控制在800℃~1250℃左右,剩余热量可以通过铺设受热面或加大空气流量予以控制;燃料反应器流化床下部混合气化室温度控制在800℃~1200℃左右,上部提升管温度可以稍低在500℃~900℃范围内运行。(2) The present invention has adopted two groups of flue gas separators, can separate the solid material of the fuel reactor fluidized bed separator into two strands, and by connecting pipelines, the solid material is sent into the air reactor fluidized bed and the air reactor fluidized bed respectively Fuel Reactor Fluidized Bed. The operating temperature of the fluidized bed of the air reactor can be controlled at about 800 ° C ~ 1250 ° C, and the remaining heat can be controlled by laying the heating surface or increasing the air flow; the temperature of the mixed gasification chamber at the lower part of the fluidized bed of the fuel reactor is controlled at 800 ° C ~ Around 1200°C, the temperature of the upper riser can be slightly lower in the range of 500°C to 900°C.
(3)本发明通过金属氧化物作为载氧体,与水蒸气、煤/天然焦/石油焦在900℃~1250℃的条件下,进行气化与燃烧,与采用纯氧燃烧方式具有相同的烟气成分(即得到只含二氧化碳和水蒸气的烟气),但是无需制取纯氧的能量消耗(通常对于发电来说,其制氧能量消耗占厂用电10%以上),而且没有NOx生成,能量转换过程中对外排放能得到有效的控制。(3) The present invention uses metal oxides as oxygen carriers to carry out gasification and combustion with water vapor, coal/natural coke/petroleum coke at a temperature of 900°C to 1250°C, which has the same advantages as using pure oxygen combustion. Flue gas composition (that is, to obtain flue gas containing only carbon dioxide and water vapor), but there is no need for the energy consumption of producing pure oxygen (usually for power generation, the energy consumption of oxygen production accounts for more than 10% of the power consumption of the plant), and there is no NOx Generation, and the external emissions during the energy conversion process can be effectively controlled.
附图说明Description of drawings
图1是本发明实施例结构示意图,图中H为贫氧空气出口,I1和I2为二氧化碳水蒸气出口,B为补充载氧体入口,F为燃料入口。Fig. 1 is a structural schematic diagram of an embodiment of the present invention, in which H is an oxygen-poor air outlet, I1 and I2 are carbon dioxide water vapor outlets, B is a supplementary oxygen carrier inlet, and F is a fuel inlet.
图2是本发明实施例的一种利用方案。Fig. 2 is an utilization scheme of the embodiment of the present invention.
具体实施方式Detailed ways
实施例1Example 1
一种载氧体载氧气化燃烧方法,将作为载氧体的低价态金属氧化物或金属单质置于空气反应器流化床内,作为载氧体的金属氧化物是Fe2O3、FeO、Fe3O4、CuO、Cu2O、NiO、ZnO,作为载氧体的金属单质是Fe、Cu、Zn、Ni。然后从空气反应器流化床的下端C通入流化空气,低价态金属氧化物或金属单质载氧体与空气中的氧气反应后得到被升温的高价态金属氧化物,再使其经两级分离器分离;分离后的高温贫氧空气从分离器的上端H排出,分离后的载氧体,经过返料腿,进入燃料反应器流化床的下部混合气化室;燃料反应器流化床的下端E通入气化介质蒸汽,在混合气化室中,由载氧体提供煤、天然焦或石油焦与水蒸气气化的热量,气化后的合成气与载氧体发生还原反应,将高价态的金属氧化物还原为低价态的金属氧化物或金属单质,在燃料反应器流化床上部提升管内充分反应,然后进入分离器,分离后的洁净二氧化碳水蒸气混合气从该分离器上端I1排出,凝结出水后得到纯净的二氧化碳;分离后的载氧体和残碳混合固体物经载氧体循环料腿4进入空气反应器流化床,将载氧体再生,实现载氧。An oxygen-carrying oxygen-carrying oxidation combustion method, the low-valence metal oxide or metal element as the oxygen carrier is placed in the fluidized bed of the air reactor, and the metal oxide as the oxygen carrier is Fe2O3 , FeO, Fe 3 O 4 , CuO, Cu 2 O, NiO, and ZnO, and the metal element as the oxygen carrier is Fe, Cu, Zn, and Ni. Then, the fluidized air is introduced from the lower end C of the fluidized bed of the air reactor, and the low-valence metal oxide or metal elemental oxygen carrier reacts with the oxygen in the air to obtain the heated high-valence metal oxide, and then make it pass through two Stage separator separation; the separated high-temperature oxygen-depleted air is discharged from the upper end H of the separator, and the separated oxygen carrier passes through the return leg and enters the lower mixed gasification chamber of the fuel reactor fluidized bed; the fuel reactor flow The lower end E of the gasification bed is fed with gasification medium steam. In the mixed gasification chamber, the oxygen carrier provides the heat for the gasification of coal, natural coke or petroleum coke and water vapor. The gasified synthesis gas and the oxygen carrier generate Reduction reaction, reducing high-valence metal oxides to low-valence metal oxides or simple metals, fully reacting in the upper riser of the fluidized bed of the fuel reactor, and then entering the separator, the separated clean carbon dioxide and water vapor mixture It is discharged from the upper end I1 of the separator, and pure carbon dioxide is obtained after condensing the water; the separated oxygen carrier and carbon residue mixed solid matter enters the fluidized bed of the air reactor through the oxygen carrier
高价态的金属氧化物还原为低价态的金属氧化物或金属单质,在燃料反应器流化床上部提升管内充分反应之后,部分进入另一分离器,分离后的洁净二氧化碳水蒸气混合气从该分离器上端I2排出,经该分离器分离后的载氧体和残碳混合固体物经过残碳循环料腿5-4,再返回进入燃料反应器流化床下部的气化反应室,提高碳燃烬率。High-valence metal oxides are reduced to low-valence metal oxides or simple metals. After fully reacting in the upper riser of the fluidized bed of the fuel reactor, part of them enters another separator. The separated clean carbon dioxide and water-steam mixture is released from The upper end I2 of the separator is discharged, and the oxygen carrier and carbon residue mixed solids separated by the separator pass through the carbon residue circulation dipleg 5-4, and then return to the gasification reaction chamber at the lower part of the fluidized bed of the fuel reactor to improve Carbon burnout rate.
下面进行进一步的详细说明:将作为载氧体的低价态金属氧化物或金属单质置于空气反应器流化床内,从空气反应器流化床的下部通入流化空气,空气反应器流化床运行温度可控制在800℃~1250℃左右,此时,低价态金属氧化物或金属单质载氧体与空气中的氧气反应后得到高价态金属氧化物,再使经两级分离器,分离后的高温洁净欠氧空气可以做功发电或余热利用;分离后的载氧体,经过返料腿,进入燃料反应器流化床的下部混合气化室,高温载氧体提供煤/天然焦/石油焦与水蒸气气化的热量,混合气化室温度控制在800℃~1200℃左右;此时,煤/天然焦/石油焦与水蒸气发生气化反应,气化后的合成气与载氧体可在气化室发生还原反应,将高价态的金属氧化物还原为低价态的金属氧化物或金属单质,在流化床提升管内充分反应,提升管温度可以稍低在500℃~900℃范围内运行;此后,烟气进入两组两级分离器,分离后的洁净二氧化碳水蒸气混合气,经做功发电或余热利用,凝结出水后得到纯净的二氧化碳;其中一组分离后的载氧体(含有未反应完的残碳)经过料腿,再返回进入燃料反应器流化床下部的气化反应室,提高碳燃烬率;另一组分离后的载氧体经料腿进入空气反应器流化床,将载氧体再生,实现载氧。燃料反应器流化床内反应生成物低价态金属氧化物或金属单质,通过两组燃料反应器流化床分离器,将低价态金属氧化物或金属单质载氧体分为两股,其中一股还原态载氧体(含有未反应完的残碳)经料腿返回进入燃料反应器流化床下部气化室,进一步提高碳的转化率,提高燃烬率;另一股还原态载氧体(含有未反应完的残碳)经料腿进入空气反应器流化床,将还原态载氧体氧化为氧化态载氧体,并提高温度,经过空气反应器流化床分离器,再作为载氧载热体进入到燃料反应器流化床下部的气化室。Further detailed description is given below: the low-valence metal oxide or metal element as the oxygen carrier is placed in the fluidized bed of the air reactor, and the fluidized air is introduced from the lower part of the fluidized bed of the air reactor, and the air reactor flows The operating temperature of the chemical bed can be controlled at about 800°C to 1250°C. At this time, the low-valence metal oxide or metal elemental oxygen carrier reacts with the oxygen in the air to obtain a high-valence metal oxide, and then passes through the two-stage separator , the separated high-temperature clean oxygen-depleted air can be used for power generation or waste heat utilization; the separated oxygen carrier, through the return leg, enters the lower mixed gasification chamber of the fluidized bed of the fuel reactor, and the high-temperature oxygen carrier provides coal/natural The heat of gasification of coke/petroleum coke and water vapor, the temperature of the mixed gasification chamber is controlled at about 800 ℃ ~ 1200 ℃; at this time, coal/natural coke/petroleum coke and water vapor undergo gasification reaction, and the gasified The reduction reaction with the oxygen carrier can occur in the gasification chamber, and the metal oxide in the high-valence state can be reduced to the metal oxide in the low-valence state or the metal element, which can fully react in the riser of the fluidized bed, and the temperature of the riser can be slightly lower at 500 ℃ ~ 900 ℃; after that, the flue gas enters two sets of two-stage separators, and the separated clean carbon dioxide and water vapor mixture is condensed to obtain pure carbon dioxide after power generation or waste heat utilization; one of them is separated The oxygen carrier (containing unreacted carbon residue) passes through the material leg, and then returns to the gasification reaction chamber at the lower part of the fluidized bed of the fuel reactor to increase the carbon burn-out rate; the other group of separated oxygen carriers passes through the material The legs enter the fluidized bed of the air reactor to regenerate the oxygen carrier to realize oxygen carrying. The reaction product in the fuel reactor fluidized bed is a low-valence metal oxide or metal element, and the low-valence metal oxide or metal element oxygen carrier is divided into two streams through two sets of fuel reactor fluidized bed separators. One of the reduced oxygen carriers (containing unreacted residual carbon) returns to the gasification chamber at the lower part of the fluidized bed of the fuel reactor through the material leg to further increase the conversion rate of carbon and increase the burnout rate; The oxygen carrier (containing unreacted residual carbon) enters the air reactor fluidized bed through the material leg, oxidizes the reduced oxygen carrier to the oxidized oxygen carrier, and raises the temperature, and passes through the air reactor fluidized bed separator , and then enter the gasification chamber at the lower part of the fluidized bed of the fuel reactor as an oxygen-carrying heat carrier.
实施例Example
一种用于实施所述载氧体方法的装置,由空气反应器流化床1、载氧载热返料管2、载氧体再生分离器3、载氧体再生返料管4和燃料反应器流化床5组成,空气反应器流化床1的上端连接有贫氧空气分离器1-1,贫氧空气分离器1-1下端排料口与载氧载热返料管2的一端相连,载氧载热返料管2的另一端与燃料反应器流化床5的下端相连,燃料反应器流化床5的上端与载氧体再生分离器3的上端相连,载氧体再生分离器3下端与载氧体再生返料管4的一端相连,载氧体再生返料管4的另一端与空气反应器流化床1的下部相连。在空气反应器循环流化床1的下端设有载氧体补充口B。燃料反应器循环流化床5由提升管式、混合气化反应室5-3和过渡段5-2组成,提升管式通过过渡段5-2与混合气化反应室5-3连接。一级贫氧空气分离器1-1的上部出口连通有二级贫氧空气分离器1-2,二级贫氧空气分离器1-2上端设贫氧空气出口H,一级贫氧空气分离器1-1下端连接有载氧体返料腿1-3,二级贫氧空气分离器1-2的下部和载氧体返料腿1-3相通,载氧体返料腿1-3的下端连接有移动床1-4,移动床1-4下端设有流化风进口A,移动床1-4下部设有物料出口且将该物料出口作为贫氧空气分离器1-1的下端排料口使用。在燃料反应器流化床5的上端还连接有残碳分离器,该残碳分离器由一级烟气残碳分离器5-1和二级烟气残碳分离器5-5,一级烟气残碳分离器5-1下端连接有残碳返料腿5-6,残碳返料腿5-6和二级烟气残碳分离器5-5出口相通,残碳返料腿5-6下端与移动床5-7相连,移动床5-7下端设有流化风进口G,移动床5-7下部设有物料出口,通过循环返料管5-4与反应器流化床5的下部连通。载氧体再生分离器3由一级烟气载氧体再生分离器3-1和二级烟气载氧体再生分离器3-2组成,一级烟气载氧体再生分离器3-1和二级烟气载氧体再生分离器3-2出口相通,一级烟气载氧体再生分离器3-1的出口连接有载氧体再生返料腿,载氧体再生返料腿3的下端连接有移动床3-3,移动床3-3下端设有流化风进口D,移动床3-3下部设有物料出口且该物料出口与载氧体再生返料管4的一端相连。A device for implementing the oxygen carrier method, comprising an air reactor fluidized
实施例3Example 3
一种利用本发明实现在煤/天然焦/石油焦燃烧过程中进行二氧化碳分离的方法,即:用煤/天然焦/石油焦进行洁净发电,同时实现二氧化碳的分离。参照图2,空气经过压气机8压缩后,变为高压空气,进入实施例1的空气反应器流化床,经过与还原态载氧体反应,得到高温高压贫氧空气经空气反应器载氧体分离器分离,高压贫氧空气进入透平7膨胀做功,带动发电机6发电,透平7排气再进入余热回收发电系统9产生电力或蒸汽。经空气反应器载氧体分离器分离的载氧体进入燃料反应器流化床,与余热回收发电系统9或12产生的蒸汽E以及煤/天然焦/石油焦F气化和燃烧,生成高温烟气,高温烟气要求经过两组燃料反应器分离器分离,烟气经过透平10膨胀做功,带动发电机11发电,透平10排气再进入余热回收发电系统12产生电力或蒸汽,余热回收发电系统12尾气K经过冷凝即为纯净的二氧化碳。经燃料反应器分离器分离的载氧体分为两股,一股返回燃料反应器流化床,参与气化和燃烧反应,另一股进入空气反应器流化床实现载氧体的载氧。A method for realizing carbon dioxide separation during coal/natural coke/petroleum coke combustion by utilizing the present invention, that is, using coal/natural coke/petroleum coke for clean power generation and simultaneously realizing the separation of carbon dioxide. Referring to Fig. 2, after the air is compressed by the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710190246XA CN101216175B (en) | 2007-11-23 | 2007-11-23 | Oxygen carrier gasifying combustion method for loading oxygen and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710190246XA CN101216175B (en) | 2007-11-23 | 2007-11-23 | Oxygen carrier gasifying combustion method for loading oxygen and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101216175A true CN101216175A (en) | 2008-07-09 |
CN101216175B CN101216175B (en) | 2010-08-25 |
Family
ID=39622661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710190246XA Expired - Fee Related CN101216175B (en) | 2007-11-23 | 2007-11-23 | Oxygen carrier gasifying combustion method for loading oxygen and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101216175B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328910A (en) * | 2010-06-02 | 2012-01-25 | Ifp新能源公司 | Method and facility for producing oxygen by a chemical loop in a fluidised bed |
CN101699187B (en) * | 2009-10-21 | 2012-06-13 | 东南大学 | Coal combustion apparatus capable of separating carbon dioxide and separation method thereof |
CN102878552A (en) * | 2012-07-06 | 2013-01-16 | 华北电力大学 | Magnetic oxygen carrier based solid fuel chemical-looping combustion system and technology |
CN103148480A (en) * | 2013-03-18 | 2013-06-12 | 华北电力大学 | Device and method for direct chemical-looping combustion for solid fuel |
CN103695040A (en) * | 2013-12-17 | 2014-04-02 | 兖矿集团有限公司 | Technological process for technology of preparing coal chemical chain oxygen carrier to synthesis gas |
CN104401938A (en) * | 2014-10-31 | 2015-03-11 | 东南大学 | Device and method for preparing synthesis gas with adjustable H2/CO ratio from methane-rich gas |
CN106167720A (en) * | 2016-07-21 | 2016-11-30 | 新奥科技发展有限公司 | The catalysis gasification method of a kind of high ferro coal and system |
CN107057797A (en) * | 2017-03-28 | 2017-08-18 | 大连理工大学 | A kind of composite oxygen carrier, preparation method and its application in solid fuel gasification |
CN107286991A (en) * | 2017-08-01 | 2017-10-24 | 东北大学 | Char Gasification prepares the method and system of synthesis gas |
CN109181779A (en) * | 2018-09-14 | 2019-01-11 | 东南大学 | A kind of chemical chain oil gas coproduction collaboration carbon dioxide reduction method |
CN111378511A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Biomass microwave gasification utilization method and system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2127394A1 (en) * | 1993-07-12 | 1995-01-13 | William Martin Campbell | Transport gasifier |
US6494153B1 (en) * | 2001-07-31 | 2002-12-17 | General Electric Co. | Unmixed combustion of coal with sulfur recycle |
CN1279146C (en) * | 2004-12-22 | 2006-10-11 | 东南大学 | Pure oxygen replaced coal gasifying method and its coal gasifying apparatus |
-
2007
- 2007-11-23 CN CN200710190246XA patent/CN101216175B/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101699187B (en) * | 2009-10-21 | 2012-06-13 | 东南大学 | Coal combustion apparatus capable of separating carbon dioxide and separation method thereof |
CN102328910A (en) * | 2010-06-02 | 2012-01-25 | Ifp新能源公司 | Method and facility for producing oxygen by a chemical loop in a fluidised bed |
CN102878552B (en) * | 2012-07-06 | 2015-04-15 | 华北电力大学 | Magnetic oxygen carrier based solid fuel chemical-looping combustion system and technology |
CN102878552A (en) * | 2012-07-06 | 2013-01-16 | 华北电力大学 | Magnetic oxygen carrier based solid fuel chemical-looping combustion system and technology |
CN103148480A (en) * | 2013-03-18 | 2013-06-12 | 华北电力大学 | Device and method for direct chemical-looping combustion for solid fuel |
CN103695040A (en) * | 2013-12-17 | 2014-04-02 | 兖矿集团有限公司 | Technological process for technology of preparing coal chemical chain oxygen carrier to synthesis gas |
CN104401938A (en) * | 2014-10-31 | 2015-03-11 | 东南大学 | Device and method for preparing synthesis gas with adjustable H2/CO ratio from methane-rich gas |
CN106167720A (en) * | 2016-07-21 | 2016-11-30 | 新奥科技发展有限公司 | The catalysis gasification method of a kind of high ferro coal and system |
CN107057797A (en) * | 2017-03-28 | 2017-08-18 | 大连理工大学 | A kind of composite oxygen carrier, preparation method and its application in solid fuel gasification |
CN107057797B (en) * | 2017-03-28 | 2019-05-14 | 大连理工大学 | A kind of composite oxygen carrier, preparation method and its application in solid fuel gasification |
CN107286991A (en) * | 2017-08-01 | 2017-10-24 | 东北大学 | Char Gasification prepares the method and system of synthesis gas |
CN107286991B (en) * | 2017-08-01 | 2023-04-14 | 东北大学 | Method and system for preparing synthesis gas by semi-coke gasification |
CN109181779A (en) * | 2018-09-14 | 2019-01-11 | 东南大学 | A kind of chemical chain oil gas coproduction collaboration carbon dioxide reduction method |
CN111378511A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Biomass microwave gasification utilization method and system |
CN111378511B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Biomass microwave gasification utilization method and system |
Also Published As
Publication number | Publication date |
---|---|
CN101216175B (en) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101216175B (en) | Oxygen carrier gasifying combustion method for loading oxygen and device | |
TWI567184B (en) | Method for preparing ceramic composite particles | |
CN107090317B (en) | Partial oxidation reaction with closed circulation quenching | |
US8480768B2 (en) | Hot solids gasifier with CO2 removal and hydrogen production | |
CN101672530B (en) | Method and device for burning chemistry chains based on iron or iron oxide | |
CN101699187B (en) | Coal combustion apparatus capable of separating carbon dioxide and separation method thereof | |
CN101671002B (en) | Method and device for preparing hydrogen by using fuel | |
CN105222129B (en) | A kind of coal-fired burning chemistry chains separation CO for coupling pure oxygen gasification2Method | |
CN110168058A (en) | Utilize the power generation system and method for partial oxidation | |
CN104046393A (en) | Chemical looping processes for partial oxidation of carbonaceous fuels | |
CN103320175B (en) | High-efficiency clean low-carbon coal graded utilization method and device | |
CN101746721B (en) | A method and device for producing hydrogen and separating CO2 based on iron or iron oxide | |
CN102219183A (en) | A method and device for double-cycle chain combustion hydrogen heat cogeneration and separation of CO2 | |
JP2017532476A (en) | Integrated calcium loop combined cycle for acid gas utilization | |
CN102225744B (en) | A method and device for producing hydrogen and separating CO2 based on Fe2O3-NiO mixture | |
CN201521948U (en) | A chemical looping combustion device based on iron or iron oxide | |
RU79977U1 (en) | INSTALLATION FOR THE BURNING OF SOLID FUELS IN A CHEMICAL CYCLE WITH GASIFICATION AND USING CIRCULATING PARTICLES OF METAL OXIDES AS OXYGEN TRANSFERS | |
CN107687636A (en) | A kind of hydrocarbon gas combustion reactor and reaction method based on stacked fluid bed | |
CN202099045U (en) | A device for producing hydrogen and separating CO2 based on Fe2O3-NiO mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent for invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Xiang Wenguo Inventor after: Xue Zhipeng Inventor before: Xiang Wenguo |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: XIANG WENGUO TO: XIANG WENGUO XUE ZHIPENG |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100825 Termination date: 20151123 |