[go: up one dir, main page]

CN101215329A - 可溶性人程序性死亡蛋白-1-IgV及其制备方法 - Google Patents

可溶性人程序性死亡蛋白-1-IgV及其制备方法 Download PDF

Info

Publication number
CN101215329A
CN101215329A CNA2008100172360A CN200810017236A CN101215329A CN 101215329 A CN101215329 A CN 101215329A CN A2008100172360 A CNA2008100172360 A CN A2008100172360A CN 200810017236 A CN200810017236 A CN 200810017236A CN 101215329 A CN101215329 A CN 101215329A
Authority
CN
China
Prior art keywords
protein
igv
cells
urea
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100172360A
Other languages
English (en)
Other versions
CN101215329B (zh
Inventor
张英起
吴守振
王伟华
韩苇
包春杰
薛晓畅
李萌
秦鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fourth Military Medical University FMMU
Original Assignee
Fourth Military Medical University FMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fourth Military Medical University FMMU filed Critical Fourth Military Medical University FMMU
Priority to CN2008100172360A priority Critical patent/CN101215329B/zh
Publication of CN101215329A publication Critical patent/CN101215329A/zh
Application granted granted Critical
Publication of CN101215329B publication Critical patent/CN101215329B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了可溶性人程序性死亡蛋白-1-IgV及其制备方法,可溶性人程序性死亡蛋白-1-IgV的蛋白序列如下:PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQ DSRFRVTQ LPNGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIK ESLRAE LRVTERRAEV PTAHPSP。本发明根据人PD-1的结构,应用人工合成的方法获得了hPD-1-IgV的基因,目的基因克隆入pQE-30原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,裂菌显示目的蛋白以包涵体形式存在,经包涵体洗涤、亲和层析、凝胶柱层析和透析复性,即可获得纯化的可溶性人程序性死亡蛋白-1-IgV。该可溶性人程序性死亡蛋白-1-IgV在体外shPD-1IgV在细胞水平和分子水平上可分别与mPD-L1/Fc和hPD-L1/Fc结合。在体内shPD-1IgV具有一定的抑瘤效果。因此,shPD-1IgV具有良好的体内外生物学活性,为治疗肿瘤提供了实验依据,奠定了实验基础,具有潜在的应用前景。

Description

可溶性人程序性死亡蛋白-1-IgV及其制备方法
技术领域
本发明属于医药生物技术领域,涉及基因合成、蛋白表达纯化、体外活性检测、动物体内抑瘤检测等技术,特别涉及一种可溶性人程序性死亡蛋白-1-IgV(hPD-1-IgV)及其制备方法。
背景技术
机体免疫系统可以识别“自我/非我”,对“非我”进行免疫监视、识别和应答,以至将其消除。然而,这种机体强大的免疫保护系统,在肿瘤面前却显得束手无策。肿瘤在人体强大的免疫功能作用下仍能发展、转移,表明肿瘤具有自己的保护机制。肿瘤细胞可以通过对自身表面抗原的修饰及改变肿瘤组织周围的微环境来逃避机体的免疫识别与攻击,这就是肿瘤的免疫逃逸。肿瘤存在着许多逃逸免疫系统识别和攻击的机制,包括:HLA-I类抗原和免疫共刺激分子的表达下调或丢失;肿瘤抗原的表达下调、丢失或突变;肿瘤细胞分泌免疫抑制性可溶性因子;肿瘤细胞膜上表达免疫抑制性分子;诱导具有免疫抑制功能的调节性T淋巴细胞等。其中,肿瘤来源的可溶性免疫抑制因子,以影响树突状细胞(DC)以及淋巴T细胞的功能为主。这些因子致使髓样细胞的不正常分化,导致全身性成熟DC数量下降、不成熟DC(iDC)数量增加及不成熟髓样细胞(iMCs)的增加。主要有:白细胞介素-10(IL-10),转化生长因子-β(TGF-β),前列腺素E2PGE2)和趋化因子(如CCL2/MCP-1)等。在抗肿瘤免疫效应中,CD8+T细胞起主要作用,通过对肿瘤抗原的识别,可以直接杀伤肿瘤细胞,但肿瘤局部的微环境包含大量的细胞因子,这些细胞因子可单独地或协同地影响CTL活化或肿瘤细胞对CTL杀伤的敏感性,共刺激免疫抑制性分子在这个过程中发挥重要的作用,它们要么使CD8+T细胞不能被活化,要么使活化的CD8+T细胞功能丧失或则使CD8+T细胞凋亡,这些共刺激免疫抑制性分子主要有:CTLA4/B7、PD-1/PD-L1、ICOS/B7-H2、BTLA/B7-H4、TIM3等。
PD-1分子2004年12月在第八届国际人类白细胞分化抗原会议上被命名为CD279。最早是通过削减杂交技术从小鼠处于凋亡状态的杂交瘤及造血祖细胞系克隆,被认为与细胞凋亡相关而命名为程序性死亡-1(programmed death-1)。它是免疫球蛋白超家族的激活诱导的抑制性受体,通过其胞浆区的两个酪氨酸残基与下游的信号分子作用而发挥对免疫应答的负性调控功能。PD-1分子可在淋巴样组织和实质器官组织部位双重抑制淋巴细胞的活化,在维持机体的外周耐受方面发挥重要的作用。研究表明,PD-1与其配体PD-L1(B7-H1)相互作用,组成PD-1/PD-L1通路,并且,PD-1/PD-L1通路可能参与了肿瘤免疫逃避、炎症、自身免疫性疾病、移植耐受和病毒感染等的发生过程。
申请人在分析CCR5结构的基础上以PD-1 IgV为研究目标,利用基因工程手段和蛋白质纯化技术,获得纯化的重组蛋白样品。外检测该融合蛋白体内能够与PD-L1结合,以融合蛋白对荷瘤小鼠进行抑瘤实验的观察。我们的发明进行了PD-1 IgV融合蛋白的实验基础研究,为进一步的肿瘤治疗提供了实验依据和奠定了基础。
1 Programmed death-1(PD-1)分子研究进展
1.1 PD-1的发现
PD-1分子2004年12月在第八届国际人类白细胞分化抗原会议上被命名为CD279。最早是通过削减杂交技术从小鼠处于凋亡状态的杂交瘤及造血祖细胞系克隆,被认为与细胞凋亡相关而命名为程序性死亡-1(programmed death-1)。它是免疫球蛋白超家族的激活诱导的抑制性受体,通过其胞浆区的两个酪氨酸残基与下游的信号分子作用而发挥对免疫应答的负性调控功能。PD-1分子可在淋巴样组织和实质器官组织部位双重抑制淋巴细胞的活化,在维持机体的外周耐受方面发挥重要的作用。研究表明,PD-1与其配体PD-L1(B7-H1)相互作用,组成PD-1/PD-L1通路,并且,PD-1/PD-L1通路可能参与了肿瘤免疫逃避、炎症、自身免疫性疾病、移植耐受和病毒感染等的发生过程。
1.2 PD-1的结构
PD-1分子相对分子质量是55,000免疫球蛋白超家族I型跨膜糖蛋白,共有288个氨基酸组成(氨基酸组成如下所示)。
001 MQIPQAPWPV VWAVLQLGWR PGWFLDSPDR PWNPPTFFPA LLVVTEGDNATFTCSFSNTS
061 ESFVLNWYRM SPSNQTDKLA AFPEDRSQPG QDCRFRVTQL PNGRDFHMSVVRARRNDSGT
121 YLCGAISLAP KAQIKESLRA ELRVTERRAE VPTAHPSPSP RPAGQFQTLVVGVVGGLLGS
181 LVLLVWVLAV ICSRAARGTI GARRTGQPLK EDPSAVPVFSVDYGELDFQW REKTPEPPVP
241 CVPEQTEYAT IVFPSGMGTS SPARRGSADG PRSAQPLRPE DGHCSWPL
PD-1分子胞外区包含一个IgV样结构域,有4个重要的N连接糖基化位点,并被重度糖基化。PD-1分子最显著的特征是胞浆区的尾部含有两个酪氨酸残基,其中N末端的酪氨酸残基与其他的氨基酸残基共同组成了一个ITIM(免疫受体酪氨酸抑制基序)。ITIM存在于许多抑制性受体中,其共同特征是含有一个6个氨基酸残基(Ile/Val/Leu/Ser)-X-Tyr-X-X-(Leu/Val)的共同序列,在免疫反应的负调控方面发挥重要作用。最近的实验证实,其C末端的酪氨酸残基也可与下游的一系列信号转导分子作用而抑制淋巴细胞的活化。
1.3 PD-1的分布
PD-1分子在T、B细胞抗原受体激发后诱导性表达,未成熟的T、B细胞在胸腺和骨髓内发育的特定阶段也有表达。一些肿瘤细胞系已被证实有PD-1蛋白的表达,如Jurkat淋巴瘤,应用佛波酯可明显诱导其上调表达。部分肿瘤细胞系有PD-1mRNA的表达,如Daudi(Burkitt淋巴瘤),HL260(急性前髓系白血病)等。
1.4 PD-1的配体
PD-L1(B7-H1)和PD-L2(B7-DC)是PD-1的两个配体,其全长的cDNA是通过同源性筛选从胎盘的cDNA文库中获得。这两个分子均定位于人染色体9p24.2,起始于同一方向,间隔42kb。它们同属B7家族,因而同此家族的其他成员一样,成熟的PD-L分子包含有IgV样区、IgC样区、跨膜区及一个短的胞浆区尾部。在胞外区有4个保守的半胱氨酸残基,参与Ig样结构中二硫键的形成。与PD-L2相比,PD-L1的胞浆区在人鼠之间更为保守。PD-L1和PD-L2mRNA不仅可以表达在实质器官组织部位,如心脏、肺和胎盘等,而且在抗原递呈细胞上也有表达,如激活的B细胞、单核细胞和树突状细胞。最近的研究还发现,在胸腺上皮细胞有PD-L1mRNA的表达。PD-L1在蛋白水平上的表达已在激活的T、B及单核细胞上得到证实。
1.5 PD-1/PD-L通路的作用
1.5.1 PD-1与PD-L的作用对体外T细胞功能的影响
PD-1与PD-L1相互作用可抑制T细胞的增殖,同时抑制其对细胞因子IL-2、IFN-γ和IL-10的产生。研究发现PD-L1与PD-1对T细胞功能的影响与TCR与CD28信号的强度有关。在亚适量TCR信号强度下,PD-L1对T细胞的增殖抑制作用明显;而在最适量的TCR信号时,仅在没有CD28共刺激的情况下,才对T细胞增殖发挥抑制作用。PD-L2与PD-1相互作用也可抑制TCR所介导的T细胞增殖和产生IL-4、IL-10和IFN-γ。在较低抗原浓度下,PD-L2与PD-1作用可抑制TCR及B7-2介导的预激活的CD4+T细胞的增殖,并减少Th1和Th2型细胞因子的产生。但随着抗原浓度的升高,其对细胞增殖的抑制下降,但仍能抑制细胞因子的产生。进一步的研究证明,低浓度抗原可刺激PD-1高水平表达,随着抗原浓度的升高,其表达下降。因此,PD-L/PD-1的相互作用对弱的抗原刺激反应更敏感,这类抗原主要产生于自身免疫性疾病和肿瘤的发生过程中。但另外的研究认为,在亚适量的TCR信号下,PD-L2(B72DC)可有力地刺激体外T细胞的增殖及细胞因子(主要是IFN-γ)的产生。有人发现,在体外应用抗CTLA-4抗体Fab片段阻断其效应时,可对同一抗原特异性的不同的T细胞亚群产生刺激或抑制效应,这种不同的效应取决于T细胞的激活状态和TCR的信号强度。
1.5.2 PD-1与PD-L之间的负调控作用
PD-1的胞内区含有酪氨酸抑制性基序,通过募集含有酪氨酸磷酸酶活性及SH2结构域的蛋白因子传递负调节信号。2000年,Freeman等报道,B7-H1与PD-1结合可减少T细胞增殖;2002年,Iwai等研究发现B7-H1与PD-1结合可以促进肿瘤细胞的免疫逃逸。虽然,通过接种或过继转移的方法均可以增加循环血液中肿瘤抗原特异性CD8+T细胞的数量,但随着肿瘤的不断进展,肿瘤组织常常会出现对CD8+T细胞效应功能的破坏或损伤。PD-1与B7-H1相互作用后,可能通过抑制细胞周期的进展来介导T细胞活化反应的抑制效应。2004年,Shengdian Wang等人通过突变实验发现,B7-H1通过其IgV样区与PD-1的IgV样区相互结合而发挥作用(图2,3)。同时,Christian Blank等发现干预B7-H1与PD-1间的相互作用,可以增强肿瘤抗原特异性CD8+T细胞在肿瘤微环境中的功能。同时,有很多文献资料表明,阻断B7-H1,可以诱导肿瘤组织的退行性发展,但并不仅仅依赖PD-1途径。
1.5.3 PD-1与PD-L参与T、B细胞负调控作用机制
对体外转染PD-1或FcγRII-PD-1融合蛋白基因的B淋巴瘤细胞系的研究表明,PD-1可抑制B细胞受体的刺激性信号。BCR与PD-1的交联可抑制Ca2+内流以及下游信号激活分子如Syk、磷脂酰肌醇-3激酶、磷脂酶-3和Vav的酪氨酸残基的磷酸化。但是,这种抑制效应不需要PD-1胞浆区ITIM基序内的酪氨酸残基参与,而是通过C端的酪氨酸残基与SHP-2酪氨酸磷酸酶结合实现的。此外,PD-1也可通过抑制丝裂原激活的蛋白激酶(MAPK)的酪氨酸残基磷酸化而抑制B淋巴瘤细胞系的增殖。另外,对Jurkat细胞系的研究也表明TCR与PD-1的交联可引起SHP-2的磷酸化并向PD-1的胞浆区募集。体外应用预激活的T细胞表明PD-L/PD-1途径并不引起T细胞的凋亡,而仅使细胞周期停滞于G0/G1期。以改良的酵母双杂交技术发现,PD-1的胞浆区的ITIM酪氨酸残基磷酸化后可与酪氨酸磷酸酶SHP-1的羧基端的SH2结构域结合。因此,PD-1胞浆区两个酪氨酸残基磷酸化后可分别与SHP-1和SHP-2结合发挥负性免疫调控功能。
2 PD-1与疾病
2.1 PD-1与肿瘤
用可溶性PD-1阻断B7-H1可改善小鼠体内抗肝癌细胞(H22肿瘤细胞)免疫反应。体外实验证实,用可溶性PD-1阻断B7-H1可改善部分淋巴细胞的早期活化。PD-L1在多种组织的肿瘤细胞上高表达,它与PD-1的相互作用显示了肿瘤免疫逃避的潜在的机理。B7-H1与PD-1之间的作用,抑制了激活的T细胞的作用,可能是通过抑制细胞周期实现的,肿瘤相关的B7-H1提高了抗原特异性T细胞的凋亡,致使肿瘤逃避免疫监视。体内实验表明,在鼠P815肿瘤上表达的B7-H1促进了激活的肿瘤反应T细胞的凋亡,并促使体内与免疫生成B7-H1(+)肿瘤的生长。PD-1与PD-L1相互作用降低了TCR介导的淋巴细胞的增殖和细胞因子的产生。PD-1表达在多种人与鼠的肿瘤细胞上,并且被IFN-γ刺激上调。研究发现,以可溶性PD-1阻断PD-1/PD-L1通路,增强了肿瘤特异性CTL的杀伤活性。而且,以单克隆抗体阻断PD-1/PD-L1相互作用,逆转了由肿瘤抗原特异性CD8+T细胞功能表失引起的肿瘤耐受,加强了抗肿瘤免疫反应。
2.2 PD-1与肿瘤侵润的免疫细胞
Thompson等对RCC(renal cell carcinoma)肿瘤样本以抗PD-1单抗进行免疫组织化学染色,结果发现单核免疫细胞侵润占病人总数的50.9%。PD-1免疫细胞占总病人数的56.6%。而且RCC肿瘤细胞不表达PD-1。PD-1免疫细胞对于B7-H1相关的肿瘤细胞有保护作用。因此,PD-1(+)免疫细胞增强了肿瘤的转移,与肿瘤恶性程度的分级有关。免疫细胞上表达PD-1的水平在高风险RCC肿瘤病人身上是提高的,PD-1/PD-L1促进了RCC肿瘤的发生。B7-H1与B7DC在非小细胞肺癌中表达,并且B7-H1阳性的肿瘤区域内的肿瘤侵润的淋巴细胞(TIL)的数量明显少于B7-H1阴性的肿瘤区,B7H1阳性肿瘤细胞区域表达PD-1的TIL的比例明显低于B7H1阴性肿瘤细胞区域。这或许是由于PD-1/PD-L1通路致使TIL凋亡所致。
2.3 PD-1与自身免疫性疾病
PD-1分子在维持外周耐受发挥了重要的作用,因而PD-1分子可作为一个免疫反应的负性调控分子参与自身免疫性疾病的发病过程。这一点已在不同遗传背景的PD-1基因敲除小鼠中得到证实。C57BL/6-PD-1-/-鼠发生轻微但渐进性的脾肿大,脾脏的B细胞及髓样细胞增多,血清的IgA和IgG2b增加,IgG3增加尤为显著,机体对TI-2抗原的抗IgG3抗体反应显著增强。脾脏的B细胞对抗IgM抗体诱导的增殖反应也增强。C57BL/6-PD-1-/-鼠可随年龄的增长而自发地发生狼疮样增殖性肾小球肾炎和关节炎,肾小球有过度的补体C3和IgG3的沉积,踝关节出现颗粒性结节及骨损伤,而同龄同窝对照鼠则表现正常。当同时导入Fas基因无义突变时,小鼠提早发生增殖性狼疮样自身免疫性疾病,疾病的严重程度也大大增加。这一结果表明PD-1和Fas在狼疮样自身免疫性疾病的发生过程中具有协同作用。自身反应性TCR(2C-TCR)转基因鼠在剔除PD-1基因后可自发发生移植物抗宿主样疾病,部分小鼠10周前死亡。其余则表现为体重减轻,脾肿大,不同程度的皮肤损害:炎症、出血和坏死。病变鼠的心脏、肺及肾脏可发生系统性炎症细胞浸润。2C-TCR+T细胞浸润至表皮的基底层。由于2C-TCR-PD-1-/-鼠的T细胞在胸腺的阴性选择过程中未受影响,而外周扩增的2C-TCR+T细胞呈现记忆细胞表型(CDRBlowCD62LlowCD69+),因而作者认为PD-1可能参与维持外周耐受。2C-TCR-PD-1+/+鼠表现正常,可见PD-1基因缺陷是发生移植物抗宿主样疾病的重要原因。大部分的BALB/c-PD-1-/-鼠在10周龄时因患充血性心力衰竭而死亡,但2C-TCR-PD-1+/+和BALB/c-PD-1-/--RAG-2鼠则生长良好。胸腔超声检查显示,死亡小鼠的心室腔明显扩张,心室的收缩功能下降。组织学检查显示整个扩张的心室的心肌细胞间遍布IgG及补体C3的沉积,但却没有淋巴细胞的浸润。进一步的研究表明,自身抗体主要是针对一种表达于正常心肌细胞表面的相对分子质量为33000的蛋白,与同遗传背景的PD-1+/+对照鼠相比,BALB/c-PD-1-/-鼠的血清中也可检测到这种蛋白。这些结果表明,PD-1在防止BALB/c鼠发生自身免疫性扩张性心肌病方面发挥了重要作用。
对不同基因背景的PD-1基因缺陷鼠的研究证实PD-1在体内发挥负性免疫调节作用。C57BLP6-PD-1基因缺陷鼠发生轻度持续性脾肿大,B细胞及髓系细胞增多,血IgG3升高及针对T细胞非依赖性抗原的IgG3反应增强,抗IgM诱导的脾B细胞增生反应增强。C57BLP6-PD-1基因缺陷鼠发生进行性肾小球肾炎及狼疮样关节炎,在肾小球中可检出PAS阳性物质及IgG3沉积。BALBPC-PD-1基因缺陷鼠发生扩张性心肌病,心动超声显示这些鼠心脏明显扩大,收缩功能严重受损,并发现IgG广泛沉积于心肌细胞间,电镜观察发现心肌细胞表面有IgG沉积。此外,血液中出现针对正常心肌表面33 000的蛋白的抗体,提示某些不明原因的人扩张性心肌病可能与自身免疫反应有关。阻断NOD鼠的PD-1或PD-L1会加速处于糖尿病前期的各年龄段雌性鼠糖尿病的发生,在大龄鼠中更为明显。而阻断CTLA-4仅诱使幼龄鼠发病,提示CTLA-4仅在自身免疫反应发生的早期发挥免疫调节作用,而PD-1在自身免疫发生发展的各个阶段均有作用。与对照组相比,阻断PD1/PD-L1后,胰岛炎症评分明显增高,产生IFN-γ的GAD反应性脾细胞增多,但抗胰岛素抗体并不增高。NOD鼠的胰岛细胞上表达PD-L1,不表达PD-L2,提示胰岛细胞自身表达的PD-L1是调节自身反应性T细胞活性的重要因素。在由MOG诱导的EAE(实验性自身免疫性脑脊髓炎)C57BLP6模型研究中,阻断PD-1会使疾病加重,伴随脑组织中炎症细胞浸润增多,同时,针对MOG的自身免疫反应加强,产生IFN-γ的T细胞增多,发型超敏反应增强,血中抗MOG抗体水平升高。与NOD鼠不同的是,阻断PD-L2而非PD-L1可导致疾病加重。PD-L1在EAE发病早期即开始表达,而PD-L2表达较晚且表达量很少。实验性哮喘模型的研究支持这一结果,在肺组织中PD-L1表达远比PD-L2丰富,而PD-L2阻断可使疾病加重。那么,PD-L1在这些组织中的高表达有何意义仍待进一步研究。Hitachi等在类风湿性关节炎病人的关节积液中发现,CD4+T细胞PD-1表达明显高于CD8+T细胞,CD4+PD-1+T细胞大多数同时表达CTLA-4,而不表达CD26。CD4+PD-1+T细胞产生IL-10,与CD4+PD-1-T细胞相比,其产生的IL-2明显减少。类风湿性关节炎病人的关节积液含有丰富的PD-1+T细胞,这一亚群的T细胞是无反应性的。
2.3 PD-1与病毒感染
用微阵分析和流式细胞术,Barber等发现PD-1在LCMV慢性感染鼠的功能耗竭性CD8+T细胞(exhausted CD8 T cell)上高表达,而急性感染的功能记忆性CD8+T细胞上不表达。PD-L1在多种感染的细胞上高表达,在慢性LCMV感染的小鼠上以阻断性单抗阻断PD-1/PD-L1通路,加强了CD8+T细胞功能,激活了CTL活性,导致IFN和TNF的产生。Day等检测了HIV感染的特异性CD8+T细胞的PD-1的表达,他们选择的人群是没有抗HIV治疗的HIV患者。结果发现在HIV特异的CD8 T细胞上PD-1明显高表达,且这种表达与对HIV特异性CD8+T细胞功能破坏程度正相关,并与疾病发生过程相关。阻断PD-1/PD-L1通路增强HIV特异性CD4+、CD8+T细胞功能。
发明内容
本发明的目的在于,构建人程序性死亡蛋白-1-IgV(hPD-1-IgV)融合蛋白,使其在体内外能够与其相应的配体PD-L1相互结合,从而阻断体内PD-1/PD-L1通路,打破肿瘤免疫逃避,并恢复细胞毒性T淋巴细胞的杀伤功能,为研制抗肿瘤药物提供新的思路和途径。
为了实现上述任务,本发明所采用的技术方案是:
一种可溶性人程序性死亡蛋白-1-IgV,其特征在于,其蛋白序列如下:
PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQDSRFRVTQLP NGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIKESLRAE LRVTERRAEVPTAHPSP。
上述可溶性人程序性死亡蛋白-1-IgV的制备方法,其特征在于,根据人PD-1的结构,应用人工合成的方法获得了hPD-1-IgV的基因,目的基因克隆入pQE-30原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,裂菌显示目的蛋白以包涵体形式存在,经包涵体洗涤、亲和层析、凝胶柱层析和透析复性,即可获得纯化的可溶性人程序性死亡蛋白-1-IgV。
以经纯化后得到的可溶性的目的蛋白hPD-1-IgV分别以酶联免疫吸附方法(ELISA)和流式细胞术(FCM)检测shPD-1IgV与PD-L1的结合,以及检测shPD-1IgV与抗PD-L1单抗竞争结合PD-L1。MTT法检测CTL对肿瘤细胞的杀伤。以shPD-1IgV治疗荷瘤小鼠,测量肿瘤体积,观察其抑瘤效果。以流式细胞术(FCM)检测荷瘤小鼠各组中外周血中CD4+CD25+T(Treg)细胞占总CD4+T细胞的比例。结果显示:shPD-1IgV可分别与商品化的mPD-L1/Fc和hPD-L1/Fc结合,并且shPD-1IgV可与肿瘤细胞表面上表达的PD-L1结合,shPD-1IgV可与抗PD-L1单抗竞争结合mPD-L1/Fc。以shPD-1IgV治疗的荷瘤小鼠分离的CTL与对照组比较有明显的杀伤肿瘤细胞作用。shPD-1IgV治疗的荷瘤小鼠与对照组比较表现了明显的抑瘤效果,具有统计学意义,P<0.05,而且对照组的荷瘤小鼠外周血中CD4+CD25+T细胞占总CD4+T细胞的比例明显高于shPD-1IgV治疗组,为进一步的肿瘤治疗提供了实验依据和奠定了基础。具体内容是:
1、合成hPD-1-IgV基因序列
分析Swiss-Pro蛋白质数据库PD-1的结构,结合文献,截取PD-1胞外断IgV结构域氨基酸序列,获得PD-1胞外断IgV的氨基酸序列(命名为:hPD-1-IgV):
PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQDSRFRVTQLP NGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIKESLRAE LRVTERRAEVPTAHPSP
按照Gene-bank公布的人PD-1-IgV的基因序列,5端插入BamHI酶切位点,3端引进中止密码子TGA并插入SalI酶切位点,依据大肠杆菌偏爱的密码子,合成目的基因。
pQE-30原核表达载体来自Jieru Meng,Nan Ma等(参考文献Jieru Meng,Nan Maet a1.NGR Enhanced the Anti-Angiogenic Activity of tum-5.[J]J.Biochem.140,(2006))。通过BamHI和SalI双酶切将hPD-1-IgV基因克隆入表达载体并克隆入载体pGEX-4T-1中。
2.构建重组质粒pQE-30/hPD-1-IgV
将pGEX-4T-1/hPD-1-IgV载体转化大肠杆菌DH5α,提取质粒DNA后,将其与质粒pQE-30分别用BamHI和SalI进行双酶切。取上述pGEX-4T-1/hPD-1-IgV获得的小片段(hPD-1-IgV)与从pQE-30中酶切的大片段相连接。酶切产物用2.0%琼脂糖凝胶电泳分离,分别回收pGEX-4T-1获得的小片段和pQE-30中的大片段。将回收后的小片段和大片段用T4连接酶在16℃连接过夜,转化DH5α感受态细胞,铺板、培养,挑取单克隆,提取质粒,经酶切鉴定和DNA测序,获得含有hPD-1-IgV融合基因原核克隆载体,命名pQE-30/hPD-1-IgV。
3.重组蛋白的诱导表达、纯化与鉴定
3.1 pQE-30/hPD-1-IgV工程菌的诱导表达
将含有pQE-30-hPD-1IgV重组质粒的菌株,接种于10ml含Amp的LB培养液中,于37℃培养过夜,次日按1%的比例转接于10ml含Amp的LB培养液中,于37℃振荡培养至对数生长期(A600nm=0.4-0.6)时,加入IPTG至终浓度为1mmol/L诱导表达,于37℃振荡培养3-5h。离心收集菌体,SDS-PAGE电泳进行鉴定。
3.2目的蛋白包涵体的分离和纯化
取10g诱导的菌体,按1g湿重对7ml的比例,用裂解缓冲液STE(50mmol/L Tris.Cl pH8.0,50mmol/L NaCl,1mmol/L EDTA)重悬,-20℃冷冻过夜。次日于室温水浴中融化,参照分子克隆第三版溶菌酶法裂菌,接着再采用300W超声破菌,其中超声5s,间隔10s,共进行100次。超声完成后,12000rpm/min,4℃离心20min,弃除上清,沉淀用包涵体洗涤液A(1%TritonX-100,1mmol/L EDTA,1%DOC,50mmol/LTris.Cl pH8.5,100mmol/L NaCl)重悬,12000r/min 4℃离心20min,弃上清。用Ni-NTA柱亲和层析纯化所溶解的沉淀(包涵体)。按1g菌体加10ml裂菌缓冲液的比例将菌体重悬,冰浴条件下进行超声裂菌。12000rpm,离心15min,弃上清,1g沉淀加10ml6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH7.5)。4℃搅拌过夜,12000rpm,离心15min,共离心2次,收集上清待用。经洗涤的包涵体以1g湿重对10ml的比例,溶于6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris pH 7.5的缓冲液中,4℃搅拌过夜,12000r/min离心30min,收集上清,即为目的蛋白粗提液。SephacrylS-300(1.6cm×80cm)凝胶层析,以工作液(6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/Ltris pH 7.5)充分平衡后,目的蛋白粗提液2ml上柱,以工作液洗脱,流速1ml/min,收集含有目的蛋白的峰,然后进行亲和层析纯化。用6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)充分平衡Ni柱,先用含10mmol咪唑的6M尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)洗脱杂蛋白,再用含250mmol咪唑的6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)洗脱目的蛋白。收集洗脱峰,纯化产物透析至2M尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)复性,终浓度1mg/ml。最后透析入0.02mol/LPBS(pH 7.2)中,用Lowery法测定蛋白浓度。
3.3目的蛋白的复性
应用包涵体溶解液稀释亲和层析后的样品,使蛋白浓度约为0.1mg/ml,梯度透析,透析外液加入CuSO4和β-巯基乙醇作为氧化还原系统,4℃透析,每6小时换液一次,梯度为,4M尿素,2M尿素,1M尿素,最后透析到双蒸水,离心留上清,冻干。HPLC检测蛋白纯度。
附图说明
图1是重组表达质粒的构建。其中,图(A)是重组表达质粒pQE-30-rhPD-1IgV的酶切鉴定,图中的标记1:DNA marker(DL2000),2:pQE-30-rhPD-1IgV digested by BamHI和SalI;图(B)是rhPD-1IgV区的克隆策略;
酶切载体pGEX-4T-1-rhPD-1IgV和pQE-30,经连接获得重组融合表达载体pQE-30-rhPD-1IgV,以载体pQE-30-rhPD-1IgV转化感受态细胞DH5α,扩增后提取质粒,用BamHI和SalI进行双酶切鉴定图(A),获得与预期结果一致大小的插入片段。经华诺生物技术服务有限公司测序证实,该插入片段的基因序列图(B)与预期完全一致。
图2是蛋白质的表达纯化与鉴定。其中,图(A)中的标记为:1:分子量蛋白质标准,2:pQE-30空质粒,3:诱导后的rhPD-1IgV,4:裂菌上清,5:裂菌沉淀。
重组质粒转化大肠杆菌后,经诱导表达,稳定筛选,构建工程菌。经发酵后,收集大量菌体,裂菌显示目的蛋白以包涵体形式存在(图A),经对包涵体洗涤,SephacrylS-300凝胶柱层析(图B)亲和层析(图C),SDS-PAGE显示蛋白单一条带(图D),Western-blot鉴定显示能与抗His单克隆抗体特异性结合(图E)。HPLC分析表明其纯度大于95%。
图3是融合蛋白hPD-1IgV体外分子水平与鼠或人B7-H1/Fc(mB7-H1/Fc或hB7-H1/Fc)结合检测。结合ELISA表明shPD-1IgV能够分别与hB7-H1/Fc和mB7-H1/Fc结合(图A,B)。shPD-1IgV能够与包被每孔100nghB7-H1/Fc和mB7-H1/Fc有效的结合,结合呈现剂量依赖性,表明明shPD-1IgV能够与hB7-H1/Fc和mB7-H1/Fc结合,而且,在1000ngshPD-1IgV的剂量下,shPD-1IgV与hB7-H1/Fc或mB7-H1/Fc结合呈现饱和。竞争ELISA结果显示shPD-1IgV可以阻断hB7-H1/Fc与抗hB7-H1单抗的结合(图C)。100ng抗hB7-H1单抗与100nghB7-H1/Fc共同孵育后,增加shPD-1IgV的剂量可以减少抗hB7-H1单抗与hB7-H1/Fc的结合。其中,shPD-1IgV增加到800ng后,阻断作用趋于平缓。
图4是应用流式细胞术检测融合蛋白hPD-1IgV细胞水平上与B7-H1的结合。其中(A)阴性对照,(B)SP2/0细胞,(C)HT-29细胞;shPD-1IgV能够与细胞表面上的B7-H1结合(图4)。与对照比较,shPD-1IgV能够与SP2/0细胞(小鼠骨髓瘤细胞)表达的B7-H1结合,结合率为12%,而且shPD-1IgV能够与IFN-γ刺激的HT-29细胞表达的B7-H1结合,结合率为15.6%。
图5是MTT法检测融合蛋白hPD-1IgV激起的CTL杀伤活性。与对生理盐水照组比较,治疗组(剂量I组,剂量II组,剂量III组)具有明显的CTL杀伤活性,分别是52.3%,55.4%和56.1%。CTX组的CTL杀伤活性明显高于对照组,但是明显低于治疗组。
表1是各组CTL杀伤活性比较。
表1.各组CTL杀伤活性比较
    12.5∶1     25∶1     50∶1
    剂量I组     0.311±0.015     0.461±0.022     1.231±0.134
    剂量II组     0.240±0.043     0.447±0.034     1.225±0.162
    剂量III组     0.329±0.031     0.488±0.030     1.296±0.104
    生理盐水对照组     0.190±0.065     0.247±0.034     0.392±0.043
图6是流式细胞术检测荷瘤小鼠外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例。其中,图(A)是生理盐水对照组,图(B)是剂量I组,图(C)是剂量II组,图(D)是剂量剂量III组,图(E)是对照直方图;与生理盐水对照组比较,治疗组外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例明显减少(图A,B,C,D,E,),表2是CD4CD25Treg百分比。
表2
    CD4CD25 Treg百分比
剂量I组 24.8±2.876
剂量II组 19.7±2.934
剂量III组 18.2±2.673
对照组 28.3±3.002
CTX组 10.3±3.231
各治疗组中外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例分别是24.8%、19.7%、18.2%,明显低于对照组的28.3%。统计学分析表明,治疗组各组与对照组比较有明显差异,P<0.05。同时,与治疗II组和治疗III组比较,治疗I组有明显差异,P<0.05。但是,治疗治疗II组和治疗III组没有统计学差异,P>0.05。
图7是hPD-1IgV融合蛋白对SP2/0荷瘤的小鼠的抑瘤作用。图中,aP<0.05,与生理盐水组比较;cP<0.05,与CTX组比较;应用shPD-1IgV对BALB/c荷瘤鼠治疗10天,结果显示,与生理盐水组比较,治疗组有显著性差异(P<0.05),但是,5mg/Kg治疗组与10mg/Kg治疗组之间没有统计学意义,但与15mg/Kg治疗组都有统计学意义(P<0.05)。同时,治疗组与环磷酰胺(CTX)组比较也有显著性差异(P<0.05)。
以下结合附图和实施例对本发明作进一步的详细描述。
具体实施方式
4.融合蛋白PD-1-IgV的构建、表达及纯化
4.1 PD-1-IgV基因的设计
分析Swiss-Pro蛋白质数据库PD-1的结构,结合文献,截取PD-1胞外断IgV结构域氨基酸序列,获得PD-1胞外断IgV的氨基酸序列(命名为:hPD-1-IgV)。按照Gene-bank公布的人PD-1-IgV的基因序列,5端插入BamHI酶切位点,3端引进中止密码子TGA并插入SalI酶切位点,依据大肠杆菌偏爱的密码子,合成目的基因。合成的基因序列,
GGA TCC CAG TAT ATA AAA GCA AAT TCT AAA TTT ATA GGT ATA ACT GAAGCA GCA GCA GAA TTC GAC CTA TAT GTG GTA GAG TAT GGT AGC AAT ATG ACAATT GAA TGC AAA TTC CCA GTA GAA AAA CAA TTA GAC CTG GCT GCA CTA ATTGTC TAT TGG GAA ATG GAG GAT AAG AAC ATT ATT CAA TTT GTG CAT GGA GAGGAA GAC CTG AAG GTT CAG CAT AGT AGC TAC AGA CAG CGT GCC CGG CTGTTG AAG GAC CAG CTC TCC CTG GGA AAT GCT GCA CTT CAG ATC ACA GAT GTGAAA TTG CAG GAT GCA GGG GTG TAC CGC TGC ATG ATC AGC TAT GGT GGT GCCGAC TAC AAG CGA ATT ACT GTG AAA GTC AAT TGA GTC GAC
其蛋白序列为:
PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQDSRFRVTQLP NGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIKESLRAE LRVTERRAEVPTAHPSP。
目的基因被克隆入pGEX-4T-1载体(上海生工生物技术公司合成并提供)。
4.1.1感受态细胞的制备
取DH5α甘油菌种按1∶100的比例接种入的LB培养基中,37℃振荡培养过夜,次日转接一次,继续培养至OD600约0.4左右。(无菌操作)将菌液冰浴10min,离心(3000rpm×5min,4℃)后弃去上清,加入1/2体积预冷的100mmol/L CaCl2,轻轻吹起沉淀,冰浴40min,离心(3000rpm×5min,4℃),弃上清后加入1/25体积的含25%甘油的100mmol/L CaCl2,吹起沉淀,分装入Eppendorf管中,-70℃保存备用。
4.1.2感受态细胞的转化、培养
将大肠杆菌感受态细胞从-70℃中取出,冰浴融解5-10分钟,加入含有目的基因的pUC57,轻微混匀,继续冰浴30分钟,然后铺板,37℃培养过夜。
4.1.3质粒的提取与鉴定
在质粒转化后37℃过夜培养的培养皿上挑取边缘整齐,生长状态良好的克隆,接种到10ml含Amp的LB培养基中,37℃、200rpm培养8小时,用质粒提取试剂盒提取质粒,用BamHI和双酶切后,行琼脂糖凝胶电泳观察是否有插入片断以及插入的片断是否与预期的长度一致,将酶切鉴定阳性的克隆送上海博亚公司进行DNA测序。
4.2重组质粒pQE-30/hPD-1-IgV的构建、表达、纯化和复性
4.2.1重组质粒pQE-30/hPD-1-IgV的构建
将pGEX-4T-1/hPD-1-IgV载体转化大肠杆菌DH5α,提取质粒DNA后,将其与质粒pQE-30分别用BamHI和SalI进行双酶切。取3.1中所述pGEX-4T-1获得的小片段与从pQE-30中的大片段相连接。酶切产物用2.0%琼脂糖凝胶电泳分离,分别回收pGEX-4T-1获得的小片段和pQE-30中的大片段。将回收后的小片段和大片段用T4连接酶在16℃连接过夜,转化DH5α感受态细胞,铺板、培养,挑取单克隆,提取质粒,经酶切鉴定和DNA测序,获得含有hPD-1-IgV融合基因原核克隆载体,命名pQE-30/hPD-1-IgV。
4.2.2重组蛋白的诱导表达、纯化与鉴定
4.2.2.1 pQE-30/hPD-1-IgV工程菌的诱导表达
将含有pQE-30-hPD-1IgV重组质粒的菌株,接种于10ml含Amp的LB培养液中,于37℃培养过夜,次日按1%的比例转接于10ml含Amp的LB培养液中,于37℃振荡培养至对数生长期(A600nm=0.4~0.6)时,加入IPTG至终浓度为1mmol/L诱导表达,于37℃振荡培养3-5h。离心收集菌体,SDS-PAGE电泳进行鉴定。
4.2.2.2目的蛋白包涵体的分离和纯化
取10g诱导的菌体,按1g湿重对7ml的比例,用裂解缓冲液STE(50mmol/L Tris.Cl pH8.0,50mmol/L NaCl,1mmol/L EDTA)重悬,-20℃冷冻过夜。次日于室温水浴中融化,参照分子克隆第三版溶菌酶法裂菌,接着再采用300W超声破菌,其中超声5s,间隔10s,共进行100次。超声完成后,12000rpm/min,4℃,离心20min,弃除上清,沉淀用包涵体洗涤液A(1%TritonX-100,1mmol/L EDTA,1%DOC,50mmol/LTris.Cl pH8.5,100mmol/LNaCl)重悬,12000r/min 4℃离心20min,弃上清。用Ni-NTA柱亲和层析纯化所溶解的沉淀(包涵体)。按1g菌体加10ml裂菌缓冲液的比例将菌体重悬,冰浴条件下进行超声裂菌。12000rpm,离心15min,弃上清,1g沉淀加10ml6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)。4℃搅拌过夜,12000rpm,离心15min,共离心2次,收集上清待用。经洗涤的包涵体以1g湿重对10ml的比例,溶于6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris pH 7.5的缓冲液中,4℃搅拌过夜,12000r/min离心30min,收集上清,即为目的蛋白粗提液。SephacrylS-300(1.6cm×80cm)凝胶层析,以工作液(6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris pH 7.5)充分平衡后,目的蛋白粗提液2ml上柱,以工作液洗脱,流速1ml/min,收集含有目的蛋白的峰,然后进行亲和层析纯化。用6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)充分平衡Ni柱,先用含10mmol咪唑的6M尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)洗脱杂蛋白,再用含250mmol咪唑的6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)洗脱目的蛋白。收集洗脱峰,纯化产物透析至2M尿素,0.1mol/LNaH2PO4,0.01mol/LTris(pH 7.5)复性,终浓度1mg/ml。最后透析入0.02mol/LPBS(pH 7.2)中,用Lowery法测定蛋白浓度。
4.2.3目的蛋白的复性
应用包涵体溶解液稀释亲和层析后的样品,使蛋白浓度约为0.1mg/ml,梯度透析,透析外液加入CuSO4和β-巯基乙醇作为氧化还原系统,4℃透析,每6小时换液一次,梯度为,4M尿素,2M尿素,1M尿素,最后透析到双蒸水,离心留上清,冻干。HPLC检测蛋白纯度。
5.融合蛋白hPD-1-IgV体外活性检测
5.1融合蛋白hPD-1-IgV体外分子水平上的检测
5.1.1 ELISA检测shPD-1IgV与hB7H1/Fc结合活性
取复性后的shPD-1IgV倍比稀释后包被96孔板,每个浓度设3个复孔,4℃包被过夜,封闭2h,洗涤6次*2分钟/次,每孔加入100ng hB7-H1/Fc,室温1h,洗涤6次*2分钟/次,加入抗hB7-H1单抗,室温1h,洗涤6次,每次2分钟,加抗鼠二抗,室温30min,洗涤6次,每次2分钟/次,OPD显色后检测A490nm值,实验中以无关his融合蛋白为对照。方法步骤如下:
包被:取96孔ELISA板,将倍比稀释后的shPD-1IgV融合蛋白溶解于包被缓冲液中,4℃包被过夜;
倒掉包被液,加入封闭液,室温封闭2h;
弃去封闭液,用洗涤液洗6次,每次2min;
分别小鼠抗人B7-H1单抗(500μg/mL)100μL/孔,室温孵育1h;
弃去单抗,用洗涤液洗6次,每次3min;
加入HRP标记的抗小鼠二抗,100μL/孔,室温孵育1h;
弃去二抗,用洗涤液洗6次,每次3min;
加入底物显色液,100μL/孔,室温,显色10-20min;
加入终止液,50μL/孔,终止反应;
酶标仪读数,测定每孔在490nm的吸光值。
5.1.2 ELISA检测shPD-1IgV与mB7H1/Fc结合活性
96孔板包被不同浓度的mB7-H1/Fc,每个浓度设3个复孔,4℃包被过夜,封闭2h,洗涤6次*2分钟/次,每孔加入500ugshPD-1IgV,室温1h,洗涤6次*2分钟/次,加入抗his单抗,室温1h,洗涤6次*2分钟/次,加抗鼠二抗,室温30min,洗涤6次*2分钟/次,OPD显色后检测A490nm值,实验中以无关his融合蛋白为对照。
5.1.3 ELISA检测shPD-1IgV对hB7-H1/Fc与抗hB7H1单抗的竞争活性
96孔板包被100ng hB7-H1/Fc,设3个复孔,4℃包被过夜,封闭2h,洗涤6次*2分钟/次,每孔加入倍比稀释的shPD-1IgV和100ng抗hB7-H1单抗,室温1h,洗涤6次*2分钟/次,加抗鼠二抗,室温30min,洗涤6次*2分钟/次,OPD显色后检测A490nm值,实验中以无关his融合蛋白为对照。
5.2流式细胞术检测细胞水平上检测融合蛋白hPD-1IgV与B7H1结合活性
人HT-29细胞贴壁后,加入终浓度为20ng/mL的IFN-γ,刺激2天后HT-29细胞高表达B7-H1分子;小鼠SP2/0细胞(小鼠骨髓瘤细胞)低表达B7-H1蛋白。以shPD-1IgV融合蛋白流式细胞术检测与HT-29细胞和SP2/0细胞表达的B7-H1结合。方法步骤如下:
分别制备HT-29细胞和SP2/0细胞悬液,用10%FCS RPMI1640调整细胞浓度为5×106-1×107/ml。取40μl细胞悬液加入预先有特异性抗His mAb(5-50μl)的小玻璃管或塑料离心管,再加50μl 1∶20(用DPBS稀释)灭活正常兔血清,4℃30min。用洗涤液洗涤2次,每次加洗涤液2ml左右(1000rpm×5min)。弃上清,加入50μl工作浓度的羊抗鼠荧光标记物,充分振摇,4℃30min。用洗涤液洗涤2次,每次加液2ml左右(1000rpm*5min)。加500μl固定液。
试剂配制如下:
DPBS(10×,贮存液):
NaCl:80g,KCl:2g,Na2HPO4:11.5g,KH2PO4:2g,蒸馏水加至1000mL,临用前稀释。
洗涤液:DPBS×1:900mL,FCS:50mL,4%NaN3:50mL。
固定液:DPBS×1:1000mL,Glucose:20g,Formaldehyde:10mL,NaN3:0.2g。
6.融合蛋白hPD-1-IgV体内活性观察
6.1接种肿瘤细胞
BALB/c小鼠,共40只,体重:18-22g,雄性。取对数生长期状态的SP2/0肿瘤细胞,按照1×107个细胞/只接种至小鼠背部皮下。每天观察小鼠体内肿瘤体积变化,待观察到形成肿瘤后进行分组。
6.2荷瘤小鼠分组
选取肿瘤体积大小均一的荷瘤小鼠,剔除肿瘤体积太大或太小的荷瘤小鼠。将其随机分5组,每组6只。生理盐水组对照组;剂量I组:每kg鼠重5mg shPD-1IgV融合蛋白;剂量II组:每kg鼠重10mg shPD-1IgV融合蛋白;剂量III组:每kg鼠重15mgshPD-1IgV融合蛋白;设环磷酰胺阳性对照组。
6.3给药方式和剂量
腹腔注射,生理盐水组每12小时给生理盐水一次,治疗组(剂量I组,剂量II组,剂量III组)按照剂量每12小时给药一次,环磷酰胺(CTX)组每24小时给药一次。连续10天,每天测量肿瘤的长径和短径,按下列公式计算肿瘤体积TV(mm3)=a×b2×π/6,其中,a为肿瘤长径,b为与a垂直的短径。
6.4流式细胞术检测外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例
各组荷瘤小鼠,眼球取血,每毫升血中加1.5-2.4mgEDTA防止凝血。取100μl抗凝血,分别加抗CD4和CD25的直标抗体,室温避光20-30min。加2ml红细胞裂解液(82.9g/LNH4Cl,10g/LKHCO3,370mg/LEDTA),轻轻混匀,室温放置10min。4℃,1000r/min离心5min,弃上清。加2ml洗涤液(8g/LNaCl,0.2g/LKCl,1.15g/LNa2HPO4,0.2g/LKH2PO4,5%FCS,4%NaN3),轻轻混匀,4℃,1000r/min离心5min,弃上清。重复一次。加500μl固定液(8g/LNaCl,0.2g/LKCl,1.15g/LNa2HPO4,0.2g/LKH2PO4,2%葡萄糖,1%甲醛,0.02%NaN3)。FCM检测外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例。
6.5 MTT法检测CTL杀伤活性
a.脾细胞的分离:最后一次测量肿瘤体积后,断颈法处死小鼠,无菌条件下打开腹腔取脾。将脾浸入生理盐水中,在80目钢网上轻轻研磨,收集脾细胞。1500r/min离心15min,弃上清。加入红细胞裂解液(Tris-NH4Cl,0.16mol/L的NH4Cl和0.17mol/L的Tris按9∶1的比例混合,调pH=7.2),作用1min,迅速加入生理盐水,洗2遍。用含100U/ml青霉素,100μg/ml链霉素,10%FBS,50U/mlIL-2的RPMI1640重悬,台盼蓝计数后待用。
b.CTL的活化:肿瘤细胞经50μg/ml丝裂霉素C预处理,与脾细胞共培养,10%FCS,RPMI培养基,100U/ml青霉素,100μg/ml链霉素。在第0,2,4天加入IL-2(2units/ml)。5天后,收集非贴壁细胞,用来测定杀伤活性。
c.MTT检测杀伤活性:将肿瘤细胞以每孔5000个细胞的浓度加入到96孔板中。待细胞贴壁后,将制备的脾细胞按12.5∶1和25∶1以及50∶1的比例加入到上述96孔板中。每个浓度设3个复孔。37℃,5%CO2孵箱培养72h。弃去培养基,每孔加入50μlMTT反应液(0.5mg/ml无血清1640培基)。37℃,5%CO2孵箱培养4h。弃去MTT反应液,每孔加入100μlDMSO,室温振荡10min。酶标仪测490nm处的吸光值(A值)。计算杀伤率。
6.6 SPSS统计分析对统计数据进行t检验分析,方差分析。
可溶性人程序性死亡蛋白-1-IgV的蛋白序列
PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQDSRFRVTQLP NGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIKESLRAE LRVTERRAEVPTAHPSP。

Claims (3)

1.一种可溶性人程序性死亡蛋白-1-IgV,其特征在于,其蛋白序列如下:
PPTFFPAL LVVTEGDNAT FTCSFSNTSE SFVLNWYRMS PSNQTDKLAA FPEDRSQPGQDSRFRVTQLP NGRDFHMSVV RARRNDSGTY LCGAISLAPK AQIKESLRAE LRVTERRAEVPTAHPSP。
2.权利要求1所述的可溶性人程序性死亡蛋白-1-IgV的制备方法,其特征在于,根据人PD-1的结构,应用人工合成的方法获得了hPD-1-IgV的基因,目的基因克隆入pQE-30原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,裂菌显示目的蛋白以包涵体形式存在,经包涵体洗涤、亲和层析、凝胶柱层析和透析复性,即可获得纯化的可溶性人程序性死亡蛋白-1-IgV。
3.如权利要求2所述的方法,其特征在于,所述的表达及纯化的步骤如下:
1)pQE-30/hPD-1-IgV工程菌的诱导表达
将含有pQE-30-hPD-1IgV重组质粒的菌株,接种于10ml含Amp的LB培养液中,于37℃培养过夜,次日按1%的比例转接于10ml含Amp的LB培养液中,于37℃振荡培养至对数生长期A600nm=0.4-0.6时,加入IPTG至终浓度为1mmol/L诱导表达,于37℃振荡培养3-5h,离心收集菌体,SDS-PAGE电泳进行鉴定;
2)目的蛋白包涵体的分离和纯化
取10g诱导的菌体,按1g湿重对7ml的比例,用裂解缓冲液STE重悬,裂解缓冲液为:
50mmol/L Tris.Cl,50mmol/L NaCl,1mmol/L EDTA,裂解缓冲液STE重悬后于-20℃冻过夜,次日于室温水浴中融化,以溶菌酶法裂菌,接着再采用300W超声破菌,其中超声5s,间隔10s,共进行100次;超声完成后,12000rpm/min、4℃离心20min,弃除上清,沉淀用包涵体洗涤液A重悬,包涵体洗涤液A为:1%TritonX-100,1mmol/L EDTA,1%DOC,50mmol/LTris.Cl pH8.5,100mmol/L NaCl,12000r/min、4℃离心20min,弃上清;用Ni-NTA柱亲和层析纯化所溶解的沉淀,按1g菌体加10ml裂菌缓冲液的比例将菌体重悬,冰浴条件下进行超声裂菌,12000rpm,离心15min,弃上清,1g沉淀加10ml6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris,4℃搅拌过夜,12000rpm,离心15min,共离心2次,收集上清待用;经洗涤的包涵体以1g湿重对10ml的比例,溶于6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/L Tris的缓冲液中,4℃搅拌过夜,12000r/min、离心30min,收集上清,即为目的蛋白粗提液;以SephacrylS-300凝胶层析,以工作液充分平衡后,所述的工作液为:6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris;目的蛋白粗提液2ml上柱,以工作液洗脱,流速1ml/min,收集含有目的蛋白的峰,然后进行亲和层析纯化;
用6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris充分平衡Ni柱,先用含10mmol咪唑的6 M尿素,0.1mol/LNaH2PO4,0.01mol/LTris洗脱杂蛋白,再用含250mmol咪唑的6mol/L尿素,0.1mol/LNaH2PO4,0.01mol/LTris洗脱目的蛋白,收集洗脱峰,纯化产物透析至2M尿素,以0.1mol/LNaH2PO4,0.01mol/LTris复性,终浓度1mg/ml,最后透析入0.02mol/LPBS中,用Lowery法测定蛋白浓度;
3)目的蛋白的复性
应用包涵体溶解液稀释亲和层析后的样品,使蛋白浓度约为0.1mg/ml,梯度透析,透析外液加入CuSO4和β-巯基乙醇作为氧化还原系统,4℃透析,每6小时换液一次,梯度为,4M尿素,2M尿素,1M尿素,最后透析到双蒸水,离心留上清,冻干,HPLC检测蛋白纯度。
CN2008100172360A 2008-01-04 2008-01-04 可溶性人程序性死亡蛋白-1-IgV及其制备方法 Expired - Fee Related CN101215329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100172360A CN101215329B (zh) 2008-01-04 2008-01-04 可溶性人程序性死亡蛋白-1-IgV及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100172360A CN101215329B (zh) 2008-01-04 2008-01-04 可溶性人程序性死亡蛋白-1-IgV及其制备方法

Publications (2)

Publication Number Publication Date
CN101215329A true CN101215329A (zh) 2008-07-09
CN101215329B CN101215329B (zh) 2011-02-02

Family

ID=39621846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100172360A Expired - Fee Related CN101215329B (zh) 2008-01-04 2008-01-04 可溶性人程序性死亡蛋白-1-IgV及其制备方法

Country Status (1)

Country Link
CN (1) CN101215329B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367264A (zh) * 2011-10-17 2012-03-07 太湖瑞晶生物科技有限公司 一种纯化包涵体蛋白质的方法
WO2011161699A3 (en) * 2010-06-25 2012-05-18 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
CN104086627A (zh) * 2014-05-29 2014-10-08 郑州大学 具有抗肿瘤活性的PD-L1 IgV亲和肽S10
WO2014161509A1 (en) * 2013-04-05 2014-10-09 The University Of Hong Kong Novel pd1 isoforms, and uses thereof for potentiating immune responses
US9856320B2 (en) 2012-05-15 2018-01-02 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
CN108530537A (zh) * 2018-03-29 2018-09-14 中国人民解放军军事科学院军事医学研究院 Pd-1/pd-l1信号通路抑制剂
CN108794619A (zh) * 2018-05-31 2018-11-13 郑州大学 一种高亲和pd-1蛋白突变体
WO2019109954A1 (zh) * 2017-12-05 2019-06-13 广东香雪精准医疗技术有限公司 PD-1-Fc融合蛋白及其制备方法和用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185485A (zh) * 1996-12-16 1998-06-24 中国人民解放军军事医学科学院放射医学研究所 血小板生成素在原核细胞中的表达及纯化方法
CN1228446C (zh) * 2003-08-08 2005-11-23 浙江大学 芋螺毒素MVIIA与Trx的融合蛋白及表达和应用
CN1994465B (zh) * 2006-10-13 2010-06-09 中国人民解放军第四军医大学 Ccr5自体多肽疫苗及其制备方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096915B (zh) * 2010-06-25 2016-08-03 奥瑞基尼探索技术有限公司 免疫抑制调节化合物
WO2011161699A3 (en) * 2010-06-25 2012-05-18 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
CN103096915A (zh) * 2010-06-25 2013-05-08 奥瑞基尼探索技术有限公司 免疫抑制调节化合物
EA027040B1 (ru) * 2010-06-25 2017-06-30 Ауриген Дискавери Текнолоджиз Лимитед Модулирующие иммуносупрессию соединения
US8907053B2 (en) 2010-06-25 2014-12-09 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
CN102367264A (zh) * 2011-10-17 2012-03-07 太湖瑞晶生物科技有限公司 一种纯化包涵体蛋白质的方法
US10266596B1 (en) 2012-05-15 2019-04-23 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10323093B2 (en) 2012-05-15 2019-06-18 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10604575B2 (en) 2012-05-15 2020-03-31 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US9856320B2 (en) 2012-05-15 2018-01-02 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10072082B2 (en) 2012-05-15 2018-09-11 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10584170B2 (en) 2012-05-15 2020-03-10 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10577423B2 (en) 2012-05-15 2020-03-03 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10138299B2 (en) 2012-05-15 2018-11-27 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10323092B2 (en) 2012-05-15 2019-06-18 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10266594B1 (en) 2012-05-15 2019-04-23 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10266595B2 (en) 2012-05-15 2019-04-23 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10308714B2 (en) 2012-05-15 2019-06-04 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10316091B2 (en) 2012-05-15 2019-06-11 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US10316090B2 (en) 2012-05-15 2019-06-11 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
WO2014161509A1 (en) * 2013-04-05 2014-10-09 The University Of Hong Kong Novel pd1 isoforms, and uses thereof for potentiating immune responses
CN104086627A (zh) * 2014-05-29 2014-10-08 郑州大学 具有抗肿瘤活性的PD-L1 IgV亲和肽S10
CN104086627B (zh) * 2014-05-29 2016-06-08 郑州大学 具有抗肿瘤活性的PD-L1 IgV亲和肽S10
WO2019109954A1 (zh) * 2017-12-05 2019-06-13 广东香雪精准医疗技术有限公司 PD-1-Fc融合蛋白及其制备方法和用途
CN108530537B (zh) * 2018-03-29 2019-07-02 中国人民解放军军事科学院军事医学研究院 Pd-1/pd-l1信号通路抑制剂
CN108530537A (zh) * 2018-03-29 2018-09-14 中国人民解放军军事科学院军事医学研究院 Pd-1/pd-l1信号通路抑制剂
CN108794619A (zh) * 2018-05-31 2018-11-13 郑州大学 一种高亲和pd-1蛋白突变体
CN108794619B (zh) * 2018-05-31 2021-09-17 郑州大学 一种高亲和pd-1蛋白突变体

Also Published As

Publication number Publication date
CN101215329B (zh) 2011-02-02

Similar Documents

Publication Publication Date Title
CN101215329B (zh) 可溶性人程序性死亡蛋白-1-IgV及其制备方法
Tao et al. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts
CN107835820B (zh) 识别癌症特异性IL13Rα2的CAR T细胞
RU2657440C2 (ru) Ингибиторы т-клеточной активации
US10118964B2 (en) Construction and application of bispecific antibody HER2xCD3
WO2019174603A1 (zh) 靶向ctla-4抗体、其制备方法和用途
AU2016386923B2 (en) Therapeutic use of inhibitors of T cell activation or stimulation
CN111542546B (zh) 抗lag-3抗体及其用途
KR20190141128A (ko) 항pd-l1 항체 및 이의 응용
TW202023580A (zh) 使用靶特異性融合蛋白進行tcr再程式化之組合物及方法
JP2002543787A (ja) 白血球免疫グロブリン様受容体(lir)と命名された免疫調節因子のファミリー
US10683358B2 (en) Human TNFRSF25 antibody
WO2022006451A2 (en) Compositions and methods for tcr reprogramming using fusion proteins and pd-1 antibodies
US11680099B2 (en) Anti-PD-1/CD47 bispecific antibody and application thereof
US20240252641A1 (en) Compositions and methods for tcr reprogramming using cd70 specific fusion proteins
CN114174346A (zh) 抗hk2嵌合抗原受体(car)
KR102297396B1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
EP1327638A1 (en) Novel dendritic cell wall membrane and use thereof
US20230242666A1 (en) Methods and Compositions for the Reduction of Chimeric Antigen Receptor Tonic Signaling
JP2024500511A (ja) 抗pd-l1抗体及びその使用
US20250236653A1 (en) Targeted low potency il-12 fc fusion proteins and uses thereof
WO2019192403A1 (zh) Lgr4/rspo阻断剂与抗免疫检查点抑制剂联合用于肿瘤的免疫治疗
WO2025077829A1 (zh) Cldn18.2抗体及car-t细胞在治疗cldn18.2阳性实体瘤中的应用
RU2779308C2 (ru) Терапевтическое применение ингибиторов активации или стимуляции т-клеток
TW202235436A (zh) Siglec-15結合蛋白的製備及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110202

Termination date: 20170104