[go: up one dir, main page]

CN101213641A - MIM capacitor in semiconductor device and method for same - Google Patents

MIM capacitor in semiconductor device and method for same Download PDF

Info

Publication number
CN101213641A
CN101213641A CNA200680023703XA CN200680023703A CN101213641A CN 101213641 A CN101213641 A CN 101213641A CN A200680023703X A CNA200680023703X A CN A200680023703XA CN 200680023703 A CN200680023703 A CN 200680023703A CN 101213641 A CN101213641 A CN 101213641A
Authority
CN
China
Prior art keywords
insulating layer
layer
plate electrode
forming
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200680023703XA
Other languages
Chinese (zh)
Other versions
CN101213641B (en
Inventor
道格拉斯·R·罗伯茨
加里·L·胡夫曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
III Holdings 12 LLC
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN101213641A publication Critical patent/CN101213641A/en
Application granted granted Critical
Publication of CN101213641B publication Critical patent/CN101213641B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种形成于半导体器件(10)中的一个或者多个金属互连层之上的平坦MIM电容。电容具有底部板状电极(36)和顶部板状电极(40)。绝缘体(38)形成于板状电极之间。在形成第一板状电极之前,在金属互连层上方淀积第一绝缘层(28)。利用化学机械抛光(CMP)工艺对第一绝缘层(28)进行平坦化。然后在平坦化的第一绝缘层上淀积第二绝缘层(32)。第一板状电极(36)形成于第二绝缘层(32)上方。绝缘体(38)形成于第一板状电极之上,作为电容的电介质。在绝缘体(39)上方形成第二板状电极(40)。平坦化第一绝缘层并在其上淀积第二绝缘层,减少了缺陷并产生更可靠的电容。

The present invention provides a planar MIM capacitor formed over one or more metal interconnect layers in a semiconductor device (10). The capacitor has a bottom plate electrode (36) and a top plate electrode (40). An insulator (38) is formed between the plate electrodes. Before forming the first plate electrode, a first insulating layer (28) is deposited over the metal interconnection layer. The first insulating layer (28) is planarized using a chemical mechanical polishing (CMP) process. A second insulating layer (32) is then deposited on the planarized first insulating layer. The first plate electrode (36) is formed above the second insulating layer (32). An insulator (38) is formed on the first plate electrode as a dielectric for the capacitor. A second plate electrode (40) is formed over the insulator (39). Planarizing the first insulating layer and depositing a second insulating layer on top reduces defects and produces more reliable capacitance.

Description

半导体器件中的MIM电容和用于该MIM电容的方法 MIM capacitor in semiconductor device and method for same

技术领域technical field

本发明涉及半导体器件领域,更为具体的,涉及半导体器件中的金属-绝缘体-金属(MIM)电容。The invention relates to the field of semiconductor devices, and more specifically, to metal-insulator-metal (MIM) capacitors in semiconductor devices.

背景技术Background technique

用于集成电路中的电容的一种为平坦金属-绝缘体-金属(MIM)电容。平坦MIM电容包括顶层板状电极和底层板状电极之间的MIM电介质体。MIM电容通常用于去耦合和旁路用途。One type of capacitor used in integrated circuits is the planar metal-insulator-metal (MIM) capacitor. A flat MIM capacitor consists of a MIM dielectric body between top and bottom plate electrodes. MIM capacitors are commonly used for decoupling and bypass purposes.

通常,平坦MIM电容在利用典型的后端嵌刻工艺集成而被集成在铜的上方时会不可靠并可能早期击穿,原因是介于铜和平坦MIM电容之间的层间电介质(ILD)中的缺陷。由诸如表面形貌、粗糙度、颗粒不稳定性和铜氧化而引起的缺陷都被认为是可靠性失效的可能原因。为避免此类问题,排除了直接在铜结构上方进行MIM布图。不幸的是,这对于可利用的片上MIM区域是一种严重损失;这样限制了可制造用于去耦和旁路应用的电容。由此,存在控制形成于铜之上的MIM电容缺陷的需求。In general, flat MIM capacitors are unreliable and may break down early when integrated over copper using typical back-end lithography process integration due to the interlayer dielectric (ILD) between the copper and flat MIM capacitors defects in. Defects such as surface topography, roughness, grain instability, and copper oxidation have been identified as possible causes of reliability failures. To avoid such problems, MIM layout directly over copper structures is ruled out. Unfortunately, this is a severe loss of available on-chip MIM area; this limits the manufacturable capacitors for decoupling and bypass applications. Thus, there is a need to control MIM capacitive defects formed over copper.

附图说明Description of drawings

本发明通过示例的方式说明,但不限于此;其中相同的附图标记表示相似的元件,其中:The present invention is illustrated by way of example, but not limitation; wherein like reference numerals indicate similar elements, wherein:

图1为根据本发明的一个实施方式的可用于形成MIM电容的半导体器件的一部分的截面图。FIG. 1 is a cross-sectional view of a portion of a semiconductor device that can be used to form a MIM capacitor according to one embodiment of the present invention.

图2为形成了阻挡层和第一绝缘层之后的图1的器件。FIG. 2 is the device of FIG. 1 after forming a barrier layer and a first insulating layer.

图3为在平坦化第一绝缘层和淀积第二绝缘层之后的图2的器件。FIG. 3 is the device of FIG. 2 after planarizing the first insulating layer and depositing the second insulating layer.

图4为MIM叠层形成之后的图3的器件。FIG. 4 is the device of FIG. 3 after formation of the MIM stack.

图5为将MIM叠层构图而形成MIM电容之后的图4的器件。FIG. 5 is the device of FIG. 4 after patterning the MIM stack to form a MIM capacitor.

图6为在MIM电容上方形成绝缘层后的图5的器件。FIG. 6 is the device of FIG. 5 after forming an insulating layer over the MIM capacitor.

图7为在绝缘层中形成过孔之后的图6的器件。FIG. 7 is the device of FIG. 6 after forming vias in the insulating layer.

图8为在过孔以及顶层互连层中形成接触后的图7的器件。FIG. 8 is the device of FIG. 7 after forming contacts in vias and top interconnect layers.

本领域技术人员会理解,图中的元件的说明仅是为了简单化和清晰化的目的,没有必要按照比例画出。例如,图中某些元件的尺寸可相对其他元件夸大以帮助提高对本发明实施方式的理解。Those skilled in the art will understand that the illustrations of elements in the figures are for the purpose of simplicity and clarity only and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the invention.

具体实施方式Detailed ways

一般而言,本发明提供了一种形成具有平坦MIM电容的半导体器件的方法。平坦MIM电容形成于一个或者多个金属互连层上方。每个金属互连层由层间电介质层隔离。电容具有底部板状电极和顶部板状电极。绝缘体形成于板状电极之间。在形成第一板状电极之前,在金属互连层上方淀积第一绝缘层。利用化学机械抛光(CMP)工艺对第一绝缘层进行平坦化,以去除诸如从下层金属传递过来的缺陷。然后在平坦化的第一绝缘层上方淀积第二绝缘层以去除诸如因CMP工艺引起的较小缺陷的另外部分的缺陷。底层板状电极形成于第二绝缘层上方。作为电容的电介质的绝缘体形成于底层板状电极之上。最终在绝缘体上方形成顶层板状电极。In general, the present invention provides a method of forming a semiconductor device with flat MIM capacitance. A planar MIM capacitor is formed over one or more metal interconnect layers. Each metal interconnect layer is separated by an interlevel dielectric layer. The capacitor has a bottom plate electrode and a top plate electrode. An insulator is formed between the plate electrodes. Before forming the first plate electrode, a first insulating layer is deposited on the metal interconnection layer. The first insulating layer is planarized using a chemical mechanical polishing (CMP) process to remove defects such as transfer from the underlying metal. A second insulating layer is then deposited over the planarized first insulating layer to remove additional portions of defects such as smaller defects caused by the CMP process. The bottom plate electrode is formed on the second insulating layer. An insulator serving as a dielectric for the capacitor is formed over the underlying plate electrode. Finally, a top plate electrode is formed on top of the insulator.

通过平坦化第一绝缘层和在第一绝缘层上方淀积第二绝缘层,在金属上方形成比起现有技术具有实质上更少的缺陷的表面。这样,平坦化MIM电容的因缺陷造成的早期绝缘层击穿得到降低,并因此更加可靠。By planarizing the first insulating layer and depositing the second insulating layer over the first insulating layer, a surface over the metal is formed that has substantially fewer defects than in the prior art. In this way, the early breakdown of the insulating layer due to defects of the planarized MIM capacitor is reduced and thus more reliable.

图1~8给出了经过根据本发明的一系列加工工序以形成平坦MIM电容的半导体器件10的一部分的说明。1-8 provide illustrations of a portion of a semiconductor device 10 that has undergone a series of processing steps in accordance with the present invention to form a planar MIM capacitor.

图1给出了可用于形成平坦MIM电容的半导体器件10的一部分的截面图。提供了半导体衬底12。在优选实施方式中,半导体衬底12为硅。但是,也可使用其他半导体材料诸如砷化镓和绝缘体上硅(SOI)。通常,衬底12包括大量不同的有源和无源半导体器件,例如金属-氧化物半导体(MOS)晶体管、双极型晶体管、电阻和电容。但是,出于理解本发明的目的,对于这些器件的理解并不必要,因此没有对这些器件进行说明。在半导体衬底12上方可形成许多互连层并连接至有源电路。通常,根据集成电路的复杂性,可以有少至一个互连层或者多于九个互连层。每个互连层包括由ILD层隔离的多个金属导体。图1表示了两个互连层。FIG. 1 shows a cross-sectional view of a portion of a semiconductor device 10 that can be used to form a planar MIM capacitor. A semiconductor substrate 12 is provided. In a preferred embodiment, semiconductor substrate 12 is silicon. However, other semiconductor materials such as gallium arsenide and silicon-on-insulator (SOI) may also be used. Typically, substrate 12 includes a large number of different active and passive semiconductor devices, such as metal-oxide semiconductor (MOS) transistors, bipolar transistors, resistors, and capacitors. However, for the purpose of understanding the present invention, an understanding of these devices is not necessary and therefore they are not described. A number of interconnect layers may be formed over semiconductor substrate 12 and connected to active circuitry. Typically, there may be as few as one interconnection layer or more than nine interconnection layers depending on the complexity of the integrated circuit. Each interconnect layer includes a plurality of metal conductors separated by an ILD layer. Figure 1 shows two interconnect layers.

ILD层14淀积于半导体衬底12上。ILD层14可以为通过任何工艺形成的电介质材料层的组合。例如,可以为二氧化硅(SiO2)、掺碳的二氧化硅(如SiCOH)、四乙基正硅酸盐(TEOS)、掺硼/磷的TEOS(BPTEOS)、富硅氧氮化物(SRON)、等离子体增强的氮化物(PEN)、磷硅酸盐玻璃(PSG)、碳氮化硅(SiCN)、或者富硅氧化物(SRO)。优选地,利用等离子体增强化学气相淀积(PECVD)将ILD层14淀积为厚约4000至10000埃。第一导电层16利用物理气相淀积(PVD)、化学气相淀积(CVD)、原子层淀积(ALD)、电镀等及其组合形成于ILD 14上方。在优选实施方式中,第一导电层16主要为铜。但是,在其他实施方式中,第一导电层16可以为铝或者铝-铜合金。另外,第一半导体层16可由多个材料层形成。例如,在铜嵌刻金属化方案中,经常在形成铜层之前形成包括钽或者氮化钽的扩散阻挡层。ILD layer 14 is deposited on semiconductor substrate 12 . ILD layer 14 may be a combination of layers of dielectric material formed by any process. For example, it can be silicon dioxide (SiO2), carbon-doped silicon dioxide (such as SiCOH), tetraethylorthosilicate (TEOS), boron/phosphorus-doped TEOS (BPTEOS), silicon-rich oxynitride (SRON ), plasma-enhanced nitride (PEN), phosphosilicate glass (PSG), silicon carbonitride (SiCN), or silicon-rich oxide (SRO). Preferably, ILD layer 14 is deposited to a thickness of about 4000 to 10000 Angstroms using plasma enhanced chemical vapor deposition (PECVD). The first conductive layer 16 is formed over the ILD 14 using physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electroplating, etc., and combinations thereof. In a preferred embodiment, first conductive layer 16 is primarily copper. However, in other embodiments, the first conductive layer 16 may be aluminum or an aluminum-copper alloy. In addition, the first semiconductor layer 16 may be formed of a plurality of material layers. For example, in copper damascene metallization schemes, a diffusion barrier layer comprising tantalum or tantalum nitride is often formed prior to forming the copper layer.

利用与上述第一ILD层14和第一导电层6相同的材料,在导电层16上形成第二ILD层18后,形成第二导电层20。在所示的实施方式中,给出了两个互连层。在其他实施方式中,可以有少至一个或者多于九个的互连层。互连层的导体按照需要利用穿过通孔形成的接触、例如接触22和24,相互连接以及连接至衬底12上的电路。After the second ILD layer 18 is formed on the conductive layer 16 using the same material as the first ILD layer 14 and the first conductive layer 6 , the second conductive layer 20 is formed. In the illustrated embodiment, two interconnect layers are presented. In other embodiments, there may be as few as one or more than nine interconnect layers. The conductors of the interconnection layers are connected to each other and to circuitry on substrate 12 as desired using contacts formed through vias, such as contacts 22 and 24 .

图2给出了在阻挡层26和绝缘层28形成后的图1的器件。阻挡层26作为对后续形成的层中的铜的扩散阻挡层。在给出的实施方式中,阻挡层26为淀积至300到500埃厚度的PEN或者SICN。然后,利用如TEOS、氟化TEOS(FTEOS)或者SIOH的电介质覆盖膜在阻挡层26上淀积绝缘层28至厚度约3000到6000埃。层26和28的淀积可以传递来自第二导电层中的铜的缺陷,并产生另外的缺陷。礼物,绝缘层28的表面可能像图2所示那样较为粗糙。给出的实施方式减少了表面缺陷,并且通过在晶片加工过程中利用CMP工艺的平坦化使得绝缘层28的粗糙度变得光滑。优选的CMP工艺为传统工艺,利用较硬的研磨垫以及烟气处理的硅石散布研磨浆的常用流速。另外,使用去离子化水冲洗晶片,然后进行典型的抛光后氢氧化氨机械擦洗。在其他实施方式中,可以使用不同的CMP工艺。FIG. 2 shows the device of FIG. 1 after barrier layer 26 and insulating layer 28 have been formed. Barrier layer 26 acts as a diffusion barrier to copper in subsequently formed layers. In the embodiment shown, barrier layer 26 is PEN or SICN deposited to a thickness of 300 to 500 Angstroms. An insulating layer 28 is then deposited on barrier layer 26 to a thickness of about 3000 to 6000 Angstroms using a dielectric capping film such as TEOS, fluorinated TEOS (FTEOS), or SIOH. The deposition of layers 26 and 28 can transfer defects from the copper in the second conductive layer and create additional defects. Presently, the surface of the insulating layer 28 may be relatively rough as shown in FIG. 2 . The presented embodiment reduces surface defects and smoothes the roughness of the insulating layer 28 by planarization using a CMP process during wafer processing. The preferred CMP process is conventional, utilizing relatively hard pads and flue gas-treated silica to disperse the usual flow rates of the slurry. Alternatively, rinse the wafer with deionized water, followed by a typical post-polish ammonium hydroxide mechanical scrub. In other embodiments, different CMP processes may be used.

图3给出了经过平坦化绝缘层28后的图2的器件。平坦化绝缘层28的厚度可达约3000埃。请注意,在某些实施方式中,几乎所有绝缘层28可以在CMP工艺中除去。在CMP工序后淀积第二绝缘层32。缘绝层32为诸如淀积至厚度约500到约3000埃的TEOS、FTEOS或者SICOH的电介质覆盖膜。绝缘层32进一步减少了在CMP后残留的缺陷。FIG. 3 shows the device of FIG. 2 after planarizing the insulating layer 28 . The thickness of the planarizing insulating layer 28 can be up to about 3000 Angstroms. Note that in some embodiments, nearly all of insulating layer 28 may be removed during the CMP process. The second insulating layer 32 is deposited after the CMP process. The insulating layer 32 is a dielectric capping film such as TEOS, FTEOS or SICOH deposited to a thickness of about 500 to about 3000 Angstroms. The insulating layer 32 further reduces residual defects after CMP.

图4给出了在绝缘层32上形成MIM叠层34之后的图3的器件。MIM叠层34包括底部板状电极层36、绝缘体38和顶部板状电极层40。底部板状电极层36由氮化钽(TaN)、氮化钛(TiN)、铝(Al)、铜(Cu)、钌(Ru)、铱(Ir)等之一形成。在一个实施方式中,底层板状电极层36厚约100至1000埃。利用CVD、PVD、ALD等或者其组合在底层板状电极层36上形成绝缘体38。在一个实施方式中,绝缘体38包括具有高线性度(例如,标准化电容变化通常小于100ppm电压单位)的金属氧化物,例如氧化钽和氧化铪。但是,对于线性度不太关键的一般应用,诸如氧化锆、钛酸钡锶(BST)以及钛酸锶(STO)之类的其他氧化物也是适合的。或者,也可使用非高介电常数材料的绝缘体38,例如二氧化硅。此处所用高介电常数材料为介电常数比二氧化硅的大的材料。绝缘体38还可以为等离子体增强氮化物(PEN),SixNy。顶层板状电极层40形成于绝缘体38上,可以具有与底层板状电极层36相同的成分和厚度。FIG. 4 shows the device of FIG. 3 after forming a MIM stack 34 on the insulating layer 32 . The MIM stack 34 includes a bottom plate electrode layer 36 , an insulator 38 and a top plate electrode layer 40 . The bottom plate electrode layer 36 is formed of one of tantalum nitride (TaN), titanium nitride (TiN), aluminum (Al), copper (Cu), ruthenium (Ru), iridium (Ir), and the like. In one embodiment, the underlying plate electrode layer 36 is about 100 to 1000 Angstroms thick. The insulator 38 is formed on the underlying plate electrode layer 36 using CVD, PVD, ALD, etc., or a combination thereof. In one embodiment, insulator 38 comprises metal oxides such as tantalum oxide and hafnium oxide that have high linearity (eg, normalized capacitance change typically less than 100 ppm volts). However, for general applications where linearity is less critical, other oxides such as zirconia, barium strontium titanate (BST) and strontium titanate (STO) are also suitable. Alternatively, an insulator 38 other than a high dielectric constant material, such as silicon dioxide, may also be used. The high dielectric constant material used here is a material having a higher dielectric constant than silicon dioxide. Insulator 38 may also be plasma enhanced nitride (PEN), Six N y . The top plate electrode layer 40 is formed on the insulator 38 and may have the same composition and thickness as the bottom plate electrode layer 36 .

图5给出了将MIM叠层进行构图以形成平坦MIM电容之后的图4的器件。为了随后将顶层板状电极层40刻蚀成期望的尺寸和形状,淀积并构图光刻胶层(未示出)。然后如业界周知的,利用另一个光刻胶层(未示出)对底层板状电极层36和绝缘体38进行构图,产生如图5所示的平坦MIM电容41。Figure 5 shows the device of Figure 4 after patterning the MIM stack to form a flat MIM capacitor. A photoresist layer (not shown) is deposited and patterned for subsequent etching of the top plate electrode layer 40 to the desired size and shape. The underlying plate electrode layer 36 and insulator 38 are then patterned with another layer of photoresist (not shown), as is well known in the art, resulting in a flat MIM capacitor 41 as shown in FIG. 5 .

图6给出了在MIM电容上方形成绝缘层42之后的图5的器件。绝缘层42为淀积于半导体器件10上方的ILD。绝缘层42可以为诸如TEOS、FTEOS、SICOH等的任何电介质材料。绝缘层可以为约100-1000埃厚。如果需要可以在绝缘层42上方形成后续的金属互连层。FIG. 6 shows the device of FIG. 5 after an insulating layer 42 has been formed over the MIM capacitor. The insulating layer 42 is an ILD deposited over the semiconductor device 10 . The insulating layer 42 may be any dielectric material such as TEOS, FTEOS, SICOH, and the like. The insulating layer may be about 100-1000 Angstroms thick. Subsequent metal interconnect layers may be formed over insulating layer 42 if desired.

图7给出了在绝缘层42中形成通孔44、46和48之后的图6的器件。淀积并构图光刻胶层(未示出)以刻蚀绝缘层42,来形成通孔开口44、46和48。通孔刻蚀的化学机制为传统方法,并且是选择性的以使刻蚀停在板状电极之上和互连层20中的导体之上。FIG. 7 shows the device of FIG. 6 after vias 44 , 46 and 48 have been formed in insulating layer 42 . A layer of photoresist (not shown) is deposited and patterned to etch insulating layer 42 to form via openings 44 , 46 and 48 . The chemistry of the via etch is conventional and is selective so that the etch stops over the plate electrodes and over the conductors in the interconnect layer 20 .

图8给出了在通孔内形成接触50、52和54以及形成最终互连层56之后的图7的器件。在通孔开口形成之后,填入导电材料以形成接触50、52和54。请注意,接触50、52、54表示形成于半导体器件10中的多个接触。接触50表示最终的互连层56的导体和互连层20中的导体之间的电连接。接触52表示互连层56中的导体和底层板状电极36之间的电连接。类似地,接触54表示互连层56中的导体和顶层板状电极40之间的电连接。请注意,在一个应用中,平坦MIM电容41用作去耦电容。此种情况下,互连层56可用于提供电源或者地的连线。另外,用于顶层和底层板状电极的接触通常连接至同一互连层。FIG. 8 shows the device of FIG. 7 after forming contacts 50 , 52 and 54 within the vias and forming a final interconnect layer 56 . After the via openings are formed, a conductive material is filled to form contacts 50 , 52 and 54 . Note that contacts 50 , 52 , 54 represent multiple contacts formed in semiconductor device 10 . Contacts 50 represent electrical connections between conductors of final interconnect layer 56 and conductors in interconnect layer 20 . Contact 52 represents an electrical connection between a conductor in interconnect layer 56 and underlying plate electrode 36 . Similarly, contact 54 represents an electrical connection between a conductor in interconnect layer 56 and top plate electrode 40 . Note that in one application, the flat MIM capacitor 41 is used as a decoupling capacitor. In this case, the interconnect layer 56 can be used to provide power or ground connections. In addition, the contacts for the top and bottom plate electrodes are usually connected to the same interconnect layer.

一般,在平坦MIM电容中,顶层板状电极小于底层板状电极。因此,顶层板状电极限定了电容的有效区域,该区域应尽可能的无缺陷以获得高可靠性。但是,对于较大的平坦MIM电容,顶层和底层板状电极具有相似的尺寸。Generally, in a flat MIM capacitor, the top plate electrode is smaller than the bottom plate electrode. Therefore, the top plate electrode defines the active area of the capacitor, which should be as defect-free as possible for high reliability. However, for larger flat MIM capacitors, the top and bottom plate electrodes have similar dimensions.

根据给出的实施方式,可在集成电路上(IC)形成约1平方厘米或者更大的大面积平坦MIM电容。在一个实施方式中,平坦MIM电容可以覆盖集成电路的50%或更多,在另一实施方式中,它几乎覆盖整个集成电路表面。另外,通过使用利用诸如ALD、CVD、PVD等传统的方法淀积的低K、中K、或高K绝缘体,平坦MIM电容可具有高于10fF/μm2的较高的电容密度。According to the given embodiment, large area planar MIM capacitors of about 1 square centimeter or larger can be formed on an integrated circuit (IC). In one embodiment, the flat MIM capacitor can cover 50% or more of the integrated circuit, in another embodiment it covers nearly the entire integrated circuit surface. In addition, planar MIM capacitors can have higher capacitance densities above 10 fF/μm 2 by using low-K, medium-K, or high-K insulators deposited using conventional methods such as ALD, CVD, PVD, etc.

图中所示的实施方式为形成于最终的互连层下方的MIM电容。但是本领域技术人员会意识到,可在衬底12上的任何地方形成平坦MIM电容。例如,平坦MIM电容可以在第一互连层下方、最终互连层上方或者它们之间的任何地方形成。还有未在图中清晰示出的相关结构,这些通常出现在片上作为IC互连电路的必要部分。The embodiment shown in the figure is a MIM capacitor formed below the final interconnect layer. However, those skilled in the art will appreciate that planar MIM capacitors can be formed anywhere on the substrate 12 . For example, planar MIM capacitors can be formed below the first interconnect layer, above the final interconnect layer, or anywhere in between. There are also related structures not clearly shown in the figure, these are usually present on-chip as a necessary part of the IC's interconnection circuitry.

以上结合具体实施方式,说明了本发明的好处,其他优点以及对问题的解决方案。但是,好处、优点、问题的解决以及可以引起任何好处、优点或者解决方案的出现或者更加显著的任何元素,并不被解释为任何或者全部权利要求的关键、必要或者基本特征或者元素。此处所用术语“包含”或者其任何其他变体意指非排他性包括,从而包含一系列元件的工艺、方法、物品或者装置并不仅仅包含这些元素,还可包括其他未清楚列出或者该工艺固有的元素、方法、物品或者装置。The benefits, other advantages and solutions to the problems of the present invention have been described above in conjunction with the specific implementation manners. However, benefits, advantages, solutions to problems, and any element that may cause any benefit, advantage, or solution to appear or be more pronounced, are not to be construed as key, essential, or essential features or elements of any or all claims. As used herein, the term "comprising" or any other variation thereof means a non-exclusive inclusion such that a process, method, article or apparatus comprising a series of elements does not contain only those elements, but may also include others not expressly listed or included in the process. An inherent element, method, article, or device.

在上述说明中,结合具体实施方式对本发明进行了描述。但是,本领域一般技术人员会理解,在不偏离本发明所附的权利要求提出的范围的前提下,可以进行不同修正和改变。例如,MIM电容可以利用嵌刻集成形成。因此,说明和附图被认为是说明性的而非限制性的,所有此类改动均视为包含在本发明的范围之内。In the above description, the present invention has been described in conjunction with specific embodiments. However, those skilled in the art appreciate that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. For example, MIM capacitors can be formed using inlay integration. Accordingly, the description and drawings are to be regarded as illustrative rather than restrictive and all such modifications are deemed to be included within the scope of the present invention.

Claims (20)

1.一种形成具有平坦金属-绝缘体-金属(MIM)电容的半导体器件的方法,包括以下步骤:1. A method of forming a semiconductor device with flat metal-insulator-metal (MIM) capacitance, comprising the steps of: 提供半导体衬底;Provide semiconductor substrates; 在半导体衬底上方形成第一绝缘层;forming a first insulating layer over the semiconductor substrate; 平坦化第一绝缘层;planarizing the first insulating layer; 在第一绝缘层上方形成第二绝缘层;forming a second insulating layer over the first insulating layer; 在第二绝缘层上方形成平坦MIM电容的第一板状电极;forming a first plate electrode of a flat MIM capacitor on the second insulating layer; 在第一板状电极上方形成第三绝缘层;forming a third insulating layer above the first plate electrode; 在第三绝缘层上方形成平坦MIM电容的第二板状电极。A second plate electrode of the flat MIM capacitor is formed on the third insulating layer. 2.如权利要求1所述的方法,其中,2. The method of claim 1, wherein, 平坦化第一绝缘层的步骤包括利用化学机械抛光工艺对第一绝缘层进行平坦化。The step of planarizing the first insulating layer includes planarizing the first insulating layer using a chemical mechanical polishing process. 3.如权利要求1所述方法,其中,3. The method of claim 1, wherein, 第二板状电极电耦合至互连层。The second plate electrode is electrically coupled to the interconnection layer. 4.如权利要求1所述的方法,其中,4. The method of claim 1, wherein, 第一绝缘层包括四乙基正硅酸盐(TEOS)。The first insulating layer includes tetraethylorthosilicate (TEOS). 5.如权利要求1所述的方法,其中,5. The method of claim 1, wherein, 第三绝缘层包括以20至1000埃的厚度形成的高K电介质。The third insulating layer includes a high-K dielectric formed with a thickness of 20 to 1000 angstroms. 6.如权利要求1所述的方法,其中,6. The method of claim 1, wherein, MIM电容直接形成于互连层的导体的上方。MIM capacitors are formed directly over the conductors of the interconnection layer. 7.如权利要求1所述的方法,其中,7. The method of claim 1, wherein, MIM电容覆盖半导体器件的表面面积的至少50%。The MIM capacitor covers at least 50% of the surface area of the semiconductor device. 8.如权利要求1所述的方法,8. The method of claim 1, 还包括在第三绝缘层上方形成具有多个导体的互连层的步骤。Also included is the step of forming an interconnect layer having a plurality of conductors over the third insulating layer. 9.如权利要求8所述的方法,其中,9. The method of claim 8, wherein, 互连层选自包括铝和铜的组。The interconnect layer is selected from the group consisting of aluminum and copper. 10.一种形成具有金属-绝缘体-金属(MIM)电容的半导体器件的方法,包括:10. A method of forming a semiconductor device having a metal-insulator-metal (MIM) capacitance, comprising: 提供半导体衬底;Provide semiconductor substrates; 在半导体衬底上方形成互连层;forming an interconnect layer over the semiconductor substrate; 在互连层上方形成第一绝缘层;forming a first insulating layer over the interconnect layer; 平坦化第一绝缘层;planarizing the first insulating layer; 在第一绝缘层上方形成第二绝缘层;forming a second insulating layer over the first insulating layer; 在第二绝缘层上方形成MIM电容的第一板状电极;forming the first plate electrode of the MIM capacitor above the second insulating layer; 在第一板状电极上方形成第三绝缘层;forming a third insulating layer above the first plate electrode; 在第三绝缘层上方形成MIM电容的第二板状电极:Form the second plate electrode of the MIM capacitor above the third insulating layer: 11.如权利要求10所述的方法,其中,11. The method of claim 10, wherein, 平坦化第一绝缘层的步骤包括利用化学机械抛光工艺对第一绝缘层进行平坦化。The step of planarizing the first insulating layer includes planarizing the first insulating layer using a chemical mechanical polishing process. 12.如权利要求10所述的方法,其中,12. The method of claim 10, wherein, 还包括在第三绝缘层上方形成第二互连层。Also included is forming a second interconnection layer over the third insulating layer. 13.如权利要求10所述的方法,其中,13. The method of claim 10, wherein, 第二板状电极电耦合至第二互连层。The second plate electrode is electrically coupled to the second interconnection layer. 14.如权利要求10所述的方法,其中,14. The method of claim 10, wherein, 第一绝缘层包括四乙基正硅酸盐(TEOS)。The first insulating layer includes tetraethylorthosilicate (TEOS). 15.如权利要求10所述的方法,其中,15. The method of claim 10, wherein, 第三绝缘层包括以20至1000埃的厚度形成的高K电介质。The third insulating layer includes a high-K dielectric formed with a thickness of 20 to 1000 angstroms. 16.如权利要求10所述的方法,其中,16. The method of claim 10, wherein, MIM电容直接形成于互连层的导体的上方。MIM capacitors are formed directly over the conductors of the interconnection layer. 17.如权利要求10所述的方法,其中,17. The method of claim 10, wherein, MIM电容覆盖半导体器件的表面面积的至少50%。The MIM capacitor covers at least 50% of the surface area of the semiconductor device. 18.如权利要求10所述的方法,其中,18. The method of claim 10, wherein, 互连层选自包括铝和铜的组。The interconnect layer is selected from the group consisting of aluminum and copper. 19.一种半导体器件,包括:19. A semiconductor device comprising: 半导体衬底;semiconductor substrate; 形成于半导体衬底上方的互连层;an interconnect layer formed over the semiconductor substrate; 形成于互连层上方的第一平坦化绝缘层;a first planarization insulating layer formed over the interconnection layer; 形成于第一绝缘层上方的第二绝缘层;a second insulating layer formed over the first insulating layer; 形成于第二绝缘层上方的第一板状电极;a first plate electrode formed on the second insulating layer; 形成于第一电极上方的第三绝缘层;和a third insulating layer formed over the first electrode; and 形成于第三绝缘层上方的第二板状电极。The second plate electrode is formed on the third insulating layer. 20.如权利要求19所述的半导体器件,其中,20. The semiconductor device as claimed in claim 19, wherein, 第一平坦化绝缘层是利用化学机械抛光工艺而被平坦化的。The first planarizing insulating layer is planarized using a chemical mechanical polishing process.
CN200680023703XA 2005-06-28 2006-06-08 MIM capacitor in a semiconductor device and method therefor Expired - Fee Related CN101213641B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/168,579 2005-06-28
US11/168,579 US7375002B2 (en) 2005-06-28 2005-06-28 MIM capacitor in a semiconductor device and method therefor
PCT/US2006/022280 WO2007001783A2 (en) 2005-06-28 2006-06-08 Mim capacitor in a semiconductor device and method therefor

Publications (2)

Publication Number Publication Date
CN101213641A true CN101213641A (en) 2008-07-02
CN101213641B CN101213641B (en) 2011-01-05

Family

ID=37568077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680023703XA Expired - Fee Related CN101213641B (en) 2005-06-28 2006-06-08 MIM capacitor in a semiconductor device and method therefor

Country Status (4)

Country Link
US (1) US7375002B2 (en)
CN (1) CN101213641B (en)
TW (1) TWI389297B (en)
WO (1) WO2007001783A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989621B (en) * 2009-08-06 2012-03-07 中芯国际集成电路制造(上海)有限公司 Metal-insulator-metal (MIM) capacitor and manufacturing method thereof
CN105632897A (en) * 2016-02-23 2016-06-01 中航(重庆)微电子有限公司 MIM (metal-insulator-metal) capacitor and preparation method therefor
CN108123038A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN109962015A (en) * 2017-12-22 2019-07-02 长鑫存储技术有限公司 For improving the making technology of copper wire short circuit
CN110462822A (en) * 2017-03-22 2019-11-15 超威半导体公司 For improving the oscillating capacitor framework of capacitor in polysilicon

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039924B2 (en) * 2007-07-09 2011-10-18 Renesas Electronics Corporation Semiconductor device including capacitor element provided above wiring layer that includes wiring with an upper surface having protruding portion
US7820506B2 (en) * 2008-10-15 2010-10-26 Micron Technology, Inc. Capacitors, dielectric structures, and methods of forming dielectric structures
US8420480B2 (en) 2011-03-31 2013-04-16 Freescale Semiconductor, Inc. Patterning a gate stack of a non-volatile memory (NVM) with formation of a gate edge diode
US8415217B2 (en) 2011-03-31 2013-04-09 Freescale Semiconductor, Inc. Patterning a gate stack of a non-volatile memory (NVM) with formation of a capacitor
US8426263B2 (en) 2011-03-31 2013-04-23 Freescale Semiconductor, Inc. Patterning a gate stack of a non-volatile memory (NVM) with formation of a metal-oxide-semiconductor field effect transistor (MOSFET)
US10497773B2 (en) 2014-03-31 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method to improve MIM device performance
US9257498B1 (en) 2014-08-04 2016-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Process to improve performance for metal-insulator-metal (MIM) capacitors
US9793339B2 (en) * 2015-01-08 2017-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing copper contamination in metal-insulator-metal (MIM) capacitors
CN109395764B (en) * 2018-12-18 2021-09-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of phosphorus-doped carbon nitride, product and application thereof
US20220310777A1 (en) * 2021-03-26 2022-09-29 Intel Corporation Integrated circuit package redistribution layers with metal-insulator-metal (mim) capacitors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973910A (en) 1991-12-31 1999-10-26 Intel Corporation Decoupling capacitor in an integrated circuit
US5872697A (en) 1996-02-13 1999-02-16 International Business Machines Corporation Integrated circuit having integral decoupling capacitor
US6285050B1 (en) 1997-12-24 2001-09-04 International Business Machines Corporation Decoupling capacitor structure distributed above an integrated circuit and method for making same
US6191479B1 (en) 1999-02-13 2001-02-20 Advanced Micro Devices, Inc. Decoupling capacitor configuration for integrated circuit chip
US6365419B1 (en) 2000-08-28 2002-04-02 Motorola, Inc. High density MRAM cell array
US6737728B1 (en) 2000-10-12 2004-05-18 Intel Corporation On-chip decoupling capacitor and method of making same
CN1270368C (en) * 2002-05-20 2006-08-16 台湾积体电路制造股份有限公司 How to make a capacitor
US6630380B1 (en) * 2002-09-30 2003-10-07 Chartered Semiconductor Manufacturing Ltd Method for making three-dimensional metal-insulator-metal capacitors for dynamic random access memory (DRAM) and ferroelectric random access memory (FERAM)
US6743642B2 (en) 2002-11-06 2004-06-01 International Business Machines Corporation Bilayer CMP process to improve surface roughness of magnetic stack in MRAM technology
US20050082592A1 (en) * 2003-10-16 2005-04-21 Taiwan Semiconductor Manufacturing Co., Ltd. Compact capacitor structure having high unit capacitance
KR100585115B1 (en) * 2003-12-10 2006-05-30 삼성전자주식회사 Semiconductor device including metal-insulator-metal capacitor and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989621B (en) * 2009-08-06 2012-03-07 中芯国际集成电路制造(上海)有限公司 Metal-insulator-metal (MIM) capacitor and manufacturing method thereof
CN105632897A (en) * 2016-02-23 2016-06-01 中航(重庆)微电子有限公司 MIM (metal-insulator-metal) capacitor and preparation method therefor
CN110462822A (en) * 2017-03-22 2019-11-15 超威半导体公司 For improving the oscillating capacitor framework of capacitor in polysilicon
CN108123038A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN109962015A (en) * 2017-12-22 2019-07-02 长鑫存储技术有限公司 For improving the making technology of copper wire short circuit
CN109962015B (en) * 2017-12-22 2021-11-02 长鑫存储技术有限公司 Process for improving short circuit of copper wire

Also Published As

Publication number Publication date
US7375002B2 (en) 2008-05-20
CN101213641B (en) 2011-01-05
TW200707706A (en) 2007-02-16
TWI389297B (en) 2013-03-11
WO2007001783A3 (en) 2007-11-15
US20060292815A1 (en) 2006-12-28
WO2007001783A2 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
CN101213641A (en) MIM capacitor in semiconductor device and method for same
CN100365765C (en) Metal-insulator-metal capacitor structure and manufacturing method in dual damascene structure
US6709918B1 (en) Method for making a metal-insulator-metal (MIM) capacitor and metal resistor for a copper back-end-of-line (BEOL) technology
US7768130B2 (en) BEOL interconnect structures with simultaneous high-k and low-k dielectric regions
CN100385659C (en) Integrated circuit device and semiconductor device including metal-insulator-metal capacitor
US6746914B2 (en) Metal sandwich structure for MIM capacitor onto dual damascene
CN103456601B (en) Capacitor and its manufacture method for mediplate
US6593185B1 (en) Method of forming embedded capacitor structure applied to logic integrated circuit
US11183454B2 (en) Functional component within interconnect structure of semiconductor device and method of forming same
WO2004100232A1 (en) Method for forming the top plate of a mim capacitor with a single mask in a copper dual damascene integration scheme
CN1913158B (en) Semiconductor device and method of manufacturing the same
CN100578754C (en) Semiconductor device with mosaic MIM type capacitor and manufacturing method thereof
US7586142B2 (en) Semiconductor device having metal-insulator-metal capacitor and method of fabricating the same
US11848267B2 (en) Functional component within interconnect structure of semiconductor device and method of forming same
US20100032801A1 (en) Capacitor formed in interlevel dielectric layer
CN100536109C (en) Method and structure for manufacturing high-capacitance capacitor by using copper
CN101271880A (en) Semiconductor device and manufacturing method thereof
TW508784B (en) Method of manufacturing a semiconductor device and a semiconductor device
US6586347B1 (en) Method and structure to improve the reliability of multilayer structures of FSG (F-doped SiO2) dielectric layers and metal layers in semiconductor integrated circuits
US7060193B2 (en) Method to form both high and low-k materials over the same dielectric region, and their application in mixed mode circuits
US20020190299A1 (en) Metal capacitor in damascene structures
CN103515308A (en) Copper interconnection structure and manufacturing method thereof
US12027574B2 (en) Resistor structure
CN100373546C (en) Method for manufacturing metal-insulating layer-metal capacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161229

Address after: Delaware

Patentee after: III Holdings 12 LLC

Address before: Texas in the United States

Patentee before: FREESCALE SEMICONDUCTOR, Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110105

CF01 Termination of patent right due to non-payment of annual fee