CN101213641A - MIM capacitor in semiconductor device and method for same - Google Patents
MIM capacitor in semiconductor device and method for same Download PDFInfo
- Publication number
- CN101213641A CN101213641A CNA200680023703XA CN200680023703A CN101213641A CN 101213641 A CN101213641 A CN 101213641A CN A200680023703X A CNA200680023703X A CN A200680023703XA CN 200680023703 A CN200680023703 A CN 200680023703A CN 101213641 A CN101213641 A CN 101213641A
- Authority
- CN
- China
- Prior art keywords
- insulating layer
- layer
- plate electrode
- forming
- over
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000007517 polishing process Methods 0.000 claims 3
- 239000012212 insulator Substances 0.000 abstract description 15
- 230000007547 defect Effects 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 12
- 238000000151 deposition Methods 0.000 abstract description 4
- 238000005498 polishing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 94
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- -1 SiCOH) Chemical compound 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31608—Deposition of SiO2
- H01L21/31612—Deposition of SiO2 on a silicon body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明提供一种形成于半导体器件(10)中的一个或者多个金属互连层之上的平坦MIM电容。电容具有底部板状电极(36)和顶部板状电极(40)。绝缘体(38)形成于板状电极之间。在形成第一板状电极之前,在金属互连层上方淀积第一绝缘层(28)。利用化学机械抛光(CMP)工艺对第一绝缘层(28)进行平坦化。然后在平坦化的第一绝缘层上淀积第二绝缘层(32)。第一板状电极(36)形成于第二绝缘层(32)上方。绝缘体(38)形成于第一板状电极之上,作为电容的电介质。在绝缘体(39)上方形成第二板状电极(40)。平坦化第一绝缘层并在其上淀积第二绝缘层,减少了缺陷并产生更可靠的电容。
The present invention provides a planar MIM capacitor formed over one or more metal interconnect layers in a semiconductor device (10). The capacitor has a bottom plate electrode (36) and a top plate electrode (40). An insulator (38) is formed between the plate electrodes. Before forming the first plate electrode, a first insulating layer (28) is deposited over the metal interconnection layer. The first insulating layer (28) is planarized using a chemical mechanical polishing (CMP) process. A second insulating layer (32) is then deposited on the planarized first insulating layer. The first plate electrode (36) is formed above the second insulating layer (32). An insulator (38) is formed on the first plate electrode as a dielectric for the capacitor. A second plate electrode (40) is formed over the insulator (39). Planarizing the first insulating layer and depositing a second insulating layer on top reduces defects and produces more reliable capacitance.
Description
技术领域technical field
本发明涉及半导体器件领域,更为具体的,涉及半导体器件中的金属-绝缘体-金属(MIM)电容。The invention relates to the field of semiconductor devices, and more specifically, to metal-insulator-metal (MIM) capacitors in semiconductor devices.
背景技术Background technique
用于集成电路中的电容的一种为平坦金属-绝缘体-金属(MIM)电容。平坦MIM电容包括顶层板状电极和底层板状电极之间的MIM电介质体。MIM电容通常用于去耦合和旁路用途。One type of capacitor used in integrated circuits is the planar metal-insulator-metal (MIM) capacitor. A flat MIM capacitor consists of a MIM dielectric body between top and bottom plate electrodes. MIM capacitors are commonly used for decoupling and bypass purposes.
通常,平坦MIM电容在利用典型的后端嵌刻工艺集成而被集成在铜的上方时会不可靠并可能早期击穿,原因是介于铜和平坦MIM电容之间的层间电介质(ILD)中的缺陷。由诸如表面形貌、粗糙度、颗粒不稳定性和铜氧化而引起的缺陷都被认为是可靠性失效的可能原因。为避免此类问题,排除了直接在铜结构上方进行MIM布图。不幸的是,这对于可利用的片上MIM区域是一种严重损失;这样限制了可制造用于去耦和旁路应用的电容。由此,存在控制形成于铜之上的MIM电容缺陷的需求。In general, flat MIM capacitors are unreliable and may break down early when integrated over copper using typical back-end lithography process integration due to the interlayer dielectric (ILD) between the copper and flat MIM capacitors defects in. Defects such as surface topography, roughness, grain instability, and copper oxidation have been identified as possible causes of reliability failures. To avoid such problems, MIM layout directly over copper structures is ruled out. Unfortunately, this is a severe loss of available on-chip MIM area; this limits the manufacturable capacitors for decoupling and bypass applications. Thus, there is a need to control MIM capacitive defects formed over copper.
附图说明Description of drawings
本发明通过示例的方式说明,但不限于此;其中相同的附图标记表示相似的元件,其中:The present invention is illustrated by way of example, but not limitation; wherein like reference numerals indicate similar elements, wherein:
图1为根据本发明的一个实施方式的可用于形成MIM电容的半导体器件的一部分的截面图。FIG. 1 is a cross-sectional view of a portion of a semiconductor device that can be used to form a MIM capacitor according to one embodiment of the present invention.
图2为形成了阻挡层和第一绝缘层之后的图1的器件。FIG. 2 is the device of FIG. 1 after forming a barrier layer and a first insulating layer.
图3为在平坦化第一绝缘层和淀积第二绝缘层之后的图2的器件。FIG. 3 is the device of FIG. 2 after planarizing the first insulating layer and depositing the second insulating layer.
图4为MIM叠层形成之后的图3的器件。FIG. 4 is the device of FIG. 3 after formation of the MIM stack.
图5为将MIM叠层构图而形成MIM电容之后的图4的器件。FIG. 5 is the device of FIG. 4 after patterning the MIM stack to form a MIM capacitor.
图6为在MIM电容上方形成绝缘层后的图5的器件。FIG. 6 is the device of FIG. 5 after forming an insulating layer over the MIM capacitor.
图7为在绝缘层中形成过孔之后的图6的器件。FIG. 7 is the device of FIG. 6 after forming vias in the insulating layer.
图8为在过孔以及顶层互连层中形成接触后的图7的器件。FIG. 8 is the device of FIG. 7 after forming contacts in vias and top interconnect layers.
本领域技术人员会理解,图中的元件的说明仅是为了简单化和清晰化的目的,没有必要按照比例画出。例如,图中某些元件的尺寸可相对其他元件夸大以帮助提高对本发明实施方式的理解。Those skilled in the art will understand that the illustrations of elements in the figures are for the purpose of simplicity and clarity only and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the invention.
具体实施方式Detailed ways
一般而言,本发明提供了一种形成具有平坦MIM电容的半导体器件的方法。平坦MIM电容形成于一个或者多个金属互连层上方。每个金属互连层由层间电介质层隔离。电容具有底部板状电极和顶部板状电极。绝缘体形成于板状电极之间。在形成第一板状电极之前,在金属互连层上方淀积第一绝缘层。利用化学机械抛光(CMP)工艺对第一绝缘层进行平坦化,以去除诸如从下层金属传递过来的缺陷。然后在平坦化的第一绝缘层上方淀积第二绝缘层以去除诸如因CMP工艺引起的较小缺陷的另外部分的缺陷。底层板状电极形成于第二绝缘层上方。作为电容的电介质的绝缘体形成于底层板状电极之上。最终在绝缘体上方形成顶层板状电极。In general, the present invention provides a method of forming a semiconductor device with flat MIM capacitance. A planar MIM capacitor is formed over one or more metal interconnect layers. Each metal interconnect layer is separated by an interlevel dielectric layer. The capacitor has a bottom plate electrode and a top plate electrode. An insulator is formed between the plate electrodes. Before forming the first plate electrode, a first insulating layer is deposited on the metal interconnection layer. The first insulating layer is planarized using a chemical mechanical polishing (CMP) process to remove defects such as transfer from the underlying metal. A second insulating layer is then deposited over the planarized first insulating layer to remove additional portions of defects such as smaller defects caused by the CMP process. The bottom plate electrode is formed on the second insulating layer. An insulator serving as a dielectric for the capacitor is formed over the underlying plate electrode. Finally, a top plate electrode is formed on top of the insulator.
通过平坦化第一绝缘层和在第一绝缘层上方淀积第二绝缘层,在金属上方形成比起现有技术具有实质上更少的缺陷的表面。这样,平坦化MIM电容的因缺陷造成的早期绝缘层击穿得到降低,并因此更加可靠。By planarizing the first insulating layer and depositing the second insulating layer over the first insulating layer, a surface over the metal is formed that has substantially fewer defects than in the prior art. In this way, the early breakdown of the insulating layer due to defects of the planarized MIM capacitor is reduced and thus more reliable.
图1~8给出了经过根据本发明的一系列加工工序以形成平坦MIM电容的半导体器件10的一部分的说明。1-8 provide illustrations of a portion of a
图1给出了可用于形成平坦MIM电容的半导体器件10的一部分的截面图。提供了半导体衬底12。在优选实施方式中,半导体衬底12为硅。但是,也可使用其他半导体材料诸如砷化镓和绝缘体上硅(SOI)。通常,衬底12包括大量不同的有源和无源半导体器件,例如金属-氧化物半导体(MOS)晶体管、双极型晶体管、电阻和电容。但是,出于理解本发明的目的,对于这些器件的理解并不必要,因此没有对这些器件进行说明。在半导体衬底12上方可形成许多互连层并连接至有源电路。通常,根据集成电路的复杂性,可以有少至一个互连层或者多于九个互连层。每个互连层包括由ILD层隔离的多个金属导体。图1表示了两个互连层。FIG. 1 shows a cross-sectional view of a portion of a
ILD层14淀积于半导体衬底12上。ILD层14可以为通过任何工艺形成的电介质材料层的组合。例如,可以为二氧化硅(SiO2)、掺碳的二氧化硅(如SiCOH)、四乙基正硅酸盐(TEOS)、掺硼/磷的TEOS(BPTEOS)、富硅氧氮化物(SRON)、等离子体增强的氮化物(PEN)、磷硅酸盐玻璃(PSG)、碳氮化硅(SiCN)、或者富硅氧化物(SRO)。优选地,利用等离子体增强化学气相淀积(PECVD)将ILD层14淀积为厚约4000至10000埃。第一导电层16利用物理气相淀积(PVD)、化学气相淀积(CVD)、原子层淀积(ALD)、电镀等及其组合形成于ILD 14上方。在优选实施方式中,第一导电层16主要为铜。但是,在其他实施方式中,第一导电层16可以为铝或者铝-铜合金。另外,第一半导体层16可由多个材料层形成。例如,在铜嵌刻金属化方案中,经常在形成铜层之前形成包括钽或者氮化钽的扩散阻挡层。ILD
利用与上述第一ILD层14和第一导电层6相同的材料,在导电层16上形成第二ILD层18后,形成第二导电层20。在所示的实施方式中,给出了两个互连层。在其他实施方式中,可以有少至一个或者多于九个的互连层。互连层的导体按照需要利用穿过通孔形成的接触、例如接触22和24,相互连接以及连接至衬底12上的电路。After the
图2给出了在阻挡层26和绝缘层28形成后的图1的器件。阻挡层26作为对后续形成的层中的铜的扩散阻挡层。在给出的实施方式中,阻挡层26为淀积至300到500埃厚度的PEN或者SICN。然后,利用如TEOS、氟化TEOS(FTEOS)或者SIOH的电介质覆盖膜在阻挡层26上淀积绝缘层28至厚度约3000到6000埃。层26和28的淀积可以传递来自第二导电层中的铜的缺陷,并产生另外的缺陷。礼物,绝缘层28的表面可能像图2所示那样较为粗糙。给出的实施方式减少了表面缺陷,并且通过在晶片加工过程中利用CMP工艺的平坦化使得绝缘层28的粗糙度变得光滑。优选的CMP工艺为传统工艺,利用较硬的研磨垫以及烟气处理的硅石散布研磨浆的常用流速。另外,使用去离子化水冲洗晶片,然后进行典型的抛光后氢氧化氨机械擦洗。在其他实施方式中,可以使用不同的CMP工艺。FIG. 2 shows the device of FIG. 1 after
图3给出了经过平坦化绝缘层28后的图2的器件。平坦化绝缘层28的厚度可达约3000埃。请注意,在某些实施方式中,几乎所有绝缘层28可以在CMP工艺中除去。在CMP工序后淀积第二绝缘层32。缘绝层32为诸如淀积至厚度约500到约3000埃的TEOS、FTEOS或者SICOH的电介质覆盖膜。绝缘层32进一步减少了在CMP后残留的缺陷。FIG. 3 shows the device of FIG. 2 after planarizing the insulating
图4给出了在绝缘层32上形成MIM叠层34之后的图3的器件。MIM叠层34包括底部板状电极层36、绝缘体38和顶部板状电极层40。底部板状电极层36由氮化钽(TaN)、氮化钛(TiN)、铝(Al)、铜(Cu)、钌(Ru)、铱(Ir)等之一形成。在一个实施方式中,底层板状电极层36厚约100至1000埃。利用CVD、PVD、ALD等或者其组合在底层板状电极层36上形成绝缘体38。在一个实施方式中,绝缘体38包括具有高线性度(例如,标准化电容变化通常小于100ppm电压单位)的金属氧化物,例如氧化钽和氧化铪。但是,对于线性度不太关键的一般应用,诸如氧化锆、钛酸钡锶(BST)以及钛酸锶(STO)之类的其他氧化物也是适合的。或者,也可使用非高介电常数材料的绝缘体38,例如二氧化硅。此处所用高介电常数材料为介电常数比二氧化硅的大的材料。绝缘体38还可以为等离子体增强氮化物(PEN),SixNy。顶层板状电极层40形成于绝缘体38上,可以具有与底层板状电极层36相同的成分和厚度。FIG. 4 shows the device of FIG. 3 after forming a
图5给出了将MIM叠层进行构图以形成平坦MIM电容之后的图4的器件。为了随后将顶层板状电极层40刻蚀成期望的尺寸和形状,淀积并构图光刻胶层(未示出)。然后如业界周知的,利用另一个光刻胶层(未示出)对底层板状电极层36和绝缘体38进行构图,产生如图5所示的平坦MIM电容41。Figure 5 shows the device of Figure 4 after patterning the MIM stack to form a flat MIM capacitor. A photoresist layer (not shown) is deposited and patterned for subsequent etching of the top plate electrode layer 40 to the desired size and shape. The underlying
图6给出了在MIM电容上方形成绝缘层42之后的图5的器件。绝缘层42为淀积于半导体器件10上方的ILD。绝缘层42可以为诸如TEOS、FTEOS、SICOH等的任何电介质材料。绝缘层可以为约100-1000埃厚。如果需要可以在绝缘层42上方形成后续的金属互连层。FIG. 6 shows the device of FIG. 5 after an insulating
图7给出了在绝缘层42中形成通孔44、46和48之后的图6的器件。淀积并构图光刻胶层(未示出)以刻蚀绝缘层42,来形成通孔开口44、46和48。通孔刻蚀的化学机制为传统方法,并且是选择性的以使刻蚀停在板状电极之上和互连层20中的导体之上。FIG. 7 shows the device of FIG. 6 after
图8给出了在通孔内形成接触50、52和54以及形成最终互连层56之后的图7的器件。在通孔开口形成之后,填入导电材料以形成接触50、52和54。请注意,接触50、52、54表示形成于半导体器件10中的多个接触。接触50表示最终的互连层56的导体和互连层20中的导体之间的电连接。接触52表示互连层56中的导体和底层板状电极36之间的电连接。类似地,接触54表示互连层56中的导体和顶层板状电极40之间的电连接。请注意,在一个应用中,平坦MIM电容41用作去耦电容。此种情况下,互连层56可用于提供电源或者地的连线。另外,用于顶层和底层板状电极的接触通常连接至同一互连层。FIG. 8 shows the device of FIG. 7 after forming contacts 50 , 52 and 54 within the vias and forming a final interconnect layer 56 . After the via openings are formed, a conductive material is filled to form contacts 50 , 52 and 54 . Note that contacts 50 , 52 , 54 represent multiple contacts formed in
一般,在平坦MIM电容中,顶层板状电极小于底层板状电极。因此,顶层板状电极限定了电容的有效区域,该区域应尽可能的无缺陷以获得高可靠性。但是,对于较大的平坦MIM电容,顶层和底层板状电极具有相似的尺寸。Generally, in a flat MIM capacitor, the top plate electrode is smaller than the bottom plate electrode. Therefore, the top plate electrode defines the active area of the capacitor, which should be as defect-free as possible for high reliability. However, for larger flat MIM capacitors, the top and bottom plate electrodes have similar dimensions.
根据给出的实施方式,可在集成电路上(IC)形成约1平方厘米或者更大的大面积平坦MIM电容。在一个实施方式中,平坦MIM电容可以覆盖集成电路的50%或更多,在另一实施方式中,它几乎覆盖整个集成电路表面。另外,通过使用利用诸如ALD、CVD、PVD等传统的方法淀积的低K、中K、或高K绝缘体,平坦MIM电容可具有高于10fF/μm2的较高的电容密度。According to the given embodiment, large area planar MIM capacitors of about 1 square centimeter or larger can be formed on an integrated circuit (IC). In one embodiment, the flat MIM capacitor can cover 50% or more of the integrated circuit, in another embodiment it covers nearly the entire integrated circuit surface. In addition, planar MIM capacitors can have higher capacitance densities above 10 fF/μm 2 by using low-K, medium-K, or high-K insulators deposited using conventional methods such as ALD, CVD, PVD, etc.
图中所示的实施方式为形成于最终的互连层下方的MIM电容。但是本领域技术人员会意识到,可在衬底12上的任何地方形成平坦MIM电容。例如,平坦MIM电容可以在第一互连层下方、最终互连层上方或者它们之间的任何地方形成。还有未在图中清晰示出的相关结构,这些通常出现在片上作为IC互连电路的必要部分。The embodiment shown in the figure is a MIM capacitor formed below the final interconnect layer. However, those skilled in the art will appreciate that planar MIM capacitors can be formed anywhere on the
以上结合具体实施方式,说明了本发明的好处,其他优点以及对问题的解决方案。但是,好处、优点、问题的解决以及可以引起任何好处、优点或者解决方案的出现或者更加显著的任何元素,并不被解释为任何或者全部权利要求的关键、必要或者基本特征或者元素。此处所用术语“包含”或者其任何其他变体意指非排他性包括,从而包含一系列元件的工艺、方法、物品或者装置并不仅仅包含这些元素,还可包括其他未清楚列出或者该工艺固有的元素、方法、物品或者装置。The benefits, other advantages and solutions to the problems of the present invention have been described above in conjunction with the specific implementation manners. However, benefits, advantages, solutions to problems, and any element that may cause any benefit, advantage, or solution to appear or be more pronounced, are not to be construed as key, essential, or essential features or elements of any or all claims. As used herein, the term "comprising" or any other variation thereof means a non-exclusive inclusion such that a process, method, article or apparatus comprising a series of elements does not contain only those elements, but may also include others not expressly listed or included in the process. An inherent element, method, article, or device.
在上述说明中,结合具体实施方式对本发明进行了描述。但是,本领域一般技术人员会理解,在不偏离本发明所附的权利要求提出的范围的前提下,可以进行不同修正和改变。例如,MIM电容可以利用嵌刻集成形成。因此,说明和附图被认为是说明性的而非限制性的,所有此类改动均视为包含在本发明的范围之内。In the above description, the present invention has been described in conjunction with specific embodiments. However, those skilled in the art appreciate that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. For example, MIM capacitors can be formed using inlay integration. Accordingly, the description and drawings are to be regarded as illustrative rather than restrictive and all such modifications are deemed to be included within the scope of the present invention.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/168,579 | 2005-06-28 | ||
US11/168,579 US7375002B2 (en) | 2005-06-28 | 2005-06-28 | MIM capacitor in a semiconductor device and method therefor |
PCT/US2006/022280 WO2007001783A2 (en) | 2005-06-28 | 2006-06-08 | Mim capacitor in a semiconductor device and method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101213641A true CN101213641A (en) | 2008-07-02 |
CN101213641B CN101213641B (en) | 2011-01-05 |
Family
ID=37568077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680023703XA Expired - Fee Related CN101213641B (en) | 2005-06-28 | 2006-06-08 | MIM capacitor in a semiconductor device and method therefor |
Country Status (4)
Country | Link |
---|---|
US (1) | US7375002B2 (en) |
CN (1) | CN101213641B (en) |
TW (1) | TWI389297B (en) |
WO (1) | WO2007001783A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989621B (en) * | 2009-08-06 | 2012-03-07 | 中芯国际集成电路制造(上海)有限公司 | Metal-insulator-metal (MIM) capacitor and manufacturing method thereof |
CN105632897A (en) * | 2016-02-23 | 2016-06-01 | 中航(重庆)微电子有限公司 | MIM (metal-insulator-metal) capacitor and preparation method therefor |
CN108123038A (en) * | 2017-12-15 | 2018-06-05 | 深圳市晶特智造科技有限公司 | MIM capacitor and preparation method thereof |
CN109962015A (en) * | 2017-12-22 | 2019-07-02 | 长鑫存储技术有限公司 | For improving the making technology of copper wire short circuit |
CN110462822A (en) * | 2017-03-22 | 2019-11-15 | 超威半导体公司 | For improving the oscillating capacitor framework of capacitor in polysilicon |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8039924B2 (en) * | 2007-07-09 | 2011-10-18 | Renesas Electronics Corporation | Semiconductor device including capacitor element provided above wiring layer that includes wiring with an upper surface having protruding portion |
US7820506B2 (en) * | 2008-10-15 | 2010-10-26 | Micron Technology, Inc. | Capacitors, dielectric structures, and methods of forming dielectric structures |
US8420480B2 (en) | 2011-03-31 | 2013-04-16 | Freescale Semiconductor, Inc. | Patterning a gate stack of a non-volatile memory (NVM) with formation of a gate edge diode |
US8415217B2 (en) | 2011-03-31 | 2013-04-09 | Freescale Semiconductor, Inc. | Patterning a gate stack of a non-volatile memory (NVM) with formation of a capacitor |
US8426263B2 (en) | 2011-03-31 | 2013-04-23 | Freescale Semiconductor, Inc. | Patterning a gate stack of a non-volatile memory (NVM) with formation of a metal-oxide-semiconductor field effect transistor (MOSFET) |
US10497773B2 (en) | 2014-03-31 | 2019-12-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method to improve MIM device performance |
US9257498B1 (en) | 2014-08-04 | 2016-02-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Process to improve performance for metal-insulator-metal (MIM) capacitors |
US9793339B2 (en) * | 2015-01-08 | 2017-10-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for preventing copper contamination in metal-insulator-metal (MIM) capacitors |
CN109395764B (en) * | 2018-12-18 | 2021-09-21 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of phosphorus-doped carbon nitride, product and application thereof |
US20220310777A1 (en) * | 2021-03-26 | 2022-09-29 | Intel Corporation | Integrated circuit package redistribution layers with metal-insulator-metal (mim) capacitors |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5973910A (en) | 1991-12-31 | 1999-10-26 | Intel Corporation | Decoupling capacitor in an integrated circuit |
US5872697A (en) | 1996-02-13 | 1999-02-16 | International Business Machines Corporation | Integrated circuit having integral decoupling capacitor |
US6285050B1 (en) | 1997-12-24 | 2001-09-04 | International Business Machines Corporation | Decoupling capacitor structure distributed above an integrated circuit and method for making same |
US6191479B1 (en) | 1999-02-13 | 2001-02-20 | Advanced Micro Devices, Inc. | Decoupling capacitor configuration for integrated circuit chip |
US6365419B1 (en) | 2000-08-28 | 2002-04-02 | Motorola, Inc. | High density MRAM cell array |
US6737728B1 (en) | 2000-10-12 | 2004-05-18 | Intel Corporation | On-chip decoupling capacitor and method of making same |
CN1270368C (en) * | 2002-05-20 | 2006-08-16 | 台湾积体电路制造股份有限公司 | How to make a capacitor |
US6630380B1 (en) * | 2002-09-30 | 2003-10-07 | Chartered Semiconductor Manufacturing Ltd | Method for making three-dimensional metal-insulator-metal capacitors for dynamic random access memory (DRAM) and ferroelectric random access memory (FERAM) |
US6743642B2 (en) | 2002-11-06 | 2004-06-01 | International Business Machines Corporation | Bilayer CMP process to improve surface roughness of magnetic stack in MRAM technology |
US20050082592A1 (en) * | 2003-10-16 | 2005-04-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Compact capacitor structure having high unit capacitance |
KR100585115B1 (en) * | 2003-12-10 | 2006-05-30 | 삼성전자주식회사 | Semiconductor device including metal-insulator-metal capacitor and manufacturing method thereof |
-
2005
- 2005-06-28 US US11/168,579 patent/US7375002B2/en active Active
-
2006
- 2006-06-08 WO PCT/US2006/022280 patent/WO2007001783A2/en active Application Filing
- 2006-06-08 CN CN200680023703XA patent/CN101213641B/en not_active Expired - Fee Related
- 2006-06-21 TW TW095122211A patent/TWI389297B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989621B (en) * | 2009-08-06 | 2012-03-07 | 中芯国际集成电路制造(上海)有限公司 | Metal-insulator-metal (MIM) capacitor and manufacturing method thereof |
CN105632897A (en) * | 2016-02-23 | 2016-06-01 | 中航(重庆)微电子有限公司 | MIM (metal-insulator-metal) capacitor and preparation method therefor |
CN110462822A (en) * | 2017-03-22 | 2019-11-15 | 超威半导体公司 | For improving the oscillating capacitor framework of capacitor in polysilicon |
CN108123038A (en) * | 2017-12-15 | 2018-06-05 | 深圳市晶特智造科技有限公司 | MIM capacitor and preparation method thereof |
CN109962015A (en) * | 2017-12-22 | 2019-07-02 | 长鑫存储技术有限公司 | For improving the making technology of copper wire short circuit |
CN109962015B (en) * | 2017-12-22 | 2021-11-02 | 长鑫存储技术有限公司 | Process for improving short circuit of copper wire |
Also Published As
Publication number | Publication date |
---|---|
US7375002B2 (en) | 2008-05-20 |
CN101213641B (en) | 2011-01-05 |
TW200707706A (en) | 2007-02-16 |
TWI389297B (en) | 2013-03-11 |
WO2007001783A3 (en) | 2007-11-15 |
US20060292815A1 (en) | 2006-12-28 |
WO2007001783A2 (en) | 2007-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101213641A (en) | MIM capacitor in semiconductor device and method for same | |
CN100365765C (en) | Metal-insulator-metal capacitor structure and manufacturing method in dual damascene structure | |
US6709918B1 (en) | Method for making a metal-insulator-metal (MIM) capacitor and metal resistor for a copper back-end-of-line (BEOL) technology | |
US7768130B2 (en) | BEOL interconnect structures with simultaneous high-k and low-k dielectric regions | |
CN100385659C (en) | Integrated circuit device and semiconductor device including metal-insulator-metal capacitor | |
US6746914B2 (en) | Metal sandwich structure for MIM capacitor onto dual damascene | |
CN103456601B (en) | Capacitor and its manufacture method for mediplate | |
US6593185B1 (en) | Method of forming embedded capacitor structure applied to logic integrated circuit | |
US11183454B2 (en) | Functional component within interconnect structure of semiconductor device and method of forming same | |
WO2004100232A1 (en) | Method for forming the top plate of a mim capacitor with a single mask in a copper dual damascene integration scheme | |
CN1913158B (en) | Semiconductor device and method of manufacturing the same | |
CN100578754C (en) | Semiconductor device with mosaic MIM type capacitor and manufacturing method thereof | |
US7586142B2 (en) | Semiconductor device having metal-insulator-metal capacitor and method of fabricating the same | |
US11848267B2 (en) | Functional component within interconnect structure of semiconductor device and method of forming same | |
US20100032801A1 (en) | Capacitor formed in interlevel dielectric layer | |
CN100536109C (en) | Method and structure for manufacturing high-capacitance capacitor by using copper | |
CN101271880A (en) | Semiconductor device and manufacturing method thereof | |
TW508784B (en) | Method of manufacturing a semiconductor device and a semiconductor device | |
US6586347B1 (en) | Method and structure to improve the reliability of multilayer structures of FSG (F-doped SiO2) dielectric layers and metal layers in semiconductor integrated circuits | |
US7060193B2 (en) | Method to form both high and low-k materials over the same dielectric region, and their application in mixed mode circuits | |
US20020190299A1 (en) | Metal capacitor in damascene structures | |
CN103515308A (en) | Copper interconnection structure and manufacturing method thereof | |
US12027574B2 (en) | Resistor structure | |
CN100373546C (en) | Method for manufacturing metal-insulating layer-metal capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20161229 Address after: Delaware Patentee after: III Holdings 12 LLC Address before: Texas in the United States Patentee before: FREESCALE SEMICONDUCTOR, Inc. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110105 |
|
CF01 | Termination of patent right due to non-payment of annual fee |