CN101210749A - A tandem thermoacoustic system - Google Patents
A tandem thermoacoustic system Download PDFInfo
- Publication number
- CN101210749A CN101210749A CNA2006101716546A CN200610171654A CN101210749A CN 101210749 A CN101210749 A CN 101210749A CN A2006101716546 A CNA2006101716546 A CN A2006101716546A CN 200610171654 A CN200610171654 A CN 200610171654A CN 101210749 A CN101210749 A CN 101210749A
- Authority
- CN
- China
- Prior art keywords
- thermoacoustic
- acoustic resonator
- acoustic
- wave
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 239000003595 mist Substances 0.000 claims 1
- 235000009508 confectionery Nutrition 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000005057 refrigeration Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1405—Pulse-tube cycles with travelling waves
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
本发明提供了一种串列式热声系统,该系统包括相互串连的至少两级热声装置;所述第一级热声装置包括:一个或者至少两个相互并联的λ/2声学谐振器;λ为声波波长;和装于每个λ/2声学谐振器谐振管内驻波区的一驻波型热声发动机;装于每个λ/2声学谐振器谐振管内高阻抗行波区的行波型热声发动机,所述行波型热声发动机温度梯度与所述驻波型热声发动机的温度梯度相同;所述最后一级热声装置包括:一个或者至少两个相互并联的λ/2声学谐振器;λ为声波波长;和装于每个λ/2声学谐振器谐振管内行波区的行波型热声制冷机或声电换能器,所述行波型热声制冷机的温度梯度与所述第一级热声装置的驻波型热声发动机的温度梯度相反。
The present invention provides a tandem thermoacoustic system, which includes at least two stages of thermoacoustic devices connected in series; the first stage thermoacoustic device includes: one or at least two λ/2 acoustic resonators connected in parallel λ is the wavelength of the sound wave; and a standing wave thermoacoustic engine installed in the standing wave region in the resonant tube of each λ/2 acoustic resonator; A wave type thermoacoustic engine, the temperature gradient of the traveling wave type thermoacoustic engine is the same as that of the standing wave type thermoacoustic engine; the last stage thermoacoustic device includes: one or at least two parallel λ/ 2 acoustic resonators; λ is the wavelength of the sound wave; and a traveling-wave thermoacoustic refrigerator or an acoustic-electric transducer installed in the traveling-wave region of each lambda/2 acoustic resonator resonance tube, the traveling-wave thermoacoustic refrigerator The temperature gradient is opposite to that of the standing wave type thermoacoustic engine of the first stage thermoacoustic device.
Description
发明领域field of invention
本发明主要涉及一种热声系统,特别涉及一种以热声发动机驱动热声制冷机或热声发电等换能机构的串列式热声系统。The invention mainly relates to a thermoacoustic system, in particular to a tandem thermoacoustic system in which a thermoacoustic engine drives a thermoacoustic refrigerator or thermoacoustic power generation and other energy conversion mechanisms.
背景技术 Background technique
热声热机(包括热声发动机和热声制冷机以及热声热泵)从根本上消除了运动部件,使用环境友好的天然工质,并可有效利用低品位热能,因而在空间技术、天然气液化以及环保和制冷工程等方面显示出重要的应用前景。但热声转换效率的提高一直是制约热声热机工程化和商业化的核心技术问题,为解决效率问题,热声热机从最初的驻波型、行波型发展到具有与内燃机效率相媲美的复合型。驻波型热声热机由于依赖于不可逆热声转换过程工作,其效率的提高受到限制。驻波热声制冷机在家用冰箱温区的能效比(COP)仅为0.6;驻波热声发动机的热效率通常也不超过20%。单纯环形圈行波型热声热机由于环路声阻抗低,引起严重的粘性损失和穿梭热损失,实际效率也很低。行驻波复合型热声斯特林发动机虽然可达到30%的热效率,但由于环路存在吉顿(Gedeon)声直流损失,需采取额外的有效抑制声流的手段。在专利号为6,658,862的美国专利中(G.W.Swift.Cascaded thermoacoustic devices.U.S.Patent No.6,658,862,2003.),记载了一种行驻波级联型热声热机,其结构仅限于在单一的半波长声谐振器内布置驻波热声发动机和行波型热声发动机,但其高阻抗行波区通常过于狭窄,级联级数极为有限,在高频(大于300Hz)振荡情况下的级数通常不超过二级。Thermoacoustic heat engines (including thermoacoustic engines, thermoacoustic refrigerators and thermoacoustic heat pumps) fundamentally eliminate moving parts, use environmentally friendly natural working fluids, and can effectively use low-grade heat energy, so they are widely used in space technology, natural gas liquefaction and Environmental protection and refrigeration engineering have shown important application prospects. However, the improvement of thermoacoustic conversion efficiency has always been the core technical issue restricting the engineering and commercialization of thermoacoustic heat engines. Compound. Standing-wave thermoacoustic heat engines rely on the irreversible thermoacoustic conversion process, so their efficiency is limited. The energy efficiency ratio (COP) of a standing wave thermoacoustic refrigerator in the temperature range of a household refrigerator is only 0.6; the thermal efficiency of a standing wave thermoacoustic engine usually does not exceed 20%. Due to the low acoustic impedance of the loop, the simple annular ring traveling wave thermoacoustic heat engine causes serious viscous loss and shuttling heat loss, and the actual efficiency is also very low. Although the thermal efficiency of the traveling standing wave composite thermoacoustic Stirling engine can reach 30%, due to the Gedeon acoustic direct current loss in the loop, additional measures to effectively suppress the acoustic flow are required. In U.S. Patent No. 6,658,862 (G.W.Swift. Cascaded thermoacoustic devices. U.S. Patent No. 6,658,862, 2003.), a traveling standing wave cascaded thermoacoustic heat engine is described, and its structure is limited to a single half-wavelength The standing wave thermoacoustic engine and traveling wave thermoacoustic engine are arranged in the acoustic resonator, but the high impedance traveling wave region is usually too narrow, and the number of cascade series is extremely limited. No more than two grades.
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术的缺陷,从而提供一种即可以避免声环流损失,又可以实现高效热声转换,利于热声系统的集成化的串列式热声系统。The purpose of the present invention is to overcome the defects of the above-mentioned prior art, thereby providing a tandem thermoacoustic system that can avoid the loss of acoustic circulation and realize efficient thermoacoustic conversion, which is beneficial to the integration of the thermoacoustic system.
本发明所提供的串列式热声系统,该系统包括相互串连的至少两级热声装置;The tandem thermoacoustic system provided by the present invention includes at least two stages of thermoacoustic devices connected in series;
所述第一级热声装置包括:The first stage thermoacoustic device comprises:
一个或者至少两个相互并联的λ/2声学谐振器;λ为声波波长;和one or at least two λ/2 acoustic resonators connected in parallel; λ is the acoustic wavelength; and
装于每个λ/2声学谐振器谐振管内驻波区的一驻波型热声发动机;装于每个λ/2声学谐振器谐振管内高阻抗行波区的行波型热声发动机,所述行波型热声发动机温度梯度与所述驻波型热声发动机的温度梯度相同;A standing wave thermoacoustic engine installed in the standing wave region of each λ/2 acoustic resonator resonant tube; a traveling wave thermoacoustic engine installed in the high impedance traveling wave region of each λ/2 acoustic resonator resonant tube, so The temperature gradient of the traveling wave thermoacoustic engine is the same as that of the standing wave thermoacoustic engine;
所述最后一级热声装置包括:The last stage thermoacoustic device includes:
一个或者至少两个相互并联的λ/2声学谐振器;λ为声波波长;和one or at least two λ/2 acoustic resonators connected in parallel; λ is the acoustic wavelength; and
装于每个λ/2声学谐振器谐振管内行波区的行波型热声制冷机或声电换能器,所述行波型热声制冷机的温度梯度与所述第一级热声装置的驻波型热声发动机的温度梯度相反。A traveling-wave thermoacoustic refrigerator or an acoustic-electric transducer installed in the traveling-wave region of each λ/2 acoustic resonator resonant tube, the temperature gradient of the traveling-wave thermoacoustic refrigerator and the first-stage thermoacoustic The temperature gradient of the standing wave type thermoacoustic engine of the device is opposite.
本发明所提供的串列式热声系统,还可进一步包括位于第一级热声装置和最后一级热声装置之间并与之串连的中间级热声装置;The tandem thermoacoustic system provided by the present invention may further include an intermediate thermoacoustic device located between the first-stage thermoacoustic device and the last-stage thermoacoustic device and connected in series;
所述中间级热声装置包括:The intermediate stage thermoacoustic device includes:
一个或者至少两个相互并联的λ/2声学谐振器;λ为声波波长;和one or at least two λ/2 acoustic resonators connected in parallel; λ is the acoustic wavelength; and
装于每个λ/2声学谐振器谐振管高阻抗行波区的行波型热声发动机,所述行波型热声发动机温度梯度与所述第一级热声装置的驻波型热声发动机的温度梯度相同。A traveling-wave thermoacoustic engine installed in the high-impedance traveling-wave region of each λ/2 acoustic resonator resonance tube, the temperature gradient of the traveling-wave thermoacoustic engine and the standing wave thermoacoustic of the first-stage thermoacoustic device The temperature gradient of the engine is the same.
所述λ/2声学谐振器的谐振管上设有与之相连通的中空环状管;所述中空环状管所在的平面垂直于所述λ/2声学谐振器的谐振管;所述中空环状管与所述λ/2声学谐振器的谐振管相连通的连通交点与所述λ/2声学谐振器的最佳听音点之间距离小于或等于1/8λ,并且满足式pJ/UJ=ρa/Acot(2πL/λ),其中pJ为所述中空环状管与所述λ/2声学谐振器的谐振管连通交点的声压,UJ为所述λ/2声学谐振器的谐振管内连通交点处工作媒质的体积流速度,ρ为所述λ/2声学谐振器的谐振管内工作媒质的平均密度,a为所述λ/2声学谐振器的谐振管内工作媒质的声速,A为中空环状管的横截面面积,L为中空环状管的长度;最佳听音点是指谐振管中声压与振荡速度相位差为零的点。The resonance tube of the λ/2 acoustic resonator is provided with a hollow annular tube communicating with it; the plane where the hollow annular tube is located is perpendicular to the resonance tube of the λ/2 acoustic resonator; the hollow The distance between the intersection point where the annular tube communicates with the resonance tube of the λ/2 acoustic resonator and the sweet spot of the λ/2 acoustic resonator is less than or equal to 1/8λ, and satisfies the formula p J /U J =ρa/Acot(2πL/λ), where p J is the sound pressure at the intersection of the hollow annular tube and the resonant tube of the λ/2 acoustic resonator, and U J is the acoustic pressure of the λ/2 acoustic resonator The volume flow velocity of the working medium at the connecting intersection point in the resonance tube of the resonator, ρ is the average density of the working medium in the resonance tube of the λ/2 acoustic resonator, and a is the working medium in the resonance tube of the λ/2 acoustic resonator The speed of sound, A is the cross-sectional area of the hollow annular tube, L is the length of the hollow annular tube; the sweet spot refers to the point where the phase difference between the sound pressure and the oscillation velocity in the resonant tube is zero.
所述中空环状管的形状为圆形、椭圆形或矩形闭合回路环状管。The shape of the hollow annular tube is a circular, oval or rectangular closed loop annular tube.
所述λ/2声学谐振器的谐振管与所述中空环状管的管径比为2-4,所述中空环状管长度与所述中空环状管径的比为8-20;The ratio of the diameter of the resonance tube of the λ/2 acoustic resonator to the hollow annular tube is 2-4, and the ratio of the length of the hollow annular tube to the diameter of the hollow annular tube is 8-20;
所述第一级热声装置的λ/2声学谐振器的谐振管的起始端或最后一级热声装置的λ/2声学谐振器的谐振管的末端为开口状,或者安装有谐振腔或移动活塞。The starting end of the resonance tube of the λ/2 acoustic resonator of the first-stage thermoacoustic device or the end of the resonance tube of the λ/2 acoustic resonator of the last-stage thermoacoustic device is open, or a resonant cavity or Move the piston.
所述中间级热声装置的λ/2声学谐振器的谐振管两端分别连接有谐振腔,即具有哑铃式结构。The two ends of the resonant tube of the λ/2 acoustic resonator of the intermediate thermoacoustic device are respectively connected with a resonant cavity, that is, has a dumbbell structure.
所述谐振腔为空心球形或圆柱形谐振腔。The resonant cavity is a hollow spherical or cylindrical resonant cavity.
本行业技术人员都知道,行波型热声发动机一般由冷却器、加热器、以及设在所述冷却器和加热器中间的回热器组成。行波型热声制冷机一般由低温换热器、室温换热器以及位于两个换热器之间的回热器组成。Those skilled in the industry know that a traveling wave thermoacoustic engine generally consists of a cooler, a heater, and a regenerator arranged between the cooler and the heater. A traveling-wave thermoacoustic refrigerator generally consists of a low temperature heat exchanger, a room temperature heat exchanger, and a regenerator between the two heat exchangers.
本发明中,所述的行波型热声发动机中的回热器的中心与该行波型热声发动机的λ/2声学谐振器最佳听音点之间的距离小于或等于1/8λ。In the present invention, the distance between the center of the regenerator in the traveling wave thermoacoustic engine and the sweet spot of the λ/2 acoustic resonator of the traveling wave thermoacoustic engine is less than or equal to 1/8λ .
本发明中,所述的行波型热声制冷机中的回热器的中心与该行波型热声制冷机的λ/2声学谐振器最佳听音点之间的距离小于或等于1/8λ。In the present invention, the distance between the center of the regenerator in the traveling wave thermoacoustic refrigerator and the best listening point of the λ/2 acoustic resonator of the traveling wave thermoacoustic refrigerator is less than or equal to 1 /8λ.
所述行波型热声发动机和所述行波型热声制冷机的回热器为多孔道结构,每个孔道的水力半径为媒质振荡热渗透层的0.1-0.5倍。The regenerators of the traveling-wave thermoacoustic engine and the traveling-wave thermoacoustic refrigerator are multi-channel structures, and the hydraulic radius of each channel is 0.1-0.5 times that of the oscillating heat-permeable layer of the medium.
所述驻波型热声发动机包括冷却器、加热器以及位于所述冷却器和加热器中间的热声堆,所述热声堆的中心与λ/2声学谐振器的最佳听音点之间的距离为0.025λ-0.3λ。The standing wave thermoacoustic engine includes a cooler, a heater, and a thermoacoustic pile located between the cooler and the heater. The center of the thermoacoustic pile is between the sweet spot of the λ/2 acoustic resonator. The distance between them is 0.025λ-0.3λ.
所述热声堆为板叠结构或金属丝网组成,其微孔道水力半径为热渗透层的1-2倍。The thermoacoustic stack is composed of a laminated structure or wire mesh, and the hydraulic radius of the micropores is 1-2 times that of the heat permeable layer.
所述λ/2声学谐振器的工作媒质为氮气、氦气、二氧化碳、氩气、氢气或者为上述两种或多种气体组成的混合气体。The working medium of the λ/2 acoustic resonator is nitrogen, helium, carbon dioxide, argon, hydrogen or a mixture of two or more of the above gases.
所述λ/2声学谐振器的谐振管横截面为圆形或方形;其管壁以密实而刚硬的材料制成,管壁的内表面平滑且无微细缝隙;谐振管长度与圆截面内径或方截面边长的比值在10~50范围内,谐振管的长度为半波长的1~1.25倍范围。The resonant tube cross-section of the λ/2 acoustic resonator is circular or square; the tube wall is made of dense and rigid material, and the inner surface of the tube wall is smooth and has no fine gaps; the length of the resonant tube and the inner diameter of the circular section Or the ratio of the side lengths of the square section is in the range of 10 to 50, and the length of the resonance tube is in the range of 1 to 1.25 times the half wavelength.
所述串列式热声系统,声功最初在驻波机制工作的热声发动机产生,后经传播依次历经各级行波型热声发动机并逐级放大,直至最后一级行波型热声制冷机或声电换能器等换能单元所消耗。In the tandem thermoacoustic system, the sound work is initially generated by the thermoacoustic engine working in the standing wave mechanism, and then propagated through the traveling wave thermoacoustic engines of various stages and amplified step by step until the last stage of traveling wave thermoacoustic Consumed by energy conversion units such as refrigerators or acoustic-electric transducers.
所述串列式热声系统,其结构属于直线型布置,这样避免了Gedeon声直流的出现,从而可以充分利用多个高阻抗的近行波相位区,更多的声功在后续串列的回热器内以接近斯特林(Stirling)循环的形式进行热能和声能的转换,因而具有理论上可以达到最高的热声转换效率。The structure of the tandem thermoacoustic system belongs to a linear arrangement, which avoids the appearance of Gedeon acoustic direct current, thereby making full use of multiple high-impedance near-traveling wave phase regions, and more acoustic power in the subsequent tandem The heat energy and sound energy are converted in a form close to the Stirling cycle in the regenerator, so it has the highest thermoacoustic conversion efficiency that can be theoretically achieved.
所述高阻抗行波区的是指谐振管中声压与振荡速度相位差正负45度范围内的区域。The high-impedance traveling-wave region refers to the region within the range of plus or
所述各级行波型热声机之间具有前后协同工作的含义,因为一个半波长声学谐振器中只存在一个最佳听音点,最佳听音点附近的行波区通常只占波长的2.5%,为满足热声发动级与制冷级之间的热绝缘,需要大约1%波长的热缓冲距离,所以串列式热声系统至少为全波长谐振系统,理论上这种热声系统可以无限级串列;The traveling-wave thermoacoustic machines of the various levels have the meaning of cooperating front and back, because there is only one sweet spot in a half-wavelength acoustic resonator, and the traveling wave region near the sweet spot usually only occupies the wavelength 2.5%, in order to meet the thermal insulation between the thermoacoustic engine stage and the refrigeration stage, a thermal buffer distance of about 1% of the wavelength is required, so the tandem thermoacoustic system is at least a full-wavelength resonant system. In theory, this thermoacoustic system Can be serialized indefinitely;
所述延长高阻抗区的环路结构,如图7a所示,环路与λ/2声学谐振器的谐振管垂直布置,这样的结构不会引起谐振管内的声环流,所述中空环状管与所述λ/2声学谐振器的谐振管相连通的连通交点与所述λ/2声学谐振器的最佳听音点之间距离小于或等于1/8λ,同时要求中空环状管的横截面面积A和中空环状管长度L须满足以下声学阻抗关系(具体原因参见下面的工作原理部分的阐述):The loop structure of the extended high-impedance area, as shown in Figure 7a, is vertically arranged between the loop and the resonance tube of the λ/2 acoustic resonator, such a structure will not cause acoustic circulation in the resonance tube, and the hollow annular tube The distance between the connecting intersection connected with the resonant tube of the λ/2 acoustic resonator and the sweet spot of the λ/2 acoustic resonator is less than or equal to 1/8λ, and the transverse width of the hollow annular tube is required The cross-sectional area A and the length L of the hollow annular tube must meet the following acoustic impedance relationship (for specific reasons, please refer to the explanation in the working principle section below):
pJ/UJ=ρa/Acot(2πL/λ) (1)p J /U J =ρa/Acot(2πL/λ) (1)
式中pJ为所述中空环状管与所述λ/2声学谐振器的谐振管连通交点的声压,UJ为所述λ/2声学谐振器的谐振管内连通交点处工作媒质的体积流速度;In the formula, p J is the sound pressure at the intersection of the hollow annular tube and the resonance tube of the λ/2 acoustic resonator, and U J is the volume of the working medium at the intersection of the resonance tube of the λ/2 acoustic resonator flow velocity;
本发明是根据对实际封闭空间声场特性及其调制机理的认识,结合元件声学阻抗条件耦合的规律,从波动的观点出发,来创造利于高效率热声转换的声学区域,并通过多级串联,声功在传播过程中得到层层放大,从而实现在高效率水平上输出更大的声功。The present invention is based on the understanding of the sound field characteristics of the actual closed space and its modulation mechanism, combined with the law of component acoustic impedance conditional coupling, from the perspective of fluctuations, to create an acoustic region that is conducive to high-efficiency thermoacoustic conversion, and through multi-stage series connection, The sound power is amplified layer by layer during the transmission process, so as to achieve greater sound power output at a high efficiency level.
与现有技术相比,本发明所提供的串列式热声系统,关键在于利用声波的传播规律来调制高阻抗行波相位区,并从声学结构设计上保证预期声场的实现。局部延长高阻抗区的环路结构较LC方法更为紧凑、简洁、灵活。Compared with the prior art, the key of the tandem thermoacoustic system provided by the present invention is to use the law of sound wave propagation to modulate the high-impedance traveling wave phase region, and to ensure the realization of the expected sound field from the design of the acoustic structure. The loop structure of partially extending the high-impedance region is more compact, simple and flexible than the LC method.
为进一步说明本发明结构设计的合理性,同时也进一步说明在进行本结构设计时所要遵循的原则,以下从工作原理上进行解释。In order to further illustrate the rationality of the structural design of the present invention, and also further illustrate the principles to be followed when carrying out the structural design, the following will be explained from the working principle.
通常热声自激振荡以基频起振(此时系统能量损失最小),为在基频振动下实现串列热声系统的声场条件,以采用诸如图1所示的全波长声学谐振器为例,由两段细长的声谐振管和三个谐振腔组成,两末端谐振器也可采用开口或移动活塞的方式,中间谐振腔能确保系统按基频激振。根据声波传播的干涉理论,这种谐振器的声场特性如下:Usually, the thermoacoustic self-excited oscillation starts at the fundamental frequency (the energy loss of the system is the smallest at this time). In order to realize the sound field conditions of the tandem thermoacoustic system under the fundamental frequency vibration, a full-wavelength acoustic resonator such as that shown in Figure 1 is used as the For example, it consists of two slender acoustic resonance tubes and three resonant cavities. The resonators at the two ends can also be opened or moved. The middle resonant cavity can ensure that the system is excited at the fundamental frequency. According to the interference theory of sound wave propagation, the sound field characteristics of this resonator are as follows:
p1=[psacosk′x-iptasink′x]eiωt p 1 =[p sa cosk′x-ip ta sink′x]e iωt
psa=pia+pra pta=pia-pra p sa =p ia +p ra p ta =p ia -p ra
其中:k′=k-iα k=ω/c0 k′波矢量,声学边界条件决定波矢量;α衰减系数。Among them: k′=k-iα k=ω/c 0 k′ wave vector, the acoustic boundary condition determines the wave vector; α attenuation coefficient.
可见实际封闭声场是由驻波和行波两种分量复合而成,式中psa和pta分别表示驻波成分和行波成分的复振幅。图2是本专利所诉求的权利的一种全波长串列式声学谐振器内基频振荡的波形空间分布,从图中可以看出最佳听音点附近存在两个局部高阻抗区域,并且该区域的波动声压矢量与波动速度矢量间的相位差接近行波,适宜布置高效热声转换的回热器单元,气体微团在回热器内经历类似斯特林微循环,因此具有很高的转换效率。It can be seen that the actual closed sound field is composed of two components of standing wave and traveling wave, where p sa and p ta represent the complex amplitudes of standing wave component and traveling wave component respectively. Figure 2 is the waveform spatial distribution of the fundamental frequency oscillation in a full-wavelength tandem acoustic resonator claimed in this patent. It can be seen from the figure that there are two local high-impedance regions near the sweet spot, and The phase difference between the fluctuating sound pressure vector and the fluctuating velocity vector in this area is close to traveling waves, which is suitable for the arrangement of a regenerator unit with high-efficiency thermoacoustic conversion. High conversion efficiency.
高频热声系统由于波长短,可降低整个热声装置的尺寸,但往往局部高阻抗区域也相应减短,没有足够的空间位置来布置热声元件段。本发明提出一种在已有的λ/2声学谐振器谐振管的高阻抗设有与之相连通的中空环状管作为声学回路的方法,通过合理的中空环状管声阻抗设计来达到延长λ/2声学谐振器谐振管高阻抗区的目的,如图7a所示。所述中空环状管与所述λ/2声学谐振器的谐振管连通交点的声压记做pJ,所述λ/2声学谐振器的谐振管内连通交点处工作媒质的体积流速度记做UJ,假设原本所述λ/2声学谐振器的谐振管内工作媒质的体积流速度为-UJ,如何旁通合理的声学结构使之经过旁通口后变为+UJ,那样高阻抗区会得到有效延长。目前是采用LC(声感-声容)声学结构的办法,但通常LC所占比例较大,这样不但影响系统的紧凑性而且会增大整个热声系统起振的难度。为此本专利提出一种新的环路旁通调节的结构。通过对中空环状管内声场的分析,如图7b所示,整个中空环状管实际相当于一个两端开口的声学谐振管,两端始终具有反方向的速度波动,如果在其一分支口体积流速度为+UJ,沿环路周向展开,另一分支口必然为-UJ,但由于该分支口也和干路连通,对于干路而言仍是+UJ。于是干路体积流速度经过岔路口变为了+UJ。这必然要求环路满足一定的声阻抗条件,即式(1)所示。Due to the short wavelength of the high-frequency thermoacoustic system, the size of the entire thermoacoustic device can be reduced, but often the local high-impedance area is also shortened accordingly, and there is not enough space to arrange the thermoacoustic element section. The present invention proposes a method in which a hollow annular tube connected to the high impedance of the existing λ/2 acoustic resonator resonant tube is provided as an acoustic circuit, and the acoustic impedance of the hollow annular tube is reasonably designed to extend the The purpose of the λ/2 acoustic resonator resonator tube high impedance region, as shown in Fig. 7a. The sound pressure at the intersection of the hollow annular tube and the resonance tube of the λ/2 acoustic resonator is denoted as p J , and the volume flow velocity of the working medium at the intersection of the resonance tube of the λ/2 acoustic resonator is denoted as U J , assuming that the volume flow velocity of the working medium in the resonance tube of the λ/2 acoustic resonator originally mentioned is -U J , how to bypass a reasonable acoustic structure so that it becomes +U J after passing through the bypass port, so high impedance The zone will be effectively extended. At present, the method of using LC (acoustic sense-acoustic capacity) acoustic structure, but usually the proportion of LC is relatively large, which not only affects the compactness of the system but also increases the difficulty of starting the vibration of the entire thermoacoustic system. For this reason, this patent proposes a new loop bypass regulation structure. Through the analysis of the sound field in the hollow annular tube, as shown in Figure 7b, the entire hollow annular tube is actually equivalent to an acoustic resonant tube with openings at both ends, and the two ends always have velocity fluctuations in opposite directions. The velocity of the flow is +U J , spread out along the circumference of the loop, and the other branch must be -U J , but since this branch is also connected to the main road, it is still +U J for the main road. Then the volume flow velocity of the main road becomes +U J after the fork. This necessarily requires the loop to meet a certain acoustic impedance condition, which is shown in formula (1).
以上说明本发明的优点在于:The advantage of the present invention described above is:
1.结构简单,易于集成化,可在高效率水平上实现更高的输出功率(或制冷效果);1. The structure is simple, easy to integrate, and can achieve higher output power (or cooling effect) at a high efficiency level;
2.延长高阻抗区的环路旁通措施简洁可行。本发明的创新点在于突破传统热声系统设计思路,巧妙利用声波传播规律,并通过对声场分布规律和阻抗匹配特征的分析,以更加紧凑新颖的声学结构确保局部高阻抗行波声场的调制(包括延长)。这是一种避免吉顿声直流损失的行波型热声热机,完全不同于目前热声技术的环形圈行波机结构。2. The loop bypass measure for extending the high impedance area is simple and feasible. The innovation point of the present invention is to break through the traditional thermoacoustic system design idea, skillfully utilize the law of sound wave propagation, and through the analysis of the sound field distribution law and impedance matching characteristics, ensure the modulation of the local high-impedance traveling wave sound field with a more compact and novel acoustic structure ( including extensions). This is a traveling-wave thermoacoustic heat engine that avoids Giton-acoustic DC loss, which is completely different from the annular ring traveling-wave machine structure of current thermoacoustic technology.
附图说明 Description of drawings
图1为四种全波长直线型串列式热声学谐振器;Figure 1 shows four full-wavelength linear tandem thermoacoustic resonators;
图2为一种充满3MPa氮气的全波长串列式声学谐振器基频振荡的波形空间分布;Fig. 2 is the waveform spatial distribution of the fundamental frequency oscillation of a full-wavelength tandem acoustic resonator filled with 3MPa nitrogen;
图3为全波长直线型串列式热声发动机驱动热声制冷机的装置示意图;Fig. 3 is a schematic diagram of a full-wavelength linear tandem thermoacoustic engine driving a thermoacoustic refrigerator;
图4为一种全波长U型热声发动机驱动热声制冷机的装置示意图;Fig. 4 is a schematic diagram of a device for driving a thermoacoustic refrigerator driven by a full-wavelength U-shaped thermoacoustic engine;
图5为一种串并联混合型集成化的串列式热驱热声制冷装置示意图;Fig. 5 is a schematic diagram of a series-parallel hybrid integrated serial heat-driven thermoacoustic refrigeration device;
图6为一种串联型(环形)集成化的双波长串列式热驱热声制冷装置示意图;Fig. 6 is a schematic diagram of a series (ring) integrated dual-wavelength tandem heat-driven thermoacoustic refrigeration device;
图7a为一种有效延长高阻抗区域的中空环状管;Figure 7a is a hollow annular tube that effectively extends the high impedance region;
图7b为延长高阻抗区的中空环状管的声场分析图。Fig. 7b is an analysis diagram of the sound field of the hollow annular tube extending the high impedance region.
具体实施方式 Detailed ways
下面结合附图来对本发明做进一步的解释和说明:Below in conjunction with accompanying drawing, the present invention is further explained and illustrated:
实施例1Example 1
本实施例是由一台双级级联型热声发动机驱动一台行波型热声制冷机的串列式热声制冷系统,其结构如图3所示,两个λ/2声学谐振器相互串连在一起,图中弧线为声压(P1)沿程分布,沿着声功传播的方向依次串连设置如下元件:第一谐振腔1、第一谐振管2、第一水冷器3、第一热声堆4、第一加热器5、第一热缓冲管6、第二水冷器7、第一回热器8、第二加热器9、第二热缓冲管10、第一副水冷器11、第二谐振腔13、第二谐振管14、第三水冷器15、第二回热器16、冷头17、第三热缓冲管18、第二副水冷器19、第三谐振腔21。This embodiment is a tandem thermoacoustic refrigeration system in which a two-stage cascaded thermoacoustic engine drives a traveling wave thermoacoustic refrigerator. Its structure is shown in Figure 3, two λ/2 acoustic resonators They are connected in series, the arc in the figure is the sound pressure (P 1 ) distribution along the course, and the following components are arranged in series along the direction of sound power propagation: the first
上述各个元件中,第一热声堆4的中心距离第一谐振管2最佳听音点0.025λ~0.30λ;第一回热器8的中心与第一谐振管2的最佳听音点距离小于或等于1/8λ,第二回热器16的中心与第二谐振管14最佳听音点的距离小于或等于1/8λ;Among the above components, the distance between the center of the first
本实施例中的回热器可以采用多孔道结构,每个微孔道的水力半径为媒质振荡热渗透层的0.1-0.5倍;热声堆可以使用板叠结构或由金属丝网组成,其中,孔道水力半径为热渗透层的1-2倍。The regenerator in this embodiment can adopt a multi-channel structure, and the hydraulic radius of each micro-channel is 0.1-0.5 times that of the medium oscillating heat permeable layer; the thermoacoustic stack can use a plate stack structure or be composed of a wire mesh, wherein , the hydraulic radius of the channel is 1-2 times that of the heat permeable layer.
该装置实际是一个全波长谐振系统,各部件前后依次串连连接,即由级联热声发动机和热声制冷机前后直线式串列工作,工作媒质可以使用氦气、氮气、二氧化碳、氩气或氢气等单一的工作气体,也可以使用它们中间两种或者多种气体的混合气体。当第一加热器5和第一水冷器3之间的的温度梯度超过临界温度梯度,声功就会在第一热声堆4内产生,开始依次向下游各个元件传播,并在第一回热器8内得到放大,放大倍数理论上为第二加热器9和第一水冷器7的绝对温度的比值,最后在第二回热器16内得到消耗,从而获得了冷头17的制冷温度和制冷量。The device is actually a full-wavelength resonant system, and all components are connected in series in sequence, that is, cascaded thermoacoustic engines and thermoacoustic refrigerators work in a linear series. The working medium can be helium, nitrogen, carbon dioxide, and argon. Or a single working gas such as hydrogen, or a mixture of two or more gases among them. When the temperature gradient between the
上述临界温度梯度分计算公式为
图2给出了上述装置采用3MPa氮气作为工作介质时的基频振荡的波形空间分布,图中PAN代表声压的波腹,VN代表速度的节点,从图中可以看出最佳听音点附近存在两个局部高阻抗区域,并且该区域的声压与速度振荡相位差接近行波。Figure 2 shows the spatial distribution of the fundamental frequency oscillation waveform when the above-mentioned device uses 3MPa nitrogen as the working medium. In the figure, PAN represents the antinode of the sound pressure, and VN represents the node of the velocity. The best listening point can be seen from the figure There are two local high-impedance regions nearby, and the phase difference between the sound pressure and the velocity oscillation in this region is close to that of a traveling wave.
为有效延长行波区长度,在第一回热器8和第二回热器16处还可采用图7a所示垂直于谐振管并与之相连通的中空环状管,所述中空环状管与所述λ/2声学谐振器的谐振管相连通的连通交点与所述λ/2声学谐振器的最佳听音点之间距离小于或等于1/8λ,并且满足式pJ/UJ=ρa/Acot(2πL/λ),其中pJ为所述中空环状管与所述λ/2声学谐振器的谐振管连通交点的声压,UJ为所述λ/2声学谐振器的谐振管内连通交点处工作媒质的体积流速度,ρ为所述λ/2声学谐振器的谐振管内工作媒质的平均密度,a为所述λ/2声学谐振器的谐振管内工作媒质的声速,A为中空环状管的横截面面积,L为中空环状管的长度;最佳听音点是指谐振管中声压与振荡速度相位差为零的点。In order to effectively extend the length of the traveling wave region, a hollow annular tube perpendicular to and connected to the resonant tube as shown in Figure 7a can also be used at the
中空环状管为圆形、椭圆或矩形,其长度与中空环状管管径的比在8-20之间都可以,中空环状管的管径与谐振管的管径的比为1/4-1/2。数值模拟显示两端以及中间的声谐振腔处略偏离声压波节,该装置谐振管长度约为全波长的1.2倍,发动机热效率25%以上,热声制冷机家用冰箱温区的COP和电驱动蒸汽压缩式制冷方式的COP基本相当。这远高于同温区热声驱动的通过“长径管+气库”或“小孔+气库”调相的制冷装置的效率,因为那样结构的COP不可能超过1。The hollow annular tube is circular, elliptical or rectangular, and the ratio of its length to the diameter of the hollow annular tube is 8-20. The ratio of the diameter of the hollow annular tube to the diameter of the resonant tube is 1/ 4-1/2. Numerical simulations show that the acoustic resonant cavity at both ends and in the middle deviates slightly from the sound pressure node. The length of the resonant tube of this device is about 1.2 times the full wavelength, and the thermal efficiency of the engine is more than 25%. The COP of driving the vapor compression refrigeration method is basically the same. This is much higher than the efficiency of the thermoacoustic-driven refrigeration device in the same temperature zone through "long-diameter tube + gas storage" or "small hole + gas storage" phase modulation, because the COP of that structure cannot exceed 1.
本实施例使用的λ/2声学谐振器,包括谐振管和分别位于谐振管两端的谐振腔,其中谐振腔可以具有不同的大小,也可以具有不同的形状,如图1所示,图中A和图B由两段细长的声谐振管和三个谐振腔组成,谐振腔之间可具有不同的大小,谐振腔也可采用不同的形状,如A为采用球形谐振腔,可减少表面声耗散和截面突变损失,B为利用较粗短的圆管作为谐振腔;C为边界谐振管末端开口的形式,D为末端采用移动活塞的形式,C和D的中间连接谐振腔也可采用球形。The λ/2 acoustic resonator used in this embodiment includes a resonant tube and resonant cavities respectively located at both ends of the resonant tube, wherein the resonant cavities can have different sizes or different shapes, as shown in Figure 1, A in the figure And Figure B is composed of two slender acoustic resonance tubes and three resonant cavities. The resonant cavities can have different sizes, and the resonant cavities can also adopt different shapes. For example, A uses a spherical resonant cavity, which can reduce surface acoustics. Dissipation and cross-section mutation loss, B is to use a relatively thick and short circular tube as a resonant cavity; C is the form of an opening at the end of the boundary resonant tube, D is the form of a moving piston at the end, and the resonant cavity connected between C and D can also be used spherical.
实施例2Example 2
本实施例采用图4所示的串列式热声系统;该系统由两个λ/2声学谐振器串连组成U型结构,谐振器内各个元件的设置、位置和工作方式、工作过程都与实施例1相同;This embodiment adopts the tandem thermoacoustic system shown in Figure 4; the system consists of two λ/2 acoustic resonators connected in series to form a U-shaped structure, and the setting, position, working mode and working process of each component in the resonator are all Same as
采用U型串列方式,使得系统实际长度降低,可以有效的节约空间,同时,由于工作媒质多为氮气、氦气、二氧化碳、氩气、氢气或者为上述两种或多种气体组成的混合气体,远低于λ/2声学谐振器管壁不锈钢材料的声阻抗,所以U型弯头部分的声学谐振管依然可以看作是平面波传播,只是会增加一些局部粘性损失。The U-shaped tandem method reduces the actual length of the system and can effectively save space. At the same time, since the working medium is mostly nitrogen, helium, carbon dioxide, argon, hydrogen or a mixed gas composed of two or more of the above gases , which is much lower than the acoustic impedance of the stainless steel material of the λ/2 acoustic resonator tube wall, so the acoustic resonant tube at the U-bend part can still be regarded as plane wave propagation, but some local viscous loss will be added.
实施例3Example 3
本实施例采用图5所示的系统结构;第一级热声装置由三个分别内置热声发动机的λ/2声学谐振器并联为更强的驱动装置,然后再串列一个内置热声制冷机的λ/2声学谐振器,作为第二级热声装置。第一级热声装置中的每个λ/2声学谐振器的谐振管内部都设有一个驻波型热声发动机和一个行波型热声发动机,图中,第一、第二、第三驻波型热声发动机34、36、38均由两个冷热端换热器夹置热声堆组成,第一、第二、第三行波型热声发动机35、37、39和行波型热声制冷机40均由两个冷热端换热器夹置回热器组成,各个行波型热声发动机中的回热器的中心与该行波型热声发动机的λ/2声学谐振器最佳听音点之间的距离小于或等于1/8λ;所述的行波型热声制冷机中的回热器的中心与该行波型热声制冷机的λ/2声学谐振器最佳听音点之间的距离小于或等于1/8λ,并且各个驻波型热声发动机的温度梯度相同,各个行波型热声发动机的温度梯度均与各个驻波型热声发动机的温度梯度相同,行波型热声制冷机的温度梯度与各个驻波型热声发动机的温度梯度相反;This embodiment adopts the system structure shown in Figure 5; the first-stage thermoacoustic device consists of three λ/2 acoustic resonators with built-in thermoacoustic engines connected in parallel to form a stronger driving device, and then a built-in thermoacoustic cooling device is connected in series The λ/2 acoustic resonator of the machine acts as a second-stage thermoacoustic device. Inside the resonance tube of each λ/2 acoustic resonator in the first-stage thermoacoustic device, there is a standing wave thermoacoustic engine and a traveling wave thermoacoustic engine. In the figure, the first, second and third The standing wave
声功在第一、第二、第三驻波型热声发动机34、36、38内以驻波机制的热声效应而产生,接着分别在第一、第二、第三行波型热声发动机35、37、39内得到有效放大,而后汇集到行波型热声制冷机40内得到消耗。这是一种集成式的全波长谐振系统,可以大大增强实际系统的紧凑性,当前热声装置最大的缺点之一就是不紧凑,热声单元只占谐振系统很少的比例,混合型热声斯特林机更明显。Acoustic work is produced with the thermoacoustic effect of the standing wave mechanism in the first, second, and third standing wave
图5中并联的三个独立的λ/2声学谐振器不能够由3倍截面积粗的单个λ/2声学谐振器代替,原因有二,一是直径扩大必然使得径向速度分量和扰动所占比例加大,回热器横截面温度分布不均,影响系统效率;二是加大回热器直径会引起回热器声容的增加,造成当地声压和速度间相位差偏离行波相位,换言之,行波区会大大减短,不利于回热器充分发挥放大声功的作用。The three independent λ/2 acoustic resonators connected in parallel in Fig. 5 cannot be replaced by a single λ/2 acoustic resonator with a cross-sectional area three times thicker for two reasons. If the proportion increases, the temperature distribution of the cross-section of the regenerator will be uneven, which will affect the system efficiency; secondly, increasing the diameter of the regenerator will increase the sound volume of the regenerator, causing the phase difference between the local sound pressure and velocity to deviate from the traveling wave phase , in other words, the traveling wave region will be greatly shortened, which is not conducive to the regenerator to fully play the role of amplifying the sound work.
实施例4Example 4
本实施例采用4个λ/2声学谐振器串联组成一个圆环形状,如图6所示,其中,In this embodiment, four λ/2 acoustic resonators are connected in series to form a ring shape, as shown in Figure 6, wherein,
第一λ/2声学谐振器41的谐振管内设有第四驻波型热声发动机42和第四行波型热声发动机43,第四驻波型热声发动机42位于驻波区,其热声堆的中心距离第一λ/2声学谐振器的最佳听音点0.025λ~0.30λ;第四行波型热声发动机43位于第一λ/2声学谐振器的行波区,其回热器的中心与该行波型热声制冷机的λ/2声学谐振器最佳听音点之间的距离小于或等于1/8λ,且第四行波型热声发动机43的温度梯度与第四驻波型热声发动机42的温度梯度相同;A fourth standing
第二、第三λ/2声学谐振器44、46中的行波区分别设有第五、第六行波型热声发动机45、47,位置和温度梯度均与第四行波型热声发动机43相同;The traveling wave regions in the second and third λ/2
第四λ/2声学谐振器48中设有行波型热声制冷机49;其位置与第四行波型热声发动机43相同,温度梯度与第四行波型热声发动机43相同相反。The fourth λ/2
声功在第四驻波型热声发动机42内产生,在第四、第五、第六行波型热声发动机43、45、47内依次得到逐级放大,最后在行波型制冷机49内消耗,声能转换为制冷量。同时第四λ/2声学谐振器48的行波型热声制冷机49根据用途的不同可作为获得冷量的冰箱、空调、液化器等低温装置使用(从第四回热器9的冷端换热器作为输出端),也可作为热泵供暖使用(从第四回热器9的冷热端换热器作为输出端)。这也是一种实用化的俭约方案,热声核段所占比例增大。该装置是一个2波长系统,声功产生后经过三次指数增长式放大才提供给耗能单元,大大提高了能源利用效率,理论上可以达到40%的相对卡诺效率。The sound work is generated in the fourth standing
在上述装置的结构基础上,还可以将所述行波型热声制冷机49替换为声电换能器,从而将声能转换为电能。On the basis of the structure of the above device, the traveling wave
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610171654A CN100593678C (en) | 2006-12-31 | 2006-12-31 | Tandem type thermoacoustic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610171654A CN100593678C (en) | 2006-12-31 | 2006-12-31 | Tandem type thermoacoustic system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101210749A true CN101210749A (en) | 2008-07-02 |
CN100593678C CN100593678C (en) | 2010-03-10 |
Family
ID=39610941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610171654A Expired - Fee Related CN100593678C (en) | 2006-12-31 | 2006-12-31 | Tandem type thermoacoustic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100593678C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101392971B (en) * | 2008-11-06 | 2010-10-06 | 西安交通大学 | Solar driven coaxial traveling wave starting and standing wave cooling device |
JP2011007396A (en) * | 2009-06-24 | 2011-01-13 | Isuzu Motors Ltd | Thermoacoustic engine |
CN101726133B (en) * | 2009-10-21 | 2011-11-30 | 北京理工大学 | Thermo-acoustic refrigerator device driven by cascade thermo-acoustic engine |
CN103017401A (en) * | 2012-12-12 | 2013-04-03 | 浙江大学 | Acoustic power amplifying device capable of adopting cold energy |
CN103758657A (en) * | 2014-01-21 | 2014-04-30 | 中国科学院理化技术研究所 | Acoustic resonance type traveling wave thermoacoustic power generation system |
CN105909485A (en) * | 2016-04-21 | 2016-08-31 | 中国科学院理化技术研究所 | Cascade thermoacoustic power generation device |
CN106194358A (en) * | 2016-08-10 | 2016-12-07 | 中国科学院理化技术研究所 | Multistage thermoacoustic generator set and multistage regenerative refrigeration system with same |
US9664181B2 (en) | 2012-09-19 | 2017-05-30 | Etalim Inc. | Thermoacoustic transducer apparatus including a transmission duct |
CN105276855B (en) * | 2015-11-17 | 2018-07-24 | 中国科学院理化技术研究所 | Loop multistage traveling wave thermal driving refrigerating system |
CN109990496A (en) * | 2017-12-29 | 2019-07-09 | 同济大学 | A tandem pulse tube refrigerator |
CN110118436A (en) * | 2018-02-05 | 2019-08-13 | 中国科学院理化技术研究所 | A kind of thermoacoustic system built-in heater and the composite heater containing the heater |
CN110234523A (en) * | 2017-02-10 | 2019-09-13 | 日本碍子株式会社 | Cold wind warm wind generation system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1064746C (en) * | 1995-06-05 | 2001-04-18 | 中国科学院低温技术实验中心 | Thermoacoustic engine |
CN1138108C (en) * | 2001-06-16 | 2004-02-11 | 浙江大学 | Multi-stage thermoacoustic compressor |
US6658862B2 (en) * | 2002-04-18 | 2003-12-09 | The Regents Of The University Of California | Cascaded thermoacoustic devices |
CN2711404Y (en) * | 2004-02-26 | 2005-07-20 | 浙江大学 | Mixing type traveling wave themoacoustic engine with bypass structure |
FR2869945B1 (en) * | 2004-05-04 | 2006-08-04 | Univ Paris Curie | POWER TRANSMISSION UNIT FOR THERMOACOUSTIC SYSTEMS |
CN1332160C (en) * | 2004-09-03 | 2007-08-15 | 中国科学院理化技术研究所 | Coaxial traveling wave thermoacoustic driving refrigerating system |
-
2006
- 2006-12-31 CN CN200610171654A patent/CN100593678C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101392971B (en) * | 2008-11-06 | 2010-10-06 | 西安交通大学 | Solar driven coaxial traveling wave starting and standing wave cooling device |
JP2011007396A (en) * | 2009-06-24 | 2011-01-13 | Isuzu Motors Ltd | Thermoacoustic engine |
CN101726133B (en) * | 2009-10-21 | 2011-11-30 | 北京理工大学 | Thermo-acoustic refrigerator device driven by cascade thermo-acoustic engine |
US9664181B2 (en) | 2012-09-19 | 2017-05-30 | Etalim Inc. | Thermoacoustic transducer apparatus including a transmission duct |
CN103017401A (en) * | 2012-12-12 | 2013-04-03 | 浙江大学 | Acoustic power amplifying device capable of adopting cold energy |
CN103017401B (en) * | 2012-12-12 | 2015-06-03 | 浙江大学 | Acoustic power amplifying device capable of adopting cold energy |
CN103758657A (en) * | 2014-01-21 | 2014-04-30 | 中国科学院理化技术研究所 | Acoustic resonance type traveling wave thermoacoustic power generation system |
CN105276855B (en) * | 2015-11-17 | 2018-07-24 | 中国科学院理化技术研究所 | Loop multistage traveling wave thermal driving refrigerating system |
CN105909485A (en) * | 2016-04-21 | 2016-08-31 | 中国科学院理化技术研究所 | Cascade thermoacoustic power generation device |
CN105909485B (en) * | 2016-04-21 | 2018-11-09 | 中国科学院理化技术研究所 | Cascade thermoacoustic power generation device |
CN106194358A (en) * | 2016-08-10 | 2016-12-07 | 中国科学院理化技术研究所 | Multistage thermoacoustic generator set and multistage regenerative refrigeration system with same |
CN106194358B (en) * | 2016-08-10 | 2019-06-28 | 中国科学院理化技术研究所 | Multistage thermoacoustic generator set and multistage regenerative refrigeration system with same |
CN110234523A (en) * | 2017-02-10 | 2019-09-13 | 日本碍子株式会社 | Cold wind warm wind generation system |
CN109990496A (en) * | 2017-12-29 | 2019-07-09 | 同济大学 | A tandem pulse tube refrigerator |
CN109990496B (en) * | 2017-12-29 | 2021-10-08 | 同济大学 | A tandem pulse tube refrigerator |
CN110118436A (en) * | 2018-02-05 | 2019-08-13 | 中国科学院理化技术研究所 | A kind of thermoacoustic system built-in heater and the composite heater containing the heater |
Also Published As
Publication number | Publication date |
---|---|
CN100593678C (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101210749A (en) | A tandem thermoacoustic system | |
US7404296B2 (en) | Cooling device | |
CN101706169B (en) | A thermally coupled two-stage pulse tube refrigeration system driven by thermoacoustics | |
CN104807234B (en) | Thermally-driven low-temperature refrigerator system | |
CN104315748B (en) | Heat energy driven looped traveling-wave thermo-acoustic heat pump with flow guiders | |
CN108180673B (en) | Loop heat-driven thermoacoustic refrigerating system | |
CN105276855B (en) | Loop multistage traveling wave thermal driving refrigerating system | |
CN104913537B (en) | Multistage liquefaction device of gaseous of multistage thermoacoustic engine drive of loop | |
CN101256040B (en) | Hot sound refrigerating machine driven by wind energy | |
CN101566405B (en) | Heat-driven thermoacoustic refrigerator device with traveling and standing wave type sound field | |
CN101726133B (en) | Thermo-acoustic refrigerator device driven by cascade thermo-acoustic engine | |
CN106440449A (en) | Multi-stage pulse tube refrigerator | |
CN103759464B (en) | Loop type traveling wave thermoacoustic refrigeration system driven by linear compressor | |
CN1137630A (en) | Heat driven thermoacoustic refrigerator without motion component | |
CN105299951B (en) | Loop multistage acoustic power recovery type heat-driven traveling wave thermoacoustic refrigeration system | |
CN100572987C (en) | A thermoacoustic driven pulse tube refrigerator | |
CN113864143B (en) | Thermo-acoustic system | |
CN1086801C (en) | Thermoacoustic refrigerator | |
CN102095277B (en) | Thermoacoustic engine-driven thermoacoustic refrigerator based on traveling standing wave orthogonal superposition sound field | |
CN101498290A (en) | External excitation double drive travelling wave thermoacoustic heat engine | |
CN218895542U (en) | Thermoacoustic Refrigerator/Heat Pump System with Stepped Piston-Split Type Thermally Driven | |
CN219264611U (en) | Thermally driven thermoacoustic refrigerator/heat pump system | |
CN218895541U (en) | Gas-liquid coupling type thermo-acoustic refrigerating system | |
CN205714616U (en) | A kind of thermoacoustic engine with hydrogen as working medium | |
CN102095278B (en) | Electrically driven thermoacoustic refrigerator based on moving standing wave orthogonal superposition sound field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100310 Termination date: 20181231 |