CN101206118A - The Automatic Calculation Method of Sun Azimuth and Its Automatic Calculator - Google Patents
The Automatic Calculation Method of Sun Azimuth and Its Automatic Calculator Download PDFInfo
- Publication number
- CN101206118A CN101206118A CN 200710172212 CN200710172212A CN101206118A CN 101206118 A CN101206118 A CN 101206118A CN 200710172212 CN200710172212 CN 200710172212 CN 200710172212 A CN200710172212 A CN 200710172212A CN 101206118 A CN101206118 A CN 101206118A
- Authority
- CN
- China
- Prior art keywords
- time
- sun
- azimuth
- circuit
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title abstract description 16
- 238000004891 communication Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims description 2
- 239000000284 extract Substances 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Electric Clocks (AREA)
Abstract
本发明公开了一太阳方位的自动计算方法,其特点是它由时间信号到数据库提取赤纬和时差,根据测者经纬度、时间和时差计算出真太阳的地方时角;根据测者经纬度、赤纬和时角,通过方程算出太阳实时真方位,通过减磁差得到精的太阳磁方位。自动计算器由时钟发生器、电源、通信接口、组合键、CPU电路、信息显示屏、设置数据存储器、列表数据存储器、程序存储器连接而成。本发明的有益效果是,包括太阳真方位、太阳赤纬、时差、地方时角等能自动进行计算并在屏幕上显示,将使用者从以往烦琐、费时手算中解放出来,本太阳方位自动计算器还具有通信接口,可与通信导航系统设备连接。
The invention discloses an automatic calculation method for the sun's azimuth, which is characterized in that it extracts the declination and time difference from the time signal to the database, and calculates the local hour angle of the real sun according to the longitude and latitude of the tester, time and time difference; Latitude and hour angle, the real-time true azimuth of the sun is calculated through the equation, and the precise solar magnetic azimuth is obtained by subtracting the magnetic difference. The automatic calculator is connected by a clock generator, a power supply, a communication interface, a combination key, a CPU circuit, an information display screen, a setting data memory, a list data memory, and a program memory. The beneficial effect of the present invention is that it can automatically calculate and display on the screen including the sun's true azimuth, solar declination, time difference, local hour angle, etc., freeing the user from the previous cumbersome and time-consuming manual calculations. The calculator also has a communication interface, which can be connected with the communication navigation system equipment.
Description
技术领域technical field
本发明涉及一种太阳方位的自动计算方法及用此方法的自动计算器,从而改变了以往查表、内插、手算既繁杂而又精度低的落后状况。The invention relates to an automatic calculation method of the sun's azimuth and an automatic calculator using the method, thereby changing the backward situation of table look-up, interpolation and manual calculation which are complicated and have low precision.
背景技术Background technique
利用天体(如太阳)真方位作为测校指向设备的基准方位,是船长和校正师等测者所常用的方法,但以往需预先通过繁杂耗时的手算制表,较容易在小数值、正负号上发生差错,即使运用电算表、普通计算器,也无法满足现代智能系统的数字通信需要。Using the true azimuth of a celestial body (such as the sun) as the reference azimuth for calibrating pointing equipment is a common method used by surveyors such as captains and calibrators. If there is an error in the plus or minus sign, even if you use a computer or an ordinary calculator, it cannot meet the digital communication needs of modern intelligent systems.
发明内容Contents of the invention
为了改变目前太阳方位的烦琐、紧张、费时、易错的查、算、插、验的手算制表,提供一种将太阳真方位与观测点的位置属性、日期、时间属性,天体(太阳)运行属性等关系方程,按照相应的系列计算方法和能自动进行动态处理,每秒给出一个太阳真方位,供导航系统向位设备测差、校准用的太阳方位自动计算器。In order to change the cumbersome, tense, time-consuming, and error-prone manual calculation tabulation of the current sun orientation, provide a method that combines the true orientation of the sun with the position attribute, date, and time attribute of the observation point, and celestial bodies (sun ) operation attributes and other relational equations, according to the corresponding series of calculation methods and can automatically perform dynamic processing, and give a true sun position every second, which is an automatic sun position calculator for the deviation measurement and calibration of the navigation system's position equipment.
一种太阳方位自动计算方法,其特点是方法步骤为:A method for automatically calculating the sun position is characterized in that the steps of the method are:
1.由时钟发生器提供实时时间信号,到内存在数据存储器中的太阳赤纬和时差数据库提取相应的赤纬和时差,根据测者经纬度、时间和时差计算出真太阳的地方时角;1. The real-time time signal is provided by the clock generator, and the corresponding declination and time difference are extracted from the solar declination and time difference database stored in the data memory, and the local time angle of the real sun is calculated according to the longitude and latitude, time and time difference of the tester;
2.应用测者经纬度、太阳的赤纬和时角,通过球面三角定义转化成实用方程2. Using the longitude and latitude of the tester, the sun's declination and hour angle, it is transformed into a practical equation through the definition of spherical trigonometry
A:太阳实时真方位;A: real-time true azimuth of the sun;
δ:太阳赤纬;δ: solar declination;
t:真太阳的地方时角;t: local hour angle of the true sun;
:测量点纬度;: measuring point latitude;
根据上述方程算出太阳实时真方位;Calculate the real-time true azimuth of the sun according to the above equation;
3.根据上述算出的太阳实时真方位减去通过测者经纬度在海图上所标的磁差数据计算得到或通过英国政府磁差网上查取得到或从GPS取的磁差自动修正得到的当地当时的磁差,得到精的太阳磁方位。3. Based on the real-time true azimuth of the sun calculated above, subtract the magnetic difference data marked on the chart by the measurer’s latitude and longitude, or the current local time obtained by checking the magnetic difference website of the British government or automatically corrected from the GPS. The magnetic variation of , obtains the precise solar magnetic azimuth.
应用上述方法制成的太阳方位的自动计算器,其特点是,它由时钟发生器、电源、通信接口、组合键、CPU电路、信息显示屏、设置数据存储器、列表数据存储器、程序存储器连接而成,所述的设置数据存储器中存储有测者经纬度、时间设定数据、磁差;列表数据存储器存储有太阳赤纬和时差数据库;程序存储器存储有计算机流程二进制代码。The automatic calculator of solar orientation made by applying the above method is characterized in that it is connected by a clock generator, a power supply, a communication interface, a combination key, a CPU circuit, an information display screen, a setting data memory, a list data memory, and a program memory. In this way, the setting data memory stores the measurer's latitude and longitude, time setting data, and magnetic variation; the list data memory stores solar declination and time difference databases; the program memory stores computer process binary codes.
本发明的发明效果是,将太阳真方位与观测点的位置属性、日期、时间属性,天体(太阳)运行属性等关系方程,按照相应的系列算法,自动进行动态处理,每秒给出一个太阳真方位,供导航系统向位设备测差、校准用;本太阳方位自动计算器还提供太阳真方位及其相关参数的查询功能,根据给定条件,如:测者位置、日期、时间属性(时区时或格林时或视时),仪器立即给出结果:包括太阳真方位、太阳赤纬、时差、地方时角、太阳日出、日没时间等,将使用者从以往烦琐、紧张、费时、易错的查、算、插、验中解放出来;本太阳方位自动计算器还具备瞬态捕捉功能,能在常态太阳真方位显示中需要时立即定格,在静态情况下查询该时刻详细的与方位相关的参数以供研究;本太阳方位自动计算器具备了可任意设置并应用格林时或全球任意时区时的属性,;本太阳方位自动计算器具有通信接口,可与系统的数字向位仪连接,实现向位误差自动测算修正,通信接口还可提供动态方位数据输出、存储、打印等。本太阳方位自动计算器采用了4键设计,以菜单加复用键使操作简单清晰明了。The invention effect of the present invention is, according to the corresponding series of algorithms, automatically carry out dynamic processing with the relationship equations such as the position attribute of the sun's true orientation and the observation point, date, time attribute, celestial body (sun) operation attribute, and give a sun per second The true azimuth is used for the difference measurement and calibration of the navigation system's azimuth equipment; the solar azimuth automatic calculator also provides the query function of the sun's true azimuth and related parameters, according to the given conditions, such as: the position of the tester, date, time attributes ( Time zone time or Green time or apparent time), the instrument immediately gives the results: including the true azimuth of the sun, solar declination, time difference, local time angle, sun sunrise, no time of day, etc., saving the user from the tedious, stressful and time-consuming , error-prone query, calculation, interpolation, and verification; the solar azimuth automatic calculator also has a transient capture function, which can freeze the frame immediately when needed in the normal sun true azimuth display, and query the detailed information at that moment under static conditions. The parameters related to azimuth are for research; the solar azimuth automatic calculator has the property that can be set arbitrarily and applied to Green Time or any time zone in the world; the solar azimuth automatic calculator has a communication interface, which can communicate with the digital orientation of the system The instrument is connected to realize the automatic measurement and correction of the orientation error, and the communication interface can also provide dynamic orientation data output, storage, printing, etc. The solar azimuth automatic calculator adopts a 4-key design, and the operation is simple and clear with the menu and multiple keys.
附图说明Description of drawings
图1是求太阳方位原理天球图;Fig. 1 is the celestial sphere diagram of seeking the sun azimuth principle;
图2是解太阳真方位的球面三角图;Fig. 2 is a spherical triangular diagram for solving the true azimuth of the sun;
图3是本太阳方位自动计算器系统的原理框图;Fig. 3 is the functional block diagram of this sun position automatic calculator system;
图4是本太阳方位自动计算器的电路原理图;Fig. 4 is the circuit principle diagram of this sun position automatic calculator;
图5是本太阳方位自动计算器主程序流程图。Fig. 5 is a flow chart of the main program of the automatic solar azimuth calculator.
本发明的原理:Principle of the present invention:
本太阳方位自动计算器是一种以太阳、地球运动规律与微处理器技术相结合的数字智能电子产品,根据天文测量原理,以地球为中心,太阳与地球等效视距为半径)椭圆运行轨迹用时差来修正)看做一个圆球(天球),如图1所示,在天球的球面上以天球的天北极、测试者的天顶和天体(太阳)三点形成一个球面三角,如图2所示,在天文球面三角中,根据余切定理求解天体方位主要函数有:The solar azimuth automatic calculator is a digital intelligent electronic product that combines the law of the sun and the earth's motion with microprocessor technology. According to the principle of astronomical measurement, the earth is the center, and the sun and the earth's equivalent line of sight are the radius) elliptical movement Track is corrected by time difference) as a sphere (celestial sphere), as shown in Figure 1, on the celestial sphere, three points form a spherical triangle with the celestial north pole, the zenith of the tester, and the celestial body (sun), as shown in Figure 1. As shown in Figure 2, in astronomical spherical trigonometry, the main functions for solving the orientation of celestial bodies according to the cotangent theorem are:
ctgA=ctg(90°-赤纬)*sin(90°-纬度)/sin时角-cos(90°-纬度)*ctg时角ctgA=ctg(90°-declination)*sin(90°-latitude)/sin hour angle-cos(90°-latitude)*ctg hour angle
=tg(赤纬)*cos(纬度)/sin(时角)-sin(纬度)*ctg(时角)=tg(declination)*cos(latitude)/sin(hour angle)-sin(latitude)*ctg(hour angle)
列出的方程为:The equations listed are:
A:真太阳实时真方位;A: Real-time real azimuth of the real sun;
δ:太阳赤纬;δ: solar declination;
t:真太阳的地方时角;t: local hour angle of the true sun;
:测量点纬度。: measuring point latitude.
以上数据取测量者的船舶时间(陆地上取时区时间),计算结果为太阳对应测量者当时的视真方位。式中时角和赤纬都具有时间、日期属性、位置属性的函数,以往通过人工查表、内插细分和计算,本发明则是通过编程由时间发生器发出的时间信号从数据库中自动拾取公式中所需的数据进行自动计算。The above data is taken from the ship time of the measurer (the time zone time is taken on land), and the calculation result is the true azimuth of the sun corresponding to the measurer at that time. In the formula, both the hour angle and the declination have functions of time, date attributes, and position attributes. In the past, through manual table lookup, interpolation, subdivision, and calculation, the present invention is to automatically extract the time signal from the database by programming the time signal sent by the time generator. Pick up the data needed in the formula for automatic calculation.
具体实施方式Detailed ways
太阳方位自动计算器的系统结构如图3所示,它由时钟发生器、电源、通信接口、组合键、CPU电路、信息显示屏、设置数据存储器、列表数据存储器、程序存储器连接而成,所述的设置数据存储器中存储有测者经纬度、时间设定数据、磁差;列表数据存储器存储有太阳赤纬和时差数据库;程序存储器存储有计算机流程二进制代码。如附表1太阳赤纬表,附表2时差表等的数据存储在设置数据存储器中。根据上述系统,1.由时间发生器提供实时时间信号,到内存在设置数据存储器中的太阳赤纬和时差数据库提取相应的赤纬和时差,根据测者经纬度、时间和时差计算出真太阳的地方时角;2.应用测者经纬度、太阳的赤纬和时角,通过球面三角定义转化成实用方程式(1)算出太阳实时真方位;3.根据上述算出的太阳实时真方位减去通过测者经纬度在海图上所标的磁差数据计算得到或通过英国政府磁差网上查取得到或从GPS取的磁差自动修正得到的当地当时的磁差,得到精的太阳磁方位。The system structure of the solar azimuth automatic calculator is shown in Figure 3. It is connected by a clock generator, a power supply, a communication interface, a combination key, a CPU circuit, an information display screen, a setting data memory, a list data memory, and a program memory. The above-mentioned setting data memory stores the longitude and latitude of the surveyor, time setting data and magnetic difference; the list data memory stores the solar declination and time difference database; the program memory stores the binary code of the computer process. For example, the data of the solar declination table in the attached table 1, the time difference table in the attached table 2, etc. are stored in the setting data memory. According to above-mentioned system, 1. provide real-time time signal by time generator, extract corresponding declination and time difference to the solar declination and time difference database in the setting data store in memory, calculate true sun's time according to surveyor's latitude and longitude, time and time difference Local hour angle; 2. Use the longitude and latitude of the surveyor, the sun's declination and hour angle, and convert it into a practical equation (1) to calculate the real-time real azimuth of the sun through the definition of spherical trigonometry; The local magnetic variation at that time is obtained by calculating the magnetic variation data marked on the nautical chart with latitude and longitude, or by checking the magnetic variation website of the British government, or automatically correcting the magnetic variation obtained from GPS, to obtain the precise solar magnetic azimuth.
如图3所示的太阳方位自动计算器系统,CPU采用8位单片机,组合键4键,分别为“菜单键”、“确认键”、“前翻页或减数键”和“后翻页或增数键”,列表数据存储器、程序存储器采用flash闪存,设置数据存储器用I2C串行存储器,通信接口通信接口采用RS232串行口,可以与系统导航设备连接通信,输出动态方位及相关数据,实现罗经校差自动化;与计算机、打印机相连接,可储存、打印。信息显示屏用双行字符型液晶显示器,以显示主题太阳方位和关联副题与太阳真方位有关的参数,时钟发生器用串行时钟芯片,可在微功耗情况下保证精确走时。太阳方位自动计算器的电源采用双电源,外接电源对整机提供工作电源,同时对电池进行涓流充电,在整机关闭时由电池维持时钟正常走时。As shown in Figure 3, the solar position automatic calculator system, the CPU adopts an 8-bit single-chip microcomputer, and the combination keys are 4 keys, which are respectively "menu key", "confirmation key", "previous page turning or subtraction key" and "backward turning page". or increment key", the list data memory and program memory use flash memory, the setting data memory uses I 2 C serial memory, the communication interface uses RS232 serial port, which can communicate with the system navigation equipment, output dynamic orientation and related Data, to realize the automation of compass correction; connected with computer and printer, it can be stored and printed. The information display screen uses a two-line character liquid crystal display to display the subject sun azimuth and related subtopic parameters related to the sun's true azimuth. The clock generator uses a serial clock chip to ensure accurate travel time under the condition of micro power consumption. The power supply of the solar position automatic calculator adopts dual power supplies. The external power supply provides working power for the whole machine, and at the same time trickle charges the battery. When the whole machine is turned off, the battery maintains the normal time of the clock.
太阳方位自动计算器电路由图4所示,它包括组合键电路1、CPU电路2、显示屏电路3、CPU晶振电路4、复位电路5、通信接口串行驱动电路6、时钟电路7、I2C串行存储器电路8和电源电路9。The solar position automatic calculator circuit is shown in Figure 4, and it comprises
本太阳方位自动计算器实现太阳方位的自动测算依赖于系统的程序软件。程序软件有8个部分:系统主程序、键功能分析模块、分析计算模块、翻屏显示模块、设置模块、查询模块、定格模块、通信模块等.图5是系统主程序流程图,开机后系统首先进入初始化:初始化软件内部相关参数,装入自编的专用显示字符库、提取设置数据至随机存储器(从I2C存储器读出至静态变量)、初始化时区、初始化显示屏(清屏及光标定位)、初始化显示页(缺省屏:太阳真方位+时钟)、初始化系统状态(键分析用)等。主程序以100ms为周期循环流程,在循环体内按照以下顺序:监测按键动作,刷新时间与日期,调用分析计算模块得到所需数据,调用分屏显示模块显示及从通信接口发送数据,等待至100ms到,完成一次循环,回到循环体首部继续循环,实现了太阳方位及相关信息的动态显示与输出。The solar azimuth automatic calculator realizes the automatic calculation of the solar azimuth and depends on the program software of the system. The program software has 8 parts: system main program, key function analysis module, analysis and calculation module, screen display module, setting module, query module, freeze frame module, communication module, etc. Figure 5 is the main program flow chart of the system. First enter the initialization: initialize the relevant internal parameters of the software, load the self-edited special display character library, extract the setting data to the random memory (read from the I2C memory to the static variable), initialize the time zone, initialize the display screen (clear screen and cursor) positioning), initializing the display page (default screen: true sun azimuth + clock), initializing system status (for key analysis), etc. The main program takes 100ms as the cycle flow, and follows the following sequence in the loop body: monitor the button action, refresh the time and date, call the analysis and calculation module to obtain the required data, call the split-screen display module to display and send data from the communication interface, and wait until 100ms After completing a cycle, return to the head of the cycle body to continue the cycle, realizing the dynamic display and output of the sun position and related information.
由图5所示,具体的操作步骤:As shown in Figure 5, the specific operation steps:
1.开机1. Boot
2.超时没有按键,每秒自动计算及动态显示太阳真方位或磁方位。有ENTER按键,锁定当前显示数据。2. There is no button for overtime, and the true azimuth or magnetic azimuth of the sun is automatically calculated and dynamically displayed every second. There is an ENTER button to lock the current display data.
3.MENU键轮换到常态显示/查询/设置三种状态。3. The MENU key switches to the three states of normal display/query/setting.
4.查询显示:ENTER进入,PREIVI/NEXT翻屏选择相应的选项,用ENTER键查询相关信息。4. Inquiry display: ENTER to enter, PREIVI/NEXT to turn the screen to select the corresponding option, and use the ENTER key to inquire about relevant information.
5.设置状态:ENTER进入,PREIVI/NEXT翻屏选择相应的选项,用ENTER键查询相关信息。5. Setting status: ENTER to enter, PREIVI/NEXT scroll to select the corresponding option, use ENTER to query related information.
6.任何状态下无按键超时,进入常态显示。6. In any state, if there is no button timeout, it will enter the normal display.
主要功能模块说明如下:分析计算模块的流程是,首先根据日期与时间查设置数据存储器的内置数据库,得出太阳赤纬和时差,并以已知的测者位置(经、纬度)计算出地方时角,再分别计算出日出、没时间和方位,太阳真方位等,计算的每一项都对缓存器更新(赋值给全局变量),实现在同一条件下重复使用(例如翻屏等);设置程序模块流程是,由主程序进入设置程序后,继续等待键按下,或退出设置,键功能分析得出设置项目,设置项目有“时区”,“日期”,“时钟”,“测者位置”等,进入某一设置项目,输入设置值,输入后确认继续等待是否设置其它项目,或退出设置,返回到主程序循环;查询程序模块:其作用是从键盘输入查询条件:日期、时间、测者位置(经纬度),显示给定条件下的太阳真方位及相关信息,从主程序进入查询程序模块后继续等待按键,有键按下后经过键功能分析执行相应的查询条件输入程序输入数据,完成后程序流向继续测试按键,等待执行其它条件输入,或转向翻屏显示模块进行显示;定格功能模块,功能是主程序在动态显示时捕获当时瞬间时刻的数据,进行翻屏显示,进入定格功能,提取当时时间和日期,分析计算后送入翻屏显示模块,同时继续测试按键,直至退出定格功能返回到主程序;翻屏显示模块,翻屏显示共有七屏,每屏上下显示两行,第1屏,第1行显示太阳方位,第2行显示时区时;第2屏:第1行显示太阳方位,第2行显示日期;第3屏:第1行显示太阳方位,第2行显示太阳赤纬;第4屏:第1行显示太阳方位,第2行显示太阳时差;第5屏:第1行显示太阳方位,第2行显示地方时角;第6屏:第1行显示日出船时,第2行显示日出方位;第7屏:第1行显示日没船时,第2行显示日没方位,翻屏键功能为两种,前翻后后翻,每一种键功能都是相对于当前状态的前翻1屏或后翻1屏,翻屏后仅改变了信息的显示内容,程序仍继续翻屏前的流程项目。The main functional modules are described as follows: the flow of the analysis and calculation module is to first check the built-in database of the data storage according to the date and time, obtain the solar declination and time difference, and calculate the location with the known position of the tester (longitude, latitude). Hour angle, and then calculate the sunrise, no time and azimuth, the true azimuth of the sun, etc., and each calculated item is updated to the register (assigned to a global variable), so that it can be reused under the same conditions (such as turning the screen, etc.) ;The flow of the setting program module is that after entering the setting program from the main program, continue to wait for the key to be pressed, or exit the setting, and the key function analysis obtains the setting items, and the setting items include "time zone", "date", "clock", "measurement Enter a certain setting item, input the setting value, confirm and wait for setting other items after inputting, or exit the setting, and return to the main program cycle; query program module: its function is to input query conditions from the keyboard: date, Time, position (latitude and longitude) of the tester, display the true orientation of the sun and related information under given conditions, enter the query program module from the main program and continue to wait for the key, after pressing a key, execute the corresponding query condition input program after key function analysis Input data, after completion, the program flows to the continue test button, waiting for other conditions to be input, or turns to the flip-screen display module for display; the freeze-frame function module, the function is that the main program captures the data at the moment when it is dynamically displayed, and performs flip-screen display. Enter the freeze-frame function, extract the time and date at that time, send it to the flip-screen display module after analysis and calculation, and continue to test the buttons at the same time until you exit the freeze-frame function and return to the main program; the flip-screen display module has seven screens in total, and each screen displays up and down Two lines, the first screen, the first line displays the sun position, the second line displays the time zone; the second screen: the first line displays the sun position, the second line displays the date; the third screen: the first line displays the sun position, the
附表1:太阳赤纬表(例表1页),附表2:时差表(例表1页)。Attached Table 1: Solar Declination Table (Example Table 1 Page), Attached Table 2: Time Difference Table (Example Table 1 Page).
附表1. 太阳赤纬表
(每日世界时12时) (12:00 UTC every day)
附表2. 时差表
(每日世界时12时) (12:00 UTC every day)
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710172212 CN101206118B (en) | 2007-12-13 | 2007-12-13 | Solar Azimuth Automatic Calculator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710172212 CN101206118B (en) | 2007-12-13 | 2007-12-13 | Solar Azimuth Automatic Calculator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101206118A true CN101206118A (en) | 2008-06-25 |
CN101206118B CN101206118B (en) | 2011-06-29 |
Family
ID=39566493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710172212 Expired - Fee Related CN101206118B (en) | 2007-12-13 | 2007-12-13 | Solar Azimuth Automatic Calculator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101206118B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103017768A (en) * | 2012-11-26 | 2013-04-03 | 西安理工大学 | System and method for three-dimensional attitude determination for aircraft |
CN103425624A (en) * | 2013-08-23 | 2013-12-04 | 中国科学院电子学研究所 | Multi-channel data correlation processing system for multi-path celestial body radio spectrum signal |
CN103592944A (en) * | 2013-10-24 | 2014-02-19 | 燕山大学 | Supermarket shopping robot and advancing path planning method thereof |
CN104567869A (en) * | 2014-12-26 | 2015-04-29 | 韩斐然 | Method and device for determining local geographic azimuth and orientation of user with sun position |
CN105488347A (en) * | 2015-11-27 | 2016-04-13 | 中船黄埔文冲船舶有限公司 | Sun true-bearing acquiring system and method |
EP3599518A1 (en) * | 2018-07-24 | 2020-01-29 | ETA SA Manufacture Horlogère Suisse | Method for encoding and transmission of at least one solar time |
WO2021213640A1 (en) * | 2020-04-22 | 2021-10-28 | European Space Agency (Esa) | Electronic watch for space and/or surface exploration |
RU2805638C1 (en) * | 2023-02-20 | 2023-10-23 | Общество с ограниченной ответственностью "Константин Чайкин" | Clock with an indicator of the azimuth of sunrise and sunset |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971915A (en) * | 1974-12-11 | 1976-07-27 | Nasa | Sun angle calculator |
US4104722A (en) * | 1976-09-10 | 1978-08-01 | Evans Dow J | Method and apparatus for celestial navigation |
CN2689173Y (en) * | 2004-03-18 | 2005-03-30 | 叶大卫 | Instrument for automatically tracking sun |
CN100368741C (en) * | 2005-10-14 | 2008-02-13 | 中国科学院合肥物质科学研究院 | Sun tracking device and tracking method based on tracking attitude feedback |
-
2007
- 2007-12-13 CN CN 200710172212 patent/CN101206118B/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103017768A (en) * | 2012-11-26 | 2013-04-03 | 西安理工大学 | System and method for three-dimensional attitude determination for aircraft |
CN103017768B (en) * | 2012-11-26 | 2015-11-18 | 西安理工大学 | A kind of three-dimensional attitude determination for aircraft system and method |
CN103425624B (en) * | 2013-08-23 | 2016-04-13 | 中国科学院电子学研究所 | The multi-channel data associated processing system of multichannel celestial radio spectrum signal |
CN103425624A (en) * | 2013-08-23 | 2013-12-04 | 中国科学院电子学研究所 | Multi-channel data correlation processing system for multi-path celestial body radio spectrum signal |
CN103592944A (en) * | 2013-10-24 | 2014-02-19 | 燕山大学 | Supermarket shopping robot and advancing path planning method thereof |
CN104567869A (en) * | 2014-12-26 | 2015-04-29 | 韩斐然 | Method and device for determining local geographic azimuth and orientation of user with sun position |
CN105488347A (en) * | 2015-11-27 | 2016-04-13 | 中船黄埔文冲船舶有限公司 | Sun true-bearing acquiring system and method |
CN105488347B (en) * | 2015-11-27 | 2018-05-29 | 中船黄埔文冲船舶有限公司 | A kind of Real orientation of sun obtains system and method |
EP3599518A1 (en) * | 2018-07-24 | 2020-01-29 | ETA SA Manufacture Horlogère Suisse | Method for encoding and transmission of at least one solar time |
KR20200011366A (en) * | 2018-07-24 | 2020-02-03 | 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 | Method for coding and transmitting at least one solar time |
KR102349240B1 (en) * | 2018-07-24 | 2022-01-07 | 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 | Method for coding and transmitting at least one solar time |
US11899403B2 (en) | 2018-07-24 | 2024-02-13 | Eta Sa Manufacture Horlogere Suisse | Method for coding and transmitting at least one solar time |
WO2021213640A1 (en) * | 2020-04-22 | 2021-10-28 | European Space Agency (Esa) | Electronic watch for space and/or surface exploration |
RU2820982C1 (en) * | 2020-04-22 | 2024-06-14 | Юропиан Спейс Эйдженси (Еса) | Electronic clock for space and/or surface exploration |
RU2805638C1 (en) * | 2023-02-20 | 2023-10-23 | Общество с ограниченной ответственностью "Константин Чайкин" | Clock with an indicator of the azimuth of sunrise and sunset |
Also Published As
Publication number | Publication date |
---|---|
CN101206118B (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101206118B (en) | Solar Azimuth Automatic Calculator | |
US20060161379A1 (en) | Pointing systems for addressing objects | |
US20080234533A1 (en) | System for evaluating an environment | |
CN103697885B (en) | Automatically the long range positioning method of magnetic declination is compensated | |
CN101464506B (en) | Astronomically aided single-star positioning method | |
CN104123695A (en) | Method for realizing coordinate conversion | |
Stranner et al. | A high-precision localization device for outdoor augmented reality | |
CN103745622B (en) | Sextant astrogeodesy simulator | |
CN103727937A (en) | Star sensor based naval ship attitude determination method | |
CN105334525A (en) | Geographic information display method based on augmented reality technology | |
CN101261128A (en) | Geographic location orientation device and implementation method | |
US20080091654A1 (en) | Constellation Search Apparatus, Constellation Search Program, And Computer-Readable Storage Medium Storing Constellation Search Program | |
CN119309586A (en) | Starlight atmospheric refraction navigation method, device and electronic equipment based on ray tracing | |
CN101324435A (en) | Method and apparatus for obtaining direction information | |
CN201163193Y (en) | Vehicle continuous positioning system | |
CN204064305U (en) | A kind of modularization intelligent geologic compass measured for field geology | |
CN105446690A (en) | Information fusion and multi-information display method with target positioning function | |
CN103925921A (en) | Assistant locating device and method based on electronic compass and pedometer | |
US20120092347A1 (en) | Electronic device and method for displaying weather information thereon | |
CN103148840A (en) | Extraction method of barycentric coordinate of earth ultraviolet image | |
CN107806862A (en) | Aerophotogrammetric field work measuring method and system | |
CN109059915B (en) | Gravity compensation method, system and device | |
Chyla et al. | Mobile GIS in Archaeology: Current Possibilities, Future Needs. Position Paper | |
CN201689382U (en) | Interactive registering device of outdoor three-dimensional geographic information system | |
Liang | The Design of GPS Information Display System Based on Arduino UNO R3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110629 Termination date: 20121213 |