CN101202420A - Etching top undoped intrinsic layer asymmetric metal film vertical cavity surface emitting laser - Google Patents
Etching top undoped intrinsic layer asymmetric metal film vertical cavity surface emitting laser Download PDFInfo
- Publication number
- CN101202420A CN101202420A CNA2007100565238A CN200710056523A CN101202420A CN 101202420 A CN101202420 A CN 101202420A CN A2007100565238 A CNA2007100565238 A CN A2007100565238A CN 200710056523 A CN200710056523 A CN 200710056523A CN 101202420 A CN101202420 A CN 101202420A
- Authority
- CN
- China
- Prior art keywords
- metal film
- layer
- emitting laser
- etching
- vertical cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
本发明涉及一种刻蚀顶端非掺杂本征层非对称金属膜垂直腔面发射激光器和制备方法。它包括布拉格反射镜,高阻层,电极,衬底,量子阱有源区。上表面刻蚀的圆形金属反射膜、金属膜导线以及金属膜与上电极的接触层和上电极;在衬底的下表面有圆形金属反射膜、下表面金属膜导线、下表面电极。本发明引入非掺杂的本征层中刻出电流孔径,结合上表面与衬底表面刻蚀金属膜非对称结构实现电流和光场限制,发挥了金属膜的电极和反射镜功效,简化垂直腔面发射激光器列阵集成化工艺,并且降低了分布布拉格反射镜的对数,限制电流扩散区域,提高注入电流的光电耦合效率,本征高阻层和芯片一次生长完成,避免质子轰击或分别氧化工艺,有利于集成化。
The invention relates to a vertical-cavity surface-emitting laser and a preparation method for etching an asymmetrical metal film of a top non-doped intrinsic layer. It includes Bragg reflector, high resistance layer, electrode, substrate, quantum well active area. The circular metal reflective film etched on the upper surface, the metal film wire, the contact layer between the metal film and the upper electrode, and the upper electrode; the circular metal reflective film, the lower surface metal film wire, and the lower surface electrode are arranged on the lower surface of the substrate. The invention introduces the current aperture into the non-doped intrinsic layer, combines the asymmetric structure of the etched metal film on the upper surface and the surface of the substrate to realize current and light field confinement, exerts the functions of electrodes and mirrors of the metal film, and simplifies the vertical cavity The surface-emitting laser array integration process reduces the logarithm of the distributed Bragg mirror, limits the current diffusion area, improves the photoelectric coupling efficiency of the injected current, and completes the growth of the intrinsic high-resistance layer and the chip at one time, avoiding proton bombardment or oxidation separately process, which is conducive to integration.
Description
技术领域 technical field
本发明涉及半导体光电子器件,特别是一种刻蚀顶端非掺杂本征层非对称金属膜垂直腔面发射激光器。The invention relates to a semiconductor optoelectronic device, in particular to an asymmetric metal film vertical cavity surface-emitting laser for etching the top non-doped intrinsic layer.
背景技术 Background technique
垂直腔面发射激光器(VCSEL)近来已在技术上有许多应用,这是由于这些器件阈值低、响应快、发射光圆对称、容易实现二维集成,在密集波分复用、光电集成、光纤通讯等高效的光源,已经证明垂直腔面发射激光器了具有的应用价值。Vertical-cavity surface-emitting lasers (VCSELs) have recently been used in many technologies because of their low threshold, fast response, circular symmetry of emitted light, and easy two-dimensional integration. In dense wavelength division multiplexing, optoelectronic integration, optical fiber High-efficiency light sources such as communications have proved that vertical cavity surface emitting lasers have application value.
中国专利CN99253156.X公开的垂直腔面发射的结构包含了下面内容:上金属电极,下金属电极,量子阱有源层,p+欧姆接触层,p型半导体分布布拉格反射镜,n型半导体分布布拉格反射镜及半导体衬底,其特征是量子阱有源层的上面是p型半导体分布布拉格反射镜,下面是n型半导体分布布拉格反射镜,在金属电极和p型半导体分布布拉格反射镜上部和量子阱有源层,p型半导体分布布拉格反射镜,p+欧姆接触层等构成圆柱形结构;在n型半导体分布布拉格反射镜的下部有下金属电极。在此专利是通常使用垂直腔面发射激光器的结构。The vertical cavity surface emission structure disclosed in Chinese patent CN99253156.X includes the following contents: upper metal electrode, lower metal electrode, quantum well active layer, p+ ohmic contact layer, p-type semiconductor distributed Bragg reflector, n-type semiconductor distributed Bragg Reflector and semiconductor substrate, characterized in that the top of the quantum well active layer is a p-type semiconductor distributed Bragg reflector, the bottom is an n-type semiconductor distributed Bragg reflector, and the upper part of the metal electrode and the p-type semiconductor distributed Bragg reflector is connected to the quantum well. Well active layer, p-type semiconductor distributed Bragg reflector, p+ ohmic contact layer, etc. form a cylindrical structure; there is a lower metal electrode at the bottom of n-type semiconductor distributed Bragg reflector. The patent here is generally using the VCSEL structure.
中国专利CN99253155.1涉及一种介质分布布拉格反射镜腔面发射微腔激光器,主要包括有介质分布布拉格反射镜,上电极金属层、量子阱有源层、半导体等。介质分布布拉格反射镜和半导体分布布拉格反射镜,在量子阱有源层的上下两面,作为本实用新型的腔中两个反射镜。上电极金属层和下电极金属层,分别制在p+接触层和n+接触层的上面,使得注入电流不经过介质分布布拉格反射镜和半导体分布布拉格反射镜,避免了两者形成的高电阻,降低了工作电流,同时减少了器件产生的热量。该专利中提到使用介质分布布拉格反射镜和半导体分布布拉格反射镜。Chinese patent CN99253155.1 relates to a dielectrically distributed Bragg reflector cavity surface emitting microcavity laser, which mainly includes a dielectrically distributed Bragg reflector, an upper electrode metal layer, a quantum well active layer, a semiconductor, and the like. The dielectric distributed Bragg reflector and the semiconductor distributed Bragg reflector are used as two reflectors in the cavity of the utility model on the upper and lower surfaces of the quantum well active layer. The upper electrode metal layer and the lower electrode metal layer are respectively made on the top of the p+ contact layer and the n + contact layer, so that the injected current does not pass through the dielectric distributed Bragg reflector and the semiconductor distributed Bragg reflector, avoiding the high resistance formed by the two, The operating current is reduced, and the heat generated by the device is reduced at the same time. This patent mentions the use of dielectric distributed Bragg reflectors and semiconductor distributed Bragg reflectors.
半导体学报(1993,15(10):700~703)报道了Ag为反射镜和电极的垂直腔面发射激光器,其中使用液相外延生长分别限制量子阱结构,然后低温淀积SiO2薄膜保护层,用红外光刻机套刻φ=400微米圆孔作电极条形限制,再做φ=20微米Ag反射面。该文献使用金属膜反射镜和电极,但是金属反射镜的反射率无法与半导体材料布拉格反射镜相比,同时φ=20微米的电极无法很好地限制电流,实验测试器件的阈值电流为3.8安培,并且使用了液相外延生长量子阱和低温淀积SiO2两个工艺过程。The Journal of Semiconductors (1993, 15(10): 700-703) reported a vertical cavity surface-emitting laser with Ag as a mirror and electrode, in which liquid phase epitaxy was used to confine the quantum well structure, and then a SiO2 thin film protective layer was deposited at a low temperature. , use an infrared lithography machine to engrave a φ=400 micron round hole as an electrode strip limit, and then make a φ=20 micron Ag reflective surface. This document uses a metal film reflector and electrodes, but the reflectivity of the metal reflector cannot be compared with that of the semiconductor material Bragg reflector. At the same time, the electrode with φ = 20 microns cannot confine the current very well. The threshold current of the experimental test device is 3.8 amperes , and used liquid phase epitaxial growth of quantum wells and low temperature deposition of SiO 2 two processes.
Solid State Communications(1993,88(6):461~463)中是使用液相外延生长分别限制量子阱结构,使用Zn扩散直径20微米平台限制电流的扩散,使用顶端台阶Pd/Ge作为电极和反射镜,衬底金属膜为电极。该文献中使用液相外延研究垂直腔面发射激光器已经被分子束外延(MBE)或金属氧化物气相淀积(MOVCD)取代,使用Zn扩散直径20微米平台可以限制电流的扩散,但没有达到低阈值的垂直腔面发射要求,并且文献中没有将衬底表面电极的金属膜设计成限制电流的形状。Solid State Communications (1993, 88(6): 461~463) uses liquid phase epitaxial growth to limit the quantum well structure, uses Zn diffusion platform with a diameter of 20 microns to limit the diffusion of current, and uses the top step Pd/Ge as the electrode and reflector. Mirror, the substrate metal film is the electrode. In this literature, the use of liquid phase epitaxy to study vertical cavity surface emitting lasers has been replaced by molecular beam epitaxy (MBE) or metal oxide vapor deposition (MOVCD), and the use of Zn diffusion diameter of 20 microns platform can limit the diffusion of current, but it has not reached low Threshold vertical cavity surface emission requirements, and the metal film of the substrate surface electrode is not designed to limit the shape of the current in the literature.
Journal of Vacuum Science and Technology B(1999,17(6):3222~3225)公开的垂直腔面发射激光器中利用Au为上电极控制激光,但使用了质子轰击p型布拉格反射镜实现电流的控制,然而质子轰击很难实现半径1微米电流限制区,并且该文献中衬底表面的增透膜没有发挥限制电流作用。In the vertical cavity surface emitting laser disclosed in Journal of Vacuum Science and Technology B (1999, 17(6): 3222~3225), Au is used as the upper electrode to control the laser, but the current is controlled by bombarding the p-type Bragg mirror with protons. However, proton bombardment is difficult to achieve a current confinement region with a radius of 1 micron, and the anti-reflection coating on the surface of the substrate in this document does not play a role in confining the current.
IEEE Journal of Quantum Electronics(2003,39(1):109-119)和Proceedings ofSPIE(2002,4942:182-193)报道了使用上反射镜中作为电极和反射镜,借助氧化层限制电流,但是分别氧化在电流限制区半径1微米时比较难以控制,并且不容易实现集成化,同样该文献中衬底表面电极没有发挥限制电子流作用。IEEE Journal of Quantum Electronics (2003, 39 (1): 109-119) and Proceedings of SPIE (2002, 4942: 182-193) reported using the upper mirror as an electrode and a mirror to limit the current by means of an oxide layer, but respectively Oxidation is difficult to control when the radius of the current confinement region is 1 micron, and it is not easy to realize integration. Similarly, the substrate surface electrodes in this document do not play the role of confining electron flow.
上面两个专利中使用金属电极只是垂直腔面发射激光器中组成部分,但没有涉及到电极的形状和厚度,在垂直腔面发射激光器中使用的分布布拉格反射镜为上下各自20对以上,再加上有源区中量子阱结构,使在生长垂直腔面发射激光器中多次地改变材料的成分,并严格控制每一层的厚度,这是垂直腔面发射激光器结构复杂、生长条件苛刻的原因。虽然在上面文献中使用金属膜为电极和反射镜,但是由于对金属膜设计过大,因此只能借助质子轰击或分别氧化实现电流良好的限制,然而质子轰击和分别氧化存在缺陷,并且文献中注重了上面的金属膜的设计而忽略衬底金属膜的电流限制作用。采用质子轰击很难实现半径1微米电流限制区,分别氧化在电流限制区的半径1微米比较难以控制,并且不容易实现集成化。The metal electrodes used in the above two patents are only components of the vertical cavity surface emitting laser, but the shape and thickness of the electrode are not involved. The distributed Bragg reflectors used in the vertical cavity surface emitting laser are more than 20 pairs of upper and lower pairs, plus The quantum well structure in the upper active region enables the composition of the material to be changed many times in the growth of the vertical cavity surface emitting laser, and the thickness of each layer is strictly controlled, which is the reason for the complex structure and harsh growth conditions of the vertical cavity surface emitting laser. . Although metal films are used as electrodes and mirrors in the above literature, due to the excessive design of the metal film, good current confinement can only be achieved by means of proton bombardment or separate oxidation. However, there are defects in proton bombardment and separate oxidation, and in the literature Emphasis is placed on the design of the metal film above and the current limiting effect of the metal film on the substrate is ignored. It is difficult to achieve a current confinement region with a radius of 1 micron by proton bombardment, and it is difficult to control the radius of 1 micron in the current confinement region by oxidation respectively, and it is not easy to realize integration.
上表面层使用金属膜可以构成反射镜和电极,然而由于电流和光场空间分布不一致,必须控制电流的扩散才能实现增益波导控制光场,单独依靠上表面金属膜无法同时实现电流和光场的限制。采用MBE或MOCVD生长器件主要结构后,如果采用其它低温淀积电阻率较大SiO2成为电流阻挡层,增加了器件的工艺过程,并且高阻区的孔径的大小需要严格论证。采用质子轰击无法实现很小电流孔径,分别氧化小孔径不可控,这样会限制垂直腔面发射激光器列阵的发展。The metal film on the upper surface can be used to form mirrors and electrodes. However, due to the inconsistency in the spatial distribution of the current and the light field, the diffusion of the current must be controlled to realize the gain waveguide control of the light field. The metal film on the top surface alone cannot realize the limitation of the current and light field at the same time. After using MBE or MOCVD to grow the main structure of the device, if other low-temperature deposition SiO2 with higher resistivity is used as the current blocking layer, the process of the device will be increased, and the aperture size of the high-resistance area needs to be strictly demonstrated. The use of proton bombardment cannot achieve very small current apertures, and the small apertures of oxidation are uncontrollable, which will limit the development of vertical cavity surface emitting laser arrays.
发明内容 Contents of the invention
本发明的目的是提供一种刻蚀顶端非掺杂本征层非对称金属膜垂直腔面发射激光器,可以克服现有技术的不足。本发明提出刻蚀顶端非掺杂本征层非对称金属膜垂直腔面发射激光器,即上下刻蚀金属膜形状为非对称结构,引入非掺杂的本征层中刻出电流孔径,结合上表面与衬底表面金属膜非对称结构实现电流和光场限制,充分地发挥金属膜增加反射率和限制电流的功能,提高工艺重复性,简化垂直腔面发射激光器列阵集成化工艺。本发明可以降低分布布拉格反射镜的对数,限制电流区域,提高注入电流的光电耦合效率,本征高阻层和芯片一次材料生长完成,避免质子轰击或分别氧化工艺,有利于集成化。The object of the present invention is to provide a vertical cavity surface emitting laser for etching the top non-doped intrinsic layer asymmetric metal film, which can overcome the deficiencies of the prior art. The present invention proposes to etch the top non-doped intrinsic layer asymmetric metal film vertical cavity surface emitting laser, that is, the shape of the upper and lower etched metal films is an asymmetric structure, and the current aperture is introduced into the non-doped intrinsic layer, combined with the above The asymmetric structure of the metal film on the surface and the surface of the substrate realizes current and light field confinement, fully exerts the functions of the metal film to increase reflectivity and limit current, improves process repeatability, and simplifies the vertical cavity surface emitting laser array integration process. The invention can reduce the logarithm of the distributed Bragg reflector, limit the current area, improve the photoelectric coupling efficiency of the injected current, complete the primary material growth of the intrinsic high-resistance layer and the chip, avoid proton bombardment or separate oxidation process, and facilitate integration.
本发明提出的一种刻蚀顶端非掺杂本征层非对称金属膜垂直腔面发射激光器,包括上、下分布的布拉格反射镜,高阻本征层,势垒层,电极,衬底,量子阱有源区及空间层。The present invention proposes a vertical cavity surface-emitting laser with an asymmetric metal film etched top non-doped intrinsic layer, including upper and lower distributed Bragg mirrors, a high-resistance intrinsic layer, a barrier layer, an electrode, a substrate, Quantum well active region and space layer.
上表面有刻蚀的圆形金属反射膜、刻蚀的金属膜导线以及刻蚀的金属膜与上电极的接触层和上电极;上电极的接触层和上电极下方依次为:刻蚀圆孔的非掺杂本征高阻层、p+型接触层,p型布拉格反射镜、量子阱有源区及空间层、n型布拉格反射镜、过渡层及衬底;在衬底的下表面刻蚀的圆形金属反射膜、下表面刻蚀的金属膜导线、下表面电极。There is an etched circular metal reflective film on the upper surface, an etched metal film wire, and the contact layer between the etched metal film and the upper electrode and the upper electrode; the contact layer of the upper electrode and the bottom of the upper electrode are: etched circular holes Non-doped intrinsic high resistance layer, p+ type contact layer, p-type Bragg mirror, quantum well active region and space layer, n-type Bragg mirror, transition layer and substrate; etch on the lower surface of the substrate The circular metal reflective film, the metal film wire etched on the lower surface, and the electrode on the lower surface.
所述的上表面的圆形金属反射膜的半径为4~8微米。The radius of the circular metal reflective film on the upper surface is 4-8 microns.
所述的非掺杂本征高阻层的圆孔半径为1~2微米。The circular hole radius of the non-doped intrinsic high resistance layer is 1-2 microns.
所述的衬底下表面刻蚀的圆形金属反射膜的半径为1~2微米。The radius of the circular metal reflection film etched on the lower surface of the substrate is 1-2 microns.
所述的上表面刻蚀的导线、电极接触层与下表面刻蚀的导线、电极接触层位置投影左右分开,成非对称结构。The wires etched on the upper surface and the electrode contact layer are projected separately from the wires etched on the lower surface and the electrode contact layer on the left and right, forming an asymmetric structure.
本发明提出的垂直腔面发射激光器的制备方法包括以下步骤:The preparation method of the vertical cavity surface emitting laser proposed by the present invention comprises the following steps:
1)在半导体衬底(GaAs)上使用MBE或MOCVD,温度为500℃-800℃依次地生长n型布拉格反射镜、量子阱有源区、p型布拉格反射镜、p+型接触层和非掺杂本征高阻层;1) Use MBE or MOCVD on the semiconductor substrate (GaAs) at a temperature of 500°C-800°C to grow n-type Bragg mirrors, quantum well active regions, p-type Bragg mirrors, p+-type contact layers and non-doped heterogeneous intrinsic high resistance layer;
2)非掺杂GaAlAs本征高阻层中通过光刻方法刻出圆形孔;2) A circular hole is engraved in the non-doped GaAlAs intrinsic high resistance layer by photolithography;
3)400℃镀薄的金属膜p+型接触层使用Pt-Ti-Au金属膜、n+型衬底上使用Au-Ge-Ni金属膜;3) Pt-Ti-Au metal film is used for p+ type contact layer of thin metal film at 400℃, and Au-Ge-Ni metal film is used for n+ type substrate;
4)通过离子束刻蚀上、下金属膜形成圆形金属膜、导线和电极接触层;4) Etching the upper and lower metal films by ion beams to form circular metal films, wires and electrode contact layers;
5)芯片划成单个激光器单元,形成单个激光器管芯,或者成二维面阵;5) Divide the chip into a single laser unit to form a single laser die, or form a two-dimensional array;
6)器件封装。6) Device packaging.
本发明与现有技术相比的优点和产生的积极效果:Advantage and the positive effect that the present invention produces compared with prior art:
上面非掺杂本征高阻区中刻蚀半径在1~2微米的圆孔与半径4~8微米圆形金属反射镜结合,形成空穴流的限制区域,提高布拉格反射镜的反射率,从而避免质子轰击、分别氧化工艺,减少布拉格反射镜的对数,并且半导体材料可以通过MBE或MOCVD一次生长。金属反射镜可以反射光,金属反射镜的存在提高了光经过布拉格反射镜的反射率,由于上面金属反射镜是生长在p型布拉格反射镜的上面,光的相位很容易控制,因此可以减少上布拉格反射镜的对数,p型布拉格反射镜可以减少4~8对。在垂直腔面发射激光器中,要利用金属膜的导电特性,半径大于10微米圆形金属反射镜无法实现电流的限制,减少圆形金属膜的大小可以限制电流,但是半径小于2微米的反射镜无法全部反射增益波导中模式,我们提出通过非掺杂本征层中刻蚀半径在1~2微米的圆孔限制电流,上面圆形金属膜半径4~8微米的金属膜提高p型布拉格反射镜的反射率。In the non-doped intrinsic high resistance area above, the circular hole with a radius of 1-2 microns etched is combined with a circular metal mirror with a radius of 4-8 microns to form a restricted area for hole flow and improve the reflectivity of the Bragg mirror. In this way, proton bombardment and separate oxidation processes are avoided, the logarithm of Bragg mirrors is reduced, and semiconductor materials can be grown at one time by MBE or MOCVD. The metal reflector can reflect light, and the existence of the metal reflector improves the reflectivity of the light passing through the Bragg reflector. Since the above metal reflector is grown on the p-type Bragg reflector, the phase of the light is easy to control, so it can reduce the The number of pairs of Bragg reflectors can be reduced by 4 to 8 pairs for p-type Bragg reflectors. In vertical cavity surface emitting lasers, the conductive properties of the metal film must be used. A circular metal mirror with a radius greater than 10 microns cannot achieve current limitation. Reducing the size of the circular metal film can limit the current, but mirrors with a radius of less than 2 microns It is impossible to reflect all the modes in the gain waveguide. We propose to limit the current by etching a circular hole with a radius of 1-2 microns in the non-doped intrinsic layer, and improve the p-type Bragg reflection with a metal film with a radius of 4-8 microns on the circular metal film. The reflectivity of the mirror.
衬底下表面半径为1~2微米的圆形金属膜、细长导线和电极接触层形成电子流限制区域。电子可以通过圆形金属膜、细导线和电极接触层进入激光器,相比整个衬底表面区域都是负电极而言,本发明只有小部分区域存在金属膜,并且电极接触层距离圆形金属膜较远,导线层细长,因此可以有效地限制电流注入区域。由于下面的衬底较厚,并且存在一定的厚度偏差,因此采用镀金属反射膜不宜减少n型布拉格反射镜的对数,下表面圆形金属膜只是限制电流作用,本发明中反射光仍然由n型布拉格反射镜完成,这里金属膜同样起到一定反射作用,但没有上表面层金属膜作用明显,上、下金属膜出现大小、方位不对称。The circular metal film with a radius of 1-2 microns on the lower surface of the substrate, the elongated wires and the electrode contact layer form an electron flow confinement area. Electrons can enter the laser through the circular metal film, thin wires and electrode contact layer. Compared with the negative electrode in the entire substrate surface area, the present invention only has a small part of the metal film, and the electrode contact layer is far from the circular metal film. Farther away, the wire layer is slender, so the current injection area can be effectively limited. Because the substrate below is thicker and there is a certain thickness deviation, it is not appropriate to reduce the logarithm of the n-type Bragg reflector by using a metal-plated reflective film. The circular metal film on the lower surface is only used to limit the current. The n-type Bragg reflector is completed, and the metal film here also plays a certain reflection effect, but it is not as obvious as the metal film on the upper surface layer, and the size and orientation of the upper and lower metal films are asymmetric.
上表面金属膜与衬底表面的金属膜图案有限大小及在生长平面内的投影左右分开,可以有效地避免电子和空穴在有源区中心区域之外的复合,提高了发光效率。器件上面的非掺杂本征高阻中刻蚀电流孔径可以有效地限制电流,但是有限厚度非掺杂本征层电流孔其它区域仍然允许很小电流通过,满足反射横模范围条件下,尽量减小上表面圆形反射镜的大小限制可以限制空穴扩散区域,本发明采用上下金属膜电极及导线左右分开,金属镜有限大小(一个半径4~8微米,另一个半径1~2微米),可以有效地降低了电子与空穴在有源区光场集中之外的区域复合,提高了光电耦合效率。The metal film on the upper surface and the metal film pattern on the substrate surface have a limited size and their projections in the growth plane are separated left and right, which can effectively avoid the recombination of electrons and holes outside the central area of the active region, and improve the luminous efficiency. The non-doped intrinsic high-resistance medium etching current aperture on the device can effectively limit the current, but the other regions of the current hole in the non-doped intrinsic layer with a limited thickness still allow a small current to pass through. Under the condition of meeting the reflection transverse mode range, try to Reducing the size limit of the circular mirror on the upper surface can limit the hole diffusion area. The present invention uses upper and lower metal film electrodes and wires separated from the left and right, and the metal mirror has a limited size (one radius is 4-8 microns, and the other radius is 1-2 microns). , which can effectively reduce the recombination of electrons and holes in the area outside the concentration of the light field in the active area, and improve the photoelectric coupling efficiency.
附图说明 Description of drawings
图1为本发明产品的结构示意图。Fig. 1 is the structural representation of the product of the present invention.
图2刻蚀金属膜垂直腔面发射激光器的上电极、顶层金属膜刻蚀区域俯视图。Fig. 2 The top view of the upper electrode and the etched area of the top metal film of the vertical cavity surface emitting laser with etched metal film.
图3刻蚀电流孔径的非掺杂本征高阻区顶俯图。Figure 3 is the top view of the non-doped intrinsically high resistance region of the etching current aperture.
图4刻蚀金属膜垂直腔面发射激光器的下电极、衬底镀金属膜刻蚀区域仰视图。Figure 4. Bottom view of the etching area of the lower electrode and substrate metallized film of the vertical cavity surface emitting laser with etched metal film.
图5为质子轰击垂直腔面发射激光器的结构示意图。Fig. 5 is a schematic diagram of the structure of a proton bombarded vertical cavity surface emitting laser.
图6为常用分别氧化垂直腔面发射激光器结构图。Fig. 6 is a structure diagram of a commonly used separately oxidized vertical cavity surface emitting laser.
图7、8为质子轰击和分别氧化垂直腔面发射激光器的上下电极结构示意图。Figures 7 and 8 are schematic diagrams of the structure of the upper and lower electrodes of the vertical cavity surface emitting laser after proton bombardment and oxidation respectively.
图9不同横向限制半径的阈值电流曲线。Figure 9 Threshold current curves for different lateral confinement radii.
图10横向的光场分布曲线。Figure 10 Transverse Light Field Distribution Curve.
图11横向2微米限制下的阈值电流密度分布曲线。Figure 11 Threshold current density distribution curves under the lateral 2 micron confinement.
具体实施方式 Detailed ways
下面结合附图对本发明作详细说明:The present invention is described in detail below in conjunction with accompanying drawing:
如图所示,图1为本发明产品的结构示意图;图2刻蚀金属膜垂直腔面发射激光器的上电极、顶层金属膜刻蚀区域顶视图;图3刻蚀电流孔径的非掺杂本征高阻区顶视图,图4刻蚀金属膜垂直腔面发射激光器的下电极、衬底镀金属膜刻蚀区域底视图。As shown in the figure, Fig. 1 is a structural schematic diagram of the product of the present invention; Fig. 2 etches the top view of the upper electrode and top layer metal film etching region of the metal film vertical cavity surface emitting laser; Fig. 3 etches the non-doped version of the current aperture The top view of the high-resistance area, and the bottom view of the etched metal film bottom electrode and substrate metal film etching area of the vertical cavity surface emitting laser in Figure 4.
其中,1:上表面刻蚀的圆形金属反射膜,半径4~8微米;2:上表面刻蚀的金属膜导线;3:上表面刻蚀电极接触的金属膜和电极;4:为非掺杂本征高阻半导体材料,圆孔半径1~2微米;5:p+型接触层;6:p型布拉格反射镜;7:量子阱有源区及空间层;8:n型布拉格反射镜;9:衬底;10:下表面刻蚀的圆形金属反射膜,半径1~2微米;11:下表面刻蚀的金属膜导线;12:下表面刻蚀与下电极接触的金属膜和下电极。Among them, 1: the circular metal reflective film etched on the upper surface, with a radius of 4 to 8 microns; 2: the metal film wire etched on the upper surface; 3: the metal film and electrode in contact with the etched electrode on the upper surface; Doped intrinsically high resistance semiconductor material, the radius of the hole is 1-2 microns; 5: p+ type contact layer; 6: p type Bragg reflector; 7: quantum well active region and space layer; 8: n type Bragg reflector ; 9: substrate; 10: circular metal reflective film etched on the lower surface, with a radius of 1-2 microns; 11: metal film wires etched on the lower surface; 12: metal film and contact with the lower electrode etched on the lower surface lower electrode.
本发明的结构是:上表面有刻蚀的圆形金属反射膜1、刻蚀的金属膜导线2以及刻蚀的金属膜与上电极的接触层和上电极3,下面层依次为:刻蚀圆孔的非掺杂本征高阻层4、p+型接触层5,p型布拉格反射镜6、量子阱有源区及空间层7、再下面为n型布拉格反射镜8、过渡层及衬底9,在衬底下表面刻蚀的圆形金属反射膜10、下表面刻蚀的金属膜导线11、下表面刻蚀金属膜及电极12。The structure of the present invention is: the upper surface has an etched circular metal
通常使用质子轰击或分别氧化的垂直腔面发射结构,图5为质子轰击垂直腔面发射激光器的结构示意图,其中13:刻圆孔型上电极,14:质子轰击区域,15:整个底面下电极。图6为分别氧化垂直腔面发射激光器结构,其中16:上分别氧化区,17:下分别氧化区。图7、8为质子轰击和分别氧化垂直腔面发射激光器的上下电极结构示意图。Usually proton bombardment or separately oxidized vertical cavity surface emitting structure is used. Figure 5 is a schematic diagram of the structure of a proton bombarded vertical cavity surface emitting laser, in which 13: engraved round hole type upper electrode, 14: proton bombardment area, 15: the entire bottom surface lower electrode . FIG. 6 is a vertical cavity surface emitting laser structure oxidized separately, wherein 16: the upper respectively oxidized region, 17 : the lower respectively oxidized region. Figures 7 and 8 are schematic diagrams of the structure of the upper and lower electrodes of the vertical cavity surface emitting laser after proton bombardment and oxidation respectively.
我们对横向限制对垂直腔面发射激光器进行设计,数值仿真横向限影响阈值及光场需要下面电势、载流子浓度、光场、热场空间耦合的四个微分方程:We design the vertical-cavity surface-emitting laser with lateral confinement. Numerical simulation of lateral confinement affects the threshold and light field requires the following four differential equations for potential, carrier concentration, light field, and thermal field spatial coupling:
1)电压和电流密度1) Voltage and current density
在半导体激光器中,电势分布V满足柱坐标下泊松(Poisson)方程:In a semiconductor laser, the potential distribution V satisfies the Poisson equation in cylindrical coordinates:
注入电流密度Injection current density
其中ρ是半导体材料的电阻率。where ρ is the resistivity of the semiconductor material.
2)载流子浓度2) Carrier concentration
载流子浓度分布对增益半导体激光器行为起着重要的作用,根据电子和空穴连续性方程,稳态时半导体激光器有源区的非平衡载流子满足:The carrier concentration distribution plays an important role in the behavior of gain semiconductor lasers. According to the continuity equation of electrons and holes, the non-equilibrium carriers in the active region of semiconductor lasers in steady state satisfy:
其中Dn,B,τs,d,J分别为扩散系数、自发辐射复合系数、载流子寿命、有源层厚度和有源区电流密度,g(N(r))为增益,Pa为腔内平均光功率:where D n , B, τ s , d, J are diffusion coefficient, spontaneous emission recombination coefficient, carrier lifetime, active layer thickness and active region current density, g(N(r)) is gain, P a is the average optical power in the cavity:
这里s为有源区横向半径。增益g(N,T):Here s is the lateral radius of the active region. Gain g(N,T):
g(N,T)=a(T)[N(r)-Nth](5)g(N,T)=a(T)[N(r)-N th ](5)
其中,N(r)为有源区载流子浓度分布,Nth为透明载流子浓度。由实验数据,可以假定增益系数a(T)随温度线性变化,Among them, N(r) is the carrier concentration distribution in the active region, and N th is the transparent carrier concentration. From the experimental data, it can be assumed that the gain coefficient a(T) varies linearly with temperature,
a(T)=b-ξ(T-T0)(6)a(T)=b-ξ(TT 0 )(6)
这里,b=4.12×10-16cm2,ξ=7.0×10-19cm2/K。Here, b=4.12×10 -16 cm 2 , ξ=7.0×10 -19 cm 2 /K.
3)光场分布3) Light field distribution
激光器的光波满足麦克斯韦(Maxwell)方程组,采用柱坐标中光场强度可以写成:The light wave of the laser satisfies Maxwell's equations, and the intensity of the light field in cylindrical coordinates can be written as:
E(r,θ,z)=ψ(r)φ(θ)exp(-iβzz)(7)E(r, θ, z) = ψ(r) φ(θ) exp(-iβ z z) (7)
其中,βz为z方向传播常数,Among them, β z is the propagation constant in the z direction,
其中ψ(r)满足:where ψ(r) satisfies:
4)热场分布4) Thermal field distribution
根据实际的激光器圆柱对称结构,并假设在任意两层界面处温度连续分布,在激光器顶部和侧面都没有热量损耗,热流向热沉传递,热传导方程为:According to the actual cylindrical symmetrical structure of the laser, and assuming that the temperature is continuously distributed at the interface of any two layers, there is no heat loss on the top and side of the laser, and the heat flows to the heat sink. The heat conduction equation is:
Qi(r,t)分别表示即有源区、两个包层n型和p型DBR层及衬底层的热流密度。Q i (r, t) represent the heat flux density of the active region, the two cladding n-type and p-type DBR layers and the substrate layer, respectively.
我们采用有限差分法(FDM)和矩阵特征值法求解以上方程的自洽解(赵红东,等.n型DBR中电势对垂直腔面发射激光器阈值的影响.物理学报,2004(11):3744-3747)。首先通过有限差分法把方程(1)(3)(9)(10)离散化,再把方程(9)转化成求解代数特征值的问题,通过自洽计算得到稳定解,计算中所用物理参数见表1。通过上面方程数值计算出横向限制半径下的阈值电流曲线、横向的光场分布曲线和横向的电流密度分布曲线(见图9,10,11)。We use the finite difference method (FDM) and the matrix eigenvalue method to solve the self-consistent solution of the above equation (Zhao Hongdong, et al. The influence of potential on the threshold of vertical cavity surface emitting laser in n-type DBR. Acta Physica Sinica, 2004(11): 3744- 3747). First, the equation (1) (3) (9) (10) is discretized by the finite difference method, and then the equation (9) is transformed into a problem of solving algebraic eigenvalues, and a stable solution is obtained through self-consistent calculation. The physical parameters used in the calculation See Table 1. The threshold current curve at the lateral confinement radius, the lateral light field distribution curve and the lateral current density distribution curve are numerically calculated by the above equation (see FIGS. 9, 10, 11).
表.1物理参数的选取Table.1 Selection of physical parameters
图9为不同横向限制下的阈值电流曲线,表明其大小为2微米附近阈值最低,由于通过导线和电极焊点部分会从本征层会泄漏一些电流,因此上表面本征层电流孔和下表面电极适当小一点,分别设计成1~2微米。根据图10可以看出光场半径在6微米左右,同时兼顾限制电流作用,因此上表面金属反射镜的半径设计为4~8微米,其有源区内电流密度分布如图11所示,可以达到限制电流作用。Figure 9 shows the threshold current curves under different lateral constraints, indicating that the threshold value is the lowest near 2 microns. Since some current will leak from the intrinsic layer through the wire and electrode solder joints, the upper surface intrinsic layer current hole and the lower surface The surface electrodes are suitably smaller, designed to be 1-2 microns respectively. According to Figure 10, it can be seen that the radius of the light field is about 6 microns, and at the same time, the effect of limiting the current is taken into account. Therefore, the radius of the metal mirror on the upper surface is designed to be 4-8 microns, and the current density distribution in the active area is shown in Figure 11, which can reach limiting current action.
常见垂直腔面发射激光器结构制造过程(Joumal of Vacuum Science and TechnologyB(1999,17(6):3222~3225;IEEE Journal of Quantum Electronics(2003,39(1):109-119)和Proceedings of SPIE(2002,4942:182-193):半导体衬底上使用MBE(分子束外延)或MOCVD(金属氧化物气相淀积)生长n型布拉格反射镜,量子阱有源区和p型布拉格反射镜后,通过质子轰击或分别氧化形成横向电流限制(图5,6),然后使用淀积和光刻在上表面制造出圆孔电极及整个下表面电极(图7,8),最后器件封装。Common vertical cavity surface emitting laser structure manufacturing process (Jumal of Vacuum Science and Technology B (1999, 17 (6): 3222 ~ 3225; IEEE Journal of Quantum Electronics (2003, 39 (1): 109-119) and Proceedings of SPIE ( 2002, 4942: 182-193): After using MBE (molecular beam epitaxy) or MOCVD (metal oxide vapor deposition) to grow n-type Bragg mirrors, quantum well active regions and p-type Bragg mirrors on semiconductor substrates, Lateral current confinement is formed by proton bombardment or oxidation respectively (Figure 5, 6), and then the round hole electrode and the entire lower surface electrode are fabricated on the upper surface by deposition and photolithography (Figure 7, 8), and finally the device is packaged.
本发明中在生长n型布拉格发射镜、量子阱有源区、p型布拉格反射镜与常规方法相同,但在增加了非掺杂本征高阻层,在此层刻出电流孔径,生长后要在器件上表面和下表面镀金属反射膜,并刻蚀上下不对称的圆形反射镜、导线、电极的接触层,最后淀积上下电极。In the present invention, growing n-type Bragg emitting mirror, quantum well active region, and p-type Bragg reflecting mirror are the same as the conventional method, but adding a non-doped intrinsic high-resistance layer, engraving a current aperture in this layer, and growing It is necessary to coat the upper surface and the lower surface of the device with a metal reflective film, and etch the upper and lower asymmetrical circular mirrors, wires, and the contact layer of the electrodes, and finally deposit the upper and lower electrodes.
本发明的非掺杂的本征高阻区电流孔的半径1~2微米,上下表面的导线及电极的投影要在一条直线上,但被器件中心点左右分开,但形状不对称,即上面圆形金属反射镜半径4~8微米,衬底下表面圆形金属膜半径1~2微米,厚度在纳米量级,导线在满足电阻值下尽量细。The radius of the current hole in the non-doped intrinsic high-resistance region of the present invention is 1 to 2 microns, and the projections of the wires and electrodes on the upper and lower surfaces should be on a straight line, but they are separated left and right by the center point of the device, but the shape is asymmetrical, that is, the upper surface The radius of the circular metal reflector is 4-8 microns, the radius of the circular metal film on the lower surface of the substrate is 1-2 microns, the thickness is on the order of nanometers, and the wires are as thin as possible when the resistance value is satisfied.
以III-V族GaAs-AlGaAs型垂直腔面发射激光器为例,通过下面的工艺过程实现刻蚀金属膜垂直腔面发射激光器,其它材料的垂直腔面发射激光器除了使用半导体材料不同外制造过程相同。Taking the III-V GaAs-AlGaAs vertical cavity surface emitting laser as an example, the metal film etching vertical cavity surface emitting laser is realized through the following process, and the manufacturing process of the vertical cavity surface emitting laser of other materials is the same except that the semiconductor material is different. .
在半导体衬底上使用MOCVD,温度为500℃~800℃(选用600℃)依次地生长n型布拉格反射镜,量子阱有源区、p型布拉格反射镜、p+型接触层和非掺杂本征GaAlAs高阻层。其中衬底为GaAs,n型和p型分别用掺杂Si和Zn的GaAs-AlGaAs实现,量子阱为GaAs,势垒层为AlGaAs材料。Using MOCVD on the semiconductor substrate, the temperature is 500 ℃ ~ 800 ℃ (choose 600 ℃) to grow n-type Bragg reflectors, quantum well active regions, p-type Bragg reflectors, p+-type contact layers and non-doped itself. Sign GaAlAs high resistance layer. The substrate is GaAs, the n-type and p-type are realized by GaAs-AlGaAs doped with Si and Zn respectively, the quantum well is GaAs, and the barrier layer is AlGaAs material.
非掺杂GaAlAs本征高阻层中通过光刻方法刻出圆形孔。A circular hole is etched in the non-doped GaAlAs intrinsic high resistance layer by photolithography.
400℃下镀薄的金属膜p+型接触层使用Pt-Ti-Au金属膜、n-型衬底上使用Au-Ge-Ni金属膜。Pt-Ti-Au metal film is used for the p+ type contact layer of the thin metal film plated at 400°C, and Au-Ge-Ni metal film is used for the n-type substrate.
通过离子束刻蚀上、下金属膜形成圆形金属膜、导线和电极接触层。The upper and lower metal films are etched by ion beams to form circular metal films, wires and electrode contact layers.
芯片划成若个激光器单元,形成单个激光器管芯,或者成二维面阵(例如20×20)。The chip is divided into several laser units to form a single laser die, or into a two-dimensional array (eg, 20×20).
按通常方法进行器件封装。Device packaging is carried out in the usual way.
材料生长过程中生长设备可以严格控制生长厚度,使用普通的半导体激光器特性测试仪可以对器件进行测试。During the material growth process, the growth equipment can strictly control the growth thickness, and the device can be tested by using an ordinary semiconductor laser characteristic tester.
本发明在器件的上表面非掺杂本征高阻区圆形孔半径1~2微米的绝缘层限制了空穴流,上表面生长半径为4~8微米金属反射镜增加了反射率的同时一定程度上限制了电流区域,但厚度满足激光透射要求。另一方面,衬底下表面圆形金属膜半径1~2微米,对电流和光波又一次限制作用,因此使用刻蚀本征高阻区及反射镜实现限制电流和增加光反射率的功效。In the present invention, the insulating layer with a circular hole radius of 1-2 microns in the non-doped intrinsic high-resistance area on the upper surface of the device limits the hole flow, and the metal mirror with a growth radius of 4-8 microns on the upper surface increases the reflectivity at the same time The current area is limited to a certain extent, but the thickness meets the laser transmission requirements. On the other hand, the circular metal film on the lower surface of the substrate has a radius of 1-2 microns, which limits the current and light waves again. Therefore, the etching of intrinsic high-resistance areas and mirrors is used to achieve the effects of limiting current and increasing light reflectivity.
相比质子轰击垂直腔面发射激光器,本发明避免了质子轰击过程,并且质子轰击会产生经过损伤,增加材料的吸收,不利于降低激光器的阈值。相比分别氧化垂直腔面发射激光器,半径1微米时氧化中很难精确地控制,工艺重复性差,而本发明使用光刻工艺,现在刻蚀技术已经达到0.1微米,因此能够精确地刻蚀小的金属膜,工艺重复性好,可以形成工业化生产。Compared with the proton bombardment vertical cavity surface emitting laser, the present invention avoids the proton bombardment process, and the proton bombardment will cause passing damage and increase the absorption of materials, which is not conducive to lowering the threshold value of the laser. Compared with oxidizing vertical cavity surface emitting lasers separately, it is difficult to precisely control the oxidation when the radius is 1 micron, and the process repeatability is poor. However, the present invention uses a photolithography process. Now the etching technology has reached 0.1 micron, so it can accurately etch small The metal film has good process repeatability and can form industrial production.
本发明使用顶层非掺杂本征层为限制空穴层,相比采用在用MBE生长芯片后,如果使用常规工艺低温淀积电阻率较大SiO2成为电流阻挡层,绝缘性材料需要在其它设备中再次生长的工艺,本发明非掺杂本征半导体材料可以通过MBE或MOCVD与量子阱布拉格反射镜等一次完成,减少了生长SiO2层工艺过程。The present invention uses the top non-doped intrinsic layer as the hole-limiting layer. Compared with the use of MBE to grow the chip, if the conventional process is used to deposit SiO with high resistivity at low temperature to become the current blocking layer, the insulating material needs to be placed on other The re-growth process in the equipment, the non-doped intrinsic semiconductor material of the present invention can be completed at one time by MBE or MOCVD and quantum well Bragg mirror, etc., reducing the process of growing SiO2 layer.
本发明利用了在p型布拉格反射镜上面引入金属膜提高反射率,同时也估计到单独金属膜反射率的上限,因此使用布拉格反射镜与金属膜结合才能满足垂直腔面发射激光器顶端反射率的要求。The present invention utilizes the introduction of a metal film on the p-type Bragg reflector to increase the reflectivity, and at the same time estimates the upper limit of the reflectivity of a single metal film. Therefore, the combination of the Bragg reflector and the metal film can meet the requirements of the reflectivity at the top of the vertical cavity surface emitting laser. Require.
在衬底表面没有使用非掺杂高阻半导体刻蚀孔径限制电流,而是通过上下刻蚀金属膜图形有限大小、投影两边分开的结构,可以避免二次外延,原因在于MBE或MOCVD无法同时在衬底两个面淀积材料,必须将芯片重新放置,因此本发明再次节省了工艺过程。On the surface of the substrate, no non-doped high-resistance semiconductor is used to etch the aperture to limit the current, but by etching the metal film pattern up and down with a limited size and a structure that separates the two sides of the projection, secondary epitaxy can be avoided, because MBE or MOCVD cannot simultaneously Depositing material on both sides of the substrate necessitates repositioning the chip, so the invention again saves the process.
按照附图简要的说明本发明的工作原理。Briefly illustrate the working principle of the present invention according to the accompanying drawings.
上电极注入的空穴通过刻蚀的孔径流经p型布拉格反射镜,到达有源区与从下电极经过衬底和n型布拉格反射镜的电子进行复合,产生自发发射光子和受激发射的光子,空穴流受到刻蚀非掺杂本征层圆形电流孔径的限制,电子流分别受到圆形金属膜的限制,在导线和电极中流入空穴和电子必然在靠近中心轴区域下复合,于是提高了复合效率。光子经过上面p型布拉格反射镜和金属反射镜的反射,回到有源区得到放大,传播到n型布拉格反射镜反射,再回到有源区。当有源区中的光增益可以弥补光在传播过程中输出、反射镜面和材料的损耗时,激光器达到动态平衡。上表面刻蚀的金属反射镜起到增加反射率,上面刻蚀非掺杂本征层限制注入电流,衬底表面圆形金属膜限制了电子注入区域,电极在器件轴心左右分布减少了弱光场区域的复合,提高了耦合效率。The holes injected by the upper electrode flow through the p-type Bragg reflector through the etched aperture, and then reach the active area to recombine with the electrons passing through the substrate and the n-type Bragg reflector from the lower electrode to generate spontaneous emission photons and stimulated emission. The flow of photons and holes is limited by the circular current aperture of the etched non-doped intrinsic layer, and the flow of electrons is respectively limited by the circular metal film. The holes and electrons flowing into the wires and electrodes must recombine in the area close to the central axis , thus improving the compounding efficiency. Photons are reflected by the p-type Bragg reflector and the metal reflector above, return to the active area to be amplified, propagate to the n-type Bragg reflector for reflection, and then return to the active area. When the light gain in the active region can compensate for the loss of light output, reflective mirrors and materials during propagation, the laser achieves dynamic equilibrium. The metal mirror etched on the upper surface can increase the reflectivity, the non-doped intrinsic layer is etched on the upper surface to limit the injection current, the circular metal film on the surface of the substrate limits the electron injection area, and the electrodes are distributed around the axis of the device to reduce the weak The recombination of the light field area improves the coupling efficiency.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100565238A CN100502180C (en) | 2007-01-23 | 2007-01-23 | Asymmetric metal film vertical cavity surface emitting laser and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100565238A CN100502180C (en) | 2007-01-23 | 2007-01-23 | Asymmetric metal film vertical cavity surface emitting laser and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101202420A true CN101202420A (en) | 2008-06-18 |
CN100502180C CN100502180C (en) | 2009-06-17 |
Family
ID=39517442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100565238A Expired - Fee Related CN100502180C (en) | 2007-01-23 | 2007-01-23 | Asymmetric metal film vertical cavity surface emitting laser and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100502180C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102611000A (en) * | 2012-03-23 | 2012-07-25 | 中国科学院长春光学精密机械与物理研究所 | High-efficiency vertical cavity surface emitting semiconductor laser with asymmetric optical field distribution |
CN108777433A (en) * | 2018-03-23 | 2018-11-09 | 江苏宜兴德融科技有限公司 | Vertical plane cavity surface emitting laser and preparation method thereof |
CN109412016A (en) * | 2018-10-25 | 2019-03-01 | 长春理工大学 | The vertical-cavity-face emitting semiconductor laser for the hollow light that is vortexed can be emitted |
CN110233425A (en) * | 2019-07-17 | 2019-09-13 | 厦门乾照半导体科技有限公司 | A kind of VCSEL laser and preparation method thereof |
CN111108657A (en) * | 2017-06-30 | 2020-05-05 | 奥卢大学 | Optical semiconductor device and manufacturing method thereof |
CN112490851A (en) * | 2020-11-30 | 2021-03-12 | 长春理工大学 | Vertical cavity surface emitting semiconductor laser with upper and lower electrodes arranged in staggered manner |
CN113193478A (en) * | 2021-04-26 | 2021-07-30 | 湖北光安伦芯片有限公司 | Preparation method of non-oxidation process film VCSEL light source structure |
CN113690732A (en) * | 2021-08-26 | 2021-11-23 | 深圳市中科芯辰科技有限公司 | Vertical cavity surface emitting laser and preparation method thereof |
CN113839308A (en) * | 2021-11-26 | 2021-12-24 | 华芯半导体研究院(北京)有限公司 | VCSEL chip with non-oxidation type current limiting layer and preparation method thereof |
CN113937195A (en) * | 2021-08-28 | 2022-01-14 | 北京工业大学 | Micro-graph light source based on resonant cavity light-emitting diode |
-
2007
- 2007-01-23 CN CNB2007100565238A patent/CN100502180C/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102611000A (en) * | 2012-03-23 | 2012-07-25 | 中国科学院长春光学精密机械与物理研究所 | High-efficiency vertical cavity surface emitting semiconductor laser with asymmetric optical field distribution |
CN102611000B (en) * | 2012-03-23 | 2013-09-25 | 中国科学院长春光学精密机械与物理研究所 | High-efficiency vertical cavity surface emitting semiconductor laser with asymmetric optical field distribution |
CN111108657A (en) * | 2017-06-30 | 2020-05-05 | 奥卢大学 | Optical semiconductor device and manufacturing method thereof |
CN108777433A (en) * | 2018-03-23 | 2018-11-09 | 江苏宜兴德融科技有限公司 | Vertical plane cavity surface emitting laser and preparation method thereof |
CN109412016A (en) * | 2018-10-25 | 2019-03-01 | 长春理工大学 | The vertical-cavity-face emitting semiconductor laser for the hollow light that is vortexed can be emitted |
CN110233425A (en) * | 2019-07-17 | 2019-09-13 | 厦门乾照半导体科技有限公司 | A kind of VCSEL laser and preparation method thereof |
CN110233425B (en) * | 2019-07-17 | 2023-12-15 | 厦门乾照光电股份有限公司 | VCSEL laser and manufacturing method thereof |
CN112490851B (en) * | 2020-11-30 | 2022-07-12 | 长春理工大学 | Vertical cavity surface emitting semiconductor laser with upper and lower electrodes arranged in staggered manner |
CN112490851A (en) * | 2020-11-30 | 2021-03-12 | 长春理工大学 | Vertical cavity surface emitting semiconductor laser with upper and lower electrodes arranged in staggered manner |
CN113193478A (en) * | 2021-04-26 | 2021-07-30 | 湖北光安伦芯片有限公司 | Preparation method of non-oxidation process film VCSEL light source structure |
CN113193478B (en) * | 2021-04-26 | 2023-03-14 | 湖北光安伦芯片有限公司 | Preparation method of non-oxidation process film VCSEL light source structure |
CN113690732A (en) * | 2021-08-26 | 2021-11-23 | 深圳市中科芯辰科技有限公司 | Vertical cavity surface emitting laser and preparation method thereof |
CN113690732B (en) * | 2021-08-26 | 2023-08-18 | 深圳市芯火之光科技有限公司 | Vertical cavity surface emitting laser and preparation method thereof |
CN113937195A (en) * | 2021-08-28 | 2022-01-14 | 北京工业大学 | Micro-graph light source based on resonant cavity light-emitting diode |
CN113937195B (en) * | 2021-08-28 | 2023-07-14 | 北京工业大学 | A Micropattern Light Source Based on Resonant Cavity Light Emitting Diodes |
CN113839308A (en) * | 2021-11-26 | 2021-12-24 | 华芯半导体研究院(北京)有限公司 | VCSEL chip with non-oxidation type current limiting layer and preparation method thereof |
CN113839308B (en) * | 2021-11-26 | 2022-06-03 | 华芯半导体研究院(北京)有限公司 | VCSEL chip with non-oxidation type current limiting layer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100502180C (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101202420A (en) | Etching top undoped intrinsic layer asymmetric metal film vertical cavity surface emitting laser | |
CN101667716B (en) | Double-sided bonding long-wavelength vertical cavity surface emitting laser and manufacturing method thereof | |
JP4066654B2 (en) | Surface emitting semiconductor laser device and manufacturing method thereof | |
US6542530B1 (en) | Electrically pumped long-wavelength VCSEL and methods of fabrication | |
CN101359807B (en) | Surface-emitting laser | |
US6277696B1 (en) | Surface emitting laser using two wafer bonded mirrors | |
JPH05218574A (en) | Semiconductor laser and manufacture thereof | |
CN103107482A (en) | Single-mode photonic crystal vertical cavity surface emitting laser and preparation method thereof | |
JPH06224521A (en) | Integrated short-cavity laser | |
US7668219B2 (en) | Surface emitting semiconductor device | |
JP2008053353A (en) | Surface emitting laser array, surface emitting laser element used therefor, and method for manufacturing the array | |
US10992110B2 (en) | VCSELS having mode control and device coupling | |
CN108242763B (en) | Monolithic structure of electro-absorption modulated laser and its fabrication and testing method | |
CN201001004Y (en) | Etching top undoped intrinsic layer asymmetric metal film vertical cavity surface emitting laser | |
JP5190038B2 (en) | Surface emitting laser | |
CN118399194A (en) | Vertical cavity surface emitting laser and method of manufacturing the same | |
JP4614040B2 (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JPH0555713A (en) | Light emitting semiconductor element | |
JP4602692B2 (en) | Surface emitting laser and optical transmission system | |
CN101588019B (en) | External cavity type multiple-active region photon crystal vertical cavity surface transmission semiconductor laser device | |
CN105140779A (en) | Backup type semiconductor laser based on reconstructing-equivalent chirp technology | |
CN113410757A (en) | Vertical cavity surface emitting laser and preparation method thereof | |
KR100918400B1 (en) | Long wavelength vertical cavity surface emitting laser device and method for fabricating the same | |
CN216162114U (en) | Resonant cavity, laser unit, laser and laser radar | |
JPH10233558A (en) | Multilayer film structure wherein diamond layer is incorporated, optical device with it and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090617 Termination date: 20100223 |