[go: up one dir, main page]

CN101201893A - Iris recognition preprocessing method based on gray information - Google Patents

Iris recognition preprocessing method based on gray information Download PDF

Info

Publication number
CN101201893A
CN101201893A CNA2006101225281A CN200610122528A CN101201893A CN 101201893 A CN101201893 A CN 101201893A CN A2006101225281 A CNA2006101225281 A CN A2006101225281A CN 200610122528 A CN200610122528 A CN 200610122528A CN 101201893 A CN101201893 A CN 101201893A
Authority
CN
China
Prior art keywords
iris
image
point
pupil
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101225281A
Other languages
Chinese (zh)
Inventor
解梅
潘力立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China Zhongshan Institute
Original Assignee
University of Electronic Science and Technology of China Zhongshan Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China Zhongshan Institute filed Critical University of Electronic Science and Technology of China Zhongshan Institute
Priority to CNA2006101225281A priority Critical patent/CN101201893A/en
Publication of CN101201893A publication Critical patent/CN101201893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Analysis (AREA)

Abstract

The invention provides an iris image preprocessing method based on gray scale information, which firstly positions the rough circle center (x) of a pupil through operations such as binaryzation, mathematical morphology, gray scale projection and the likeo,yo) Then at (x)o,yo) Searching for the sum-and-sum (x) with the gray value larger than T from the center to two sides on a plurality of nearby rowso,yo) The point with the shortest distance is taken as the boundary point of the pupil, the precise circle center and the radius of the pupil can be positioned through curve fitting, and thenAnd calculating the gray level first-order difference value of the row where the pixel points are searched, searching the maximum sum of the horizontal first-order difference values in the range where the iris outer boundary points possibly appear, taking the maximum sum as the iris outer boundary points, and performing curve fitting to obtain the accurate circle center and radius of the iris outer boundary. And finally, according to the normalized image, judging the quality of the iris image by calculating the point sharpness and the number of effective pixel points. By adopting the iris image preprocessing method, the time required by repeated iteration during positioning can be reduced, and the quality of the iris image can be judged quickly and accurately according to the extracted iris image.

Description

一种基于灰度信息的虹膜识别预处理方法 A preprocessing method for iris recognition based on grayscale information

技术领域 technical field

本发明属于图像处理技术领域,主要涉及生物特征鉴别中的虹膜身份识别技术。The invention belongs to the technical field of image processing, and mainly relates to iris identification technology in biometric identification.

背景技术 Background technique

在当今信息化时代,如何准确鉴定一个人的身份,保护信息安全是一个必须解决的关键社会问题。为此,生物特征鉴别技术悄然新起,并成为目前世界信息安全管理领域的前沿研究课题。生物特征鉴别技术是指利用人体所固有的生理特征或行为特征来进行个人身份鉴定。虹膜身份识别技术是生物特征鉴别技术的一个分支,是计算机图像处理技术和模式识别技术在个人身份识别领域的应用,由于其高稳定性和高准确性,近年来已经成为生物特征鉴别的热门发展方向。虹膜身份自动识别技术,在银行、公安、机场、网络等方面应用广泛,具有巨大的经济价值和现实意义。现在它已经使用在边境检查、通观认证、银行提款、信息管理和建筑物安全管理等,还可以使人们摆脱记忆信用卡号、银行帐号、身份证号、网络登录号的繁琐。随着数字信号处理技术和图像处理技术的发展,虹膜身份识别系统已经日趋成熟。详见文献:John G.Daugman,“How Iris Recognition Works,”IEEETransaction on Circuits and Systems for Video Technology,Volume 14,Issue 1,pp.21-30,2004和文献:John G.Daugman,“High Confidence Recognition of Persons by Iris Patterns,”The Proceeding of IEEE 35th International Carnahan Conference on Security Technology,pp.254-263,2001所述。In today's information age, how to accurately identify a person's identity and protect information security is a key social problem that must be solved. For this reason, biometric identification technology has quietly emerged, and has become a frontier research topic in the field of information security management in the world. Biometric identification technology refers to the use of the inherent physiological or behavioral characteristics of the human body for personal identification. Iris identification technology is a branch of biometric identification technology. It is the application of computer image processing technology and pattern recognition technology in the field of personal identification. Due to its high stability and high accuracy, it has become a popular development of biometric identification in recent years. direction. The iris automatic identification technology is widely used in banks, public security, airports, networks, etc., and has great economic value and practical significance. Now it has been used in border inspection, comprehensive authentication, bank withdrawal, information management and building security management, etc. It can also free people from the cumbersome memory of credit card numbers, bank account numbers, ID card numbers, and network login numbers. With the development of digital signal processing technology and image processing technology, iris identification system has become increasingly mature. For details, see: John G. Daugman, "How Iris Recognition Works," IEEETransaction on Circuits and Systems for Video Technology, Volume 14, Issue 1, pp.21-30, 2004 and: John G. Daugman, "High Confidence Recognition of Persons by Iris Patterns,” The Proceeding of IEEE 35 th International Carnahan Conference on Security Technology, pp.254-263, 2001.

在虹膜身份识别技术中,虹膜图像预处理是整个识别技术的关键,它包括虹膜定位和虹膜图像质量评估。虹膜定位是虹膜识别的第一步,它的执行时间和精度将直接影响整个虹膜识别系统的速度和准确度。在实际中,由于虹膜区域常常受到眼睑和睫毛的遮挡,虹膜定位算法的准确性和有效性还有待进一步提高。如何在存在睫毛和眼睑遮挡问题的低质量虹膜图像中,快速精确地定位出虹膜,并对其边界或位置用数学模型进行描述是我们研究的主要问题。详见文献:John G.Daugman,“High Confidence Visual Recognition of Personsby a Test of Statistical Independence,”IEEE Transaction on Pattern Analysis and MachineIntelligence,volume15,no.11,pp.1148-1161,1993。虹膜图像质量评估是自动虹膜识别系统中的一个非常重要的环节,它确保了采集过程中得到满足质量标准的图像。实际中,由于拍摄时采集设备的焦距问题,拍摄瞬间眼球的转动问题,以及眼睑和睫毛对虹膜的部分遮挡,常常使采集的虹膜图像无法进行后续的特征提取。目前已有的算法中还没有提出一种有效的虹膜图像质量评估模型,因此我们旨在建立一套通用可行的评估模型,详见文献:Chen Ji,Hu Guangshu,“Iris Image Quality Evaluation based on Wavelet PacketDecomposition,”Journal of Tsinghua University(Sci & Tech),volume 43,no.3,pp.377-380,2003。In iris identification technology, iris image preprocessing is the key to the whole identification technology, which includes iris location and iris image quality evaluation. Iris location is the first step in iris recognition, and its execution time and accuracy will directly affect the speed and accuracy of the entire iris recognition system. In practice, since the iris area is often blocked by eyelids and eyelashes, the accuracy and effectiveness of the iris location algorithm needs to be further improved. How to quickly and accurately locate the iris in the low-quality iris image with eyelashes and eyelid occlusion, and describe its boundary or position with a mathematical model is the main problem of our research. See the literature for details: John G. Daugman, "High Confidence Visual Recognition of Persons by a Test of Statistical Independence," IEEE Transaction on Pattern Analysis and Machine Intelligence, volume15, no.11, pp.1148-1161, 1993. Iris image quality assessment is a very important link in the automatic iris recognition system, which ensures that the images that meet the quality standards are obtained during the acquisition process. In practice, due to the focal length of the acquisition device during shooting, the rotation of the eyeball at the moment of shooting, and the partial occlusion of the iris by the eyelids and eyelashes, it is often impossible to perform subsequent feature extraction on the collected iris image. An effective iris image quality evaluation model has not been proposed in the existing algorithms, so we aim to establish a general and feasible evaluation model, see the literature for details: Chen Ji, Hu Guangshu, "Iris Image Quality Evaluation based on Wavelet Packet Decomposition," Journal of Tsinghua University (Sci & Tech), volume 43, no.3, pp.377-380, 2003.

现在通常使用的虹膜定位的方法有:The commonly used iris positioning methods are:

(1)基于灰度梯度的两步虹膜定位方法。它通过粗定位,寻找虹膜内外缘的大致位置,然后再在这个位置附近较小的范围内利用圆形检测器进行精定位,从而找到虹膜内外缘的精确位置。但是在实际应用中该方法需要反复迭代搜索,运算量较大,效率不高。详见文献:Li Qingrong,Ma Zheng,“A Iris Location Algorithm,”Journal of UEST of China,volume 31,no.1,pp.7-9。(1) Two-step iris localization method based on gray gradient. It finds the approximate position of the inner and outer edges of the iris through rough positioning, and then uses a circular detector to perform fine positioning within a small range around this position, so as to find the precise position of the inner and outer edges of the iris. However, in practical applications, this method requires repeated iterative searches, which has a large amount of calculation and is not efficient. See literature for details: Li Qingrong, Ma Zheng, "A Iris Location Algorithm," Journal of UEST of China, volume 31, no.1, pp.7-9.

(2)基于哈夫变换的虹膜定位方法。它是通过一定的算子,提取出虹膜图像中的边缘点,从而搜索通过边缘点最多的圆曲线所在的位置。其缺点是在边缘点提取中常常会引入噪声,使得虹膜定位结果不准确。详见文献:Richard P.Wildes,“Iris Recognition:anEmerging Biometric Technology,”Proceedings of the IEEE,volume85,pp.1348-1363,1997。(2) Iris location method based on Hough transform. It uses a certain operator to extract the edge points in the iris image, so as to search for the position of the circular curve that passes the most edge points. Its disadvantage is that noise is often introduced in edge point extraction, which makes the result of iris location inaccurate. See the literature for details: Richard P. Wildes, "Iris Recognition: an Emerging Biometric Technology," Proceedings of the IEEE, volume85, pp.1348-1363, 1997.

目前已有虹膜质量评估方法有:The existing iris quality assessment methods are:

(1)基于快速傅立叶变换的方法。它对虹膜区域上的两个矩形块内的象素点进行二维快速傅立叶变换,然后通过对其高频、中频和低频能量的统计,分析图像是否清晰和存在睫毛遮挡。该模型的通用行不强,容易将纹理较少的清晰虹膜图像误判为低质量虹膜图像。详见文献:Li Ma,Tieniu Tan,Yunhong Wang,Dexin Zhang,“Personal Identification basedon Iris Texture Analysis,”IEEE Transactions on Pattern Analysis and Machine Intelligence,volume.25,no.12,pp.1519-1533。(1) Method based on fast Fourier transform. It performs two-dimensional fast Fourier transform on the pixels in two rectangular blocks on the iris area, and then analyzes whether the image is clear and has eyelash occlusion through the statistics of its high-frequency, intermediate-frequency and low-frequency energy. The generality of the model is not strong, and it is easy to misjudge a clear iris image with less texture as a low-quality iris image. See literature for details: Li Ma, Tieniu Tan, Yunhong Wang, Dexin Zhang, "Personal Identification based on Iris Texture Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, volume.25, no.12, pp.1519-1533.

(2)基于小波包分解的方法。它选取纹理高频分量分布最集中的子频带作为特征子频带,以其能量作为判别图像质量的准则。该方法的缺点是无法判断因睫毛遮挡而存在问题的虹膜图像。详见文献:Chen Ji,Hu Guangshu,“Iris Image Quality Evaluation based onWavelet Packet Decomposition,”Journal of Tsinghua University(Sci & Tech),volume 43,no.3,pp.377-380,2003。(2) The method based on wavelet packet decomposition. It selects the sub-band with the most concentrated distribution of texture high-frequency components as the characteristic sub-band, and uses its energy as the criterion for judging the image quality. The disadvantage of this method is that it cannot judge iris images which are problematic due to eyelash occlusion. See literature for details: Chen Ji, Hu Guangshu, "Iris Image Quality Evaluation based on Wavelet Packet Decomposition," Journal of Tsinghua University (Sci & Tech), volume 43, no.3, pp.377-380, 2003.

上述的虹膜图像预处理算法都在一定程度上存在问题,定位算法耗时较多,并且容易受到睫毛遮挡问题的干扰,稳定性不高。虹膜图像质量评估方法的通用性不强。The above-mentioned iris image preprocessing algorithms all have problems to a certain extent. The positioning algorithm takes a lot of time, and is easily disturbed by the eyelash occlusion problem, and the stability is not high. The generality of iris image quality assessment method is not strong.

发明内容 Contents of the invention

本发明的任务是提供一种基于灰度梯度和曲线拟合的虹膜定位方法,它具有在眼睫毛遮挡情况下定位准确的特点。并在此基础上建立了一套通用性比较强的虹膜图像质量评估模型。The task of the present invention is to provide an iris positioning method based on gray gradient and curve fitting, which has the characteristics of accurate positioning under the condition of eyelashes blocking. And on this basis, a set of iris image quality evaluation model with strong generality is established.

为了方便地描述本发明内容,首先对一些术语进行定义。In order to describe the content of the present invention conveniently, some terms are defined first.

定义1:虹膜。眼珠的中心是黑色的瞳孔,瞳孔外缘间的环形组织即为虹膜。其呈现出相互交错的类似与斑点、细丝、条纹、隐窝的纹理特征。同一个人的虹膜在人的一生中几乎不会发生改变,不同人的虹膜是完全不一样的。Definition 1: Iris. The center of the eyeball is the black pupil, and the ring-shaped tissue between the outer edges of the pupil is the iris. It presents interlaced texture features resembling spots, filaments, striations, and crypts. The iris of the same person hardly changes throughout a person's life, and the iris of different people is completely different.

定义2:灰度图像。图像中只包含亮度信息而没有任何其他颜色信息的图像。Definition 2: Grayscale image. An image that contains only luminance information in the image without any other color information.

定义3:二值化阈值。对图像进行二值化时所选用的灰度门限值。Definition 3: Binarization threshold. The grayscale threshold value used when binarizing the image.

定义4:二值化。把整幅图像的所有值转化成只有两种值的过程,一般这两种值为0和1或者0和255。当图像上的值大于等于二值化的阀值的时候,该点的值二值化为1(或255);当图像上的值小于二值化阀值的时候,该点的值二值化为0。Definition 4: Binarization. The process of converting all values of the entire image into only two values, generally these two values are 0 and 1 or 0 and 255. When the value on the image is greater than or equal to the threshold value of binarization, the value of the point is binarized to 1 (or 255); when the value on the image is smaller than the threshold value of binarization, the value of the point is binary into 0.

定义5:数学形态学。用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别的目的。数学形态学的基本运算有4个:膨胀(或扩充)、腐蚀(或侵蚀)、开启和闭合。膨胀和腐蚀的运算公式为: A ⊕ B = { x | ( B ^ ) x ∩ A ≠ φ } AΘB = { x | ( B ) x ⊆ A } ; 开启操作的运算公式为: AoB = ( AΘB ) ⊕ B AgB = ( A ⊕ B ) ΘB . 其中A为图像集合,B为结构元素,^表示做关于原点的映射,()x表示平移x,∩表示交集,φ表示空集,

Figure A20061012252800075
表式全包含,
Figure A20061012252800076
为膨胀运算符,Θ为腐蚀运算符,o为开启运算符,g为闭合运算符。Definition 5: Mathematical Morphology. Use structural elements with a certain shape to measure and extract the corresponding shape in the image to achieve the purpose of image analysis and recognition. There are four basic operations in mathematical morphology: dilation (or expansion), corrosion (or erosion), opening and closing. The formulas for dilation and erosion are: A ⊕ B = { x | ( B ^ ) x ∩ A ≠ φ } and AΘB = { x | ( B ) x ⊆ A } ; The calculation formula for the opening operation is: AoB = ( AΘB ) ⊕ B and AgB = ( A ⊕ B ) ΘB . Among them, A is an image collection, B is a structural element, ^ means to map about the origin, () x means translation x, ∩ means intersection, φ means empty set,
Figure A20061012252800075
The form is all inclusive,
Figure A20061012252800076
is the dilation operator, Θ is the corrosion operator, o is the opening operator, and g is the closing operator.

定义6:灰度投影。将二维空间中的灰度投影到一维空间,分为水平灰度投影和垂直灰度投影。水平灰度投影是指将二维图像中的灰度沿水平方向累加,转换到一维空间。转换函数为: S h ( x ) = Σ y = 1 N I ( x , y ) . 垂直灰度投影是指将二维图像中的灰度沿垂直方向累加,转换到一位空间。转换函数为: S v ( y ) = Σ x = 1 M I ( x , y ) . 其中Sh(x)表示横坐标为x的灰度投影值,Sv(y)表示纵坐标为y的灰度投影值,M,N为图像的宽度和高度,I(x,y)为位置(x,y)的象素点的灰度值。Definition 6: Grayscale projection. Project the grayscale in two-dimensional space to one-dimensional space, which is divided into horizontal grayscale projection and vertical grayscale projection. Horizontal grayscale projection refers to accumulating the grayscale in a two-dimensional image along the horizontal direction and converting it to a one-dimensional space. The conversion function is: S h ( x ) = Σ the y = 1 N I ( x , the y ) . Vertical grayscale projection refers to accumulating the grayscale in the two-dimensional image along the vertical direction and converting it to a one-bit space. The conversion function is: S v ( the y ) = Σ x = 1 m I ( x , the y ) . Among them, Sh (x) represents the grayscale projection value whose abscissa is x, S v (y) represents the grayscale projection value whose ordinate is y, M, N are the width and height of the image, and I(x, y) is The gray value of the pixel at position (x, y).

定义7:瞳孔边界点。是指位于瞳孔外边缘虹膜内边缘上的点。Definition 7: pupil boundary point. Refers to the point on the inner edge of the iris at the outer edge of the pupil.

定义8:圆拟合。已知一系列点的坐标,建立一条最能反映这些坐标点位置的圆曲线方程。具体来说:圆方程为x2+y2+cx+dy+e=0,c,d和e是关于圆曲线的半径和圆心坐标点的参数,(x,y)为圆曲线上的点的坐标值,那么相对于这些坐标点的最佳圆曲线就是使误差方差和最小。误差方差和的公式为: ϵ 2 = Σ i ( x i 2 + y i 2 + cx i + dy i + e ) 2 , 其中,ε2是指误差方差和,(xi,yi)是已知点的坐标。Definition 8: Circle fitting. Knowing the coordinates of a series of points, establish a circular curve equation that best reflects the positions of these coordinate points. Specifically: the circle equation is x 2 +y 2 +cx+dy+e=0, c, d and e are parameters about the radius of the circular curve and the coordinate point of the center of the circle, and (x, y) is a point on the circular curve coordinate values, then the best circular curve relative to these coordinate points is to minimize the sum of error variances. The formula for the sum of error variances is: ϵ 2 = Σ i ( x i 2 + the y i 2 + cx i + dy i + e ) 2 , Among them, ε 2 refers to the sum of error variances, and ( xi , y i ) are the coordinates of known points.

定义9:水平一阶差分。图像中,某一行的后面象素的灰度值减去前面象素的灰度值,或前面象素的灰度值减去后面象素的灰度值,得到该行的水平一阶差分值。水平一阶差分能够突出图像的垂直边缘信息,便于边缘提取。Definition 9: Horizontal first-order difference. In the image, subtract the gray value of the front pixel from the gray value of the back pixel of a row, or subtract the gray value of the back pixel from the gray value of the front pixel to get the horizontal first-order difference value of the row . The horizontal first-order difference can highlight the vertical edge information of the image, which is convenient for edge extraction.

定义10:虹膜外缘边界点。虹膜是一个环形区域,位于虹膜外边缘上的点称为虹膜外缘边界点。Definition 10: The boundary point of the outer edge of the iris. The iris is a ring-shaped area, and the points located on the outer edge of the iris are called iris outer border points.

定义11:归一化。将环形的虹膜区域拉伸成大小相同的矩形区域,以消除由于拍摄距离不同,瞳孔收缩等因素对识别效果的影响。具体的计算公式为: x ( r , θ ) = ( 1 - r ) x p ( θ ) + rx i ( θ ) y ( r , θ ) = ( 1 - r ) y p ( θ ) + ry i ( θ ) , 其中,r分布在区间[0,1],θ分布在区间[0,2π],而(xp(θ),yp(θ))和(xi(θ),yi(θ))分别表示θ方向上的虹膜内边界点和外边界点。Definition 11: Normalization. Stretch the circular iris area into a rectangular area of the same size to eliminate the influence of factors such as pupil constriction on the recognition effect due to different shooting distances. The specific calculation formula is: x ( r , θ ) = ( 1 - r ) x p ( θ ) + r x i ( θ ) the y ( r , θ ) = ( 1 - r ) the y p ( θ ) + ry i ( θ ) , Among them, r is distributed in the interval [0, 1], θ is distributed in the interval [0, 2π], and (x p (θ), y p (θ)) and ( xi (θ), y i (θ)) Denote the iris inner boundary point and outer boundary point in the θ direction, respectively.

定义12.归一化虹膜图像。将原始的虹膜图像进行归一化处理之后得到的矩形图像。Definition 12. Normalized iris image. The rectangular image obtained after normalizing the original iris image.

定义13.8-邻域。对一个坐标点为(x,y)的象素p,它有4个水平和垂直的近邻象素,它们的坐标分别是(x+1,y),(x-1,y),(x,y+1),(x,y-1),以及4个对角近邻象素,它们的坐标点是(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1),这样的8个象素合称为p的8-邻域。Definition 13.8 - Neighborhood. For a pixel p whose coordinate point is (x, y), it has 4 horizontal and vertical adjacent pixels, and their coordinates are (x+1, y), (x-1, y), (x , y+1), (x, y-1), and 4 diagonal adjacent pixels, their coordinate points are (x+1, y+1), (x+1, y-1), (x -1, y+1), (x-1, y-1), such 8 pixels are collectively called the 8-neighborhood of p.

定义14.点锐度。用于评价数字图像清晰度的算子,其数学形式为: f = Σ i = 1 m × n Σ j = 1 8 | dI / dx | / m × n , 其中dI为图像中某一点的八邻域内象素点的灰度值与该点的灰度值的差值,dx为相邻点的距离,m和n分别为图像的高和宽。Definition 14. Point sharpness. The operator used to evaluate the sharpness of digital images, its mathematical form is: f = Σ i = 1 m × no Σ j = 1 8 | iGO / dx | / m × no , Among them, dI is the difference between the gray value of the pixel point in the eight neighborhoods of a certain point in the image and the gray value of the point, dx is the distance between adjacent points, m and n are the height and width of the image respectively.

定义15.有效象素点。是指归一化虹膜图像中位于虹膜区域的象素点,主要是为了区分睫毛和眼睑等无效象素点。有效象素点必须满足的条件是:Vlash≤I(x,y)≤Veyelid,其中Vlash和Veyelid是判定是否为位于睫毛区域和眼睑区域的象素点的门限,I(x,y)为图像的灰度。Definition 15. Effective pixels. It refers to the pixels located in the iris area in the normalized iris image, mainly to distinguish invalid pixels such as eyelashes and eyelids. The conditions that valid pixels must meet are: V lash ≤ I(x, y) ≤ V eyelid , where V lash and V eyelid are thresholds for judging whether they are pixels located in the eyelash area and eyelid area, and I(x, y) is the grayscale of the image.

定义16.可见度。是指原始虹膜图像中虹膜纹理的可见程度,影响可见度的主要因素是眼睑和睫毛对虹膜区域的遮挡。Definition 16. Visibility. Refers to the visibility of the iris texture in the original iris image, and the main factor affecting the visibility is the occlusion of the iris area by the eyelids and eyelashes.

按照本发明的虹膜图像预处理算法,它包含下列步骤:According to the iris image preprocessing algorithm of the present invention, it comprises the following steps:

步骤1.通过摄像装置,对人眼中的虹膜进行图像采集,得到含有虹膜图像的原始灰度图像。Step 1. The iris in the human eye is image-collected by a camera device to obtain an original grayscale image containing the iris image.

步骤2.选取一个固定的阈值Vb,将原始虹膜图像进行二值化,原始灰度图像中灰度值大于阈值Vb的象素点的灰度值赋为1,小于阈值Vb的象素点的灰度值赋为0。Step 2. Choose a fixed threshold value V b , binarize the original iris image, assign the gray value of the pixel point whose gray value is greater than the threshold value V b in the original gray image to 1, and assign the gray value of the pixel point smaller than the threshold value V b The gray value of the pixel point is assigned as 0.

步骤3.对步骤2中得到的二值图像,进行数学形态学中的闭合运算来消除二值图像中的小空洞。具体来说,闭合运算为: AgB = ( A ⊕ B ) ΘB , 即先对原始图像A用结构元素B进行膨胀运算,然后再进行腐蚀运算。结构元素B为一个7×7的矩阵,中间近似圆形区域内的元素的值为1,其余元素的值为0。g为闭合运算符,

Figure A20061012252800093
为膨胀运算符,Θ为腐蚀运算符。Step 3. For the binary image obtained in step 2, perform a closing operation in mathematical morphology to eliminate small holes in the binary image. Specifically, the closure operation is: AgB = ( A ⊕ B ) ΘB , That is to say, the expansion operation is performed on the original image A with the structural element B, and then the erosion operation is performed. The structure element B is a 7×7 matrix, the values of the elements in the middle approximately circular area are 1, and the values of the other elements are 0. g is the closing operator,
Figure A20061012252800093
is the dilation operator, and Θ is the erosion operator.

步骤4.计算步骤3中得到图像的水平和垂直灰度投影,水平投影的计算公式为: S h ( x ) = Σ y = 1 N I ( x , y ) , 垂直灰度投影的计算公式为: S v ( y ) = Σ x = 1 M I ( x , y ) . 其中Sh(x)表示横坐标为x的灰度投影值,Sv(y)表示纵坐标为y的灰度投影值,M,N为图像的宽度和高度,I(x,y)为位置(x,y)的象素点的灰度值。Step 4. Obtain the horizontal and vertical gray scale projection of image in the calculation step 3, the computing formula of horizontal projection is: S h ( x ) = Σ the y = 1 N I ( x , the y ) , The formula for calculating the vertical grayscale projection is: S v ( the y ) = Σ x = 1 m I ( x , the y ) . Among them, Sh (x) represents the grayscale projection value whose abscissa is x, S v (y) represents the grayscale projection value whose ordinate is y, M, N are the width and height of the image, and I(x, y) is The gray value of the pixel at position (x, y).

步骤5.搜索步骤4中的水平灰度投影Sh(x)取最小值时的横坐标xo和垂直灰度投影Sh(y)取最小值是的纵坐标yo,将(xo,yo)视为瞳孔的粗略中心。Step 5. Search for the abscissa x o when the horizontal grayscale projection Sh (x) takes the minimum value in step 4 and the vertical coordinate y o when the vertical grayscale projection Sh (y ) takes the minimum value, set (x o , y o ) as the rough center of the pupil.

步骤6.在纵坐标为yo这一行上,以(xo,yo)为中心,沿水平方向向左搜索象素灰度值大于T的点,当搜索到象素灰度值大于T时立即停止搜索,记下此时的坐标(xl,yo)作为瞳孔边界点的坐标,再按同样的方式进行沿水平方向向右的搜索,得到另一边界点坐标(xr,yo)。Step 6. On the line whose ordinate is y o , take (x o , y o ) as the center, and search leftward along the horizontal direction for a point whose pixel gray value is greater than T, when the searched pixel gray value is greater than T Stop searching immediately when , record the coordinates (x l , y o ) at this time as the coordinates of the boundary point of the pupil, and then search to the right along the horizontal direction in the same way, and obtain the coordinates of another boundary point (x r , y o ).

步骤7.取坐标点(xo,yo)附近的若干行,在取出的每一行上进行瞳孔边界点的搜索,方法与步骤6中在yo一行进行的搜索方法相同,最终可以得到一系列瞳孔边界点的坐标。Step 7. Take several lines near the coordinate point (x o , y o ), and search for the pupil boundary point on each line taken out. The method is the same as the search method in the line y o in step 6, and finally you can get a Coordinates of series pupil boundary points.

步骤8.由于瞳孔的内边缘非常类似于一个圆,因此,对步骤7中得到的一系列瞳孔边界点进行圆拟合,具体来说:圆方程为x2+y2+cx+dy+e=0,c,d和e是关于圆曲线的半径和圆心坐标点的参数,(x,y)为圆曲线上的点的坐标值,那么相对于这些坐标点的最佳圆曲线就是使误差方差和最小。误差方差和的公式为: ϵ 2 = Σ i ( x i 2 + y i 2 + cx i + dy i + e ) 2 , 其中,ε2是指误差方差和,(xi,yi)是已知点的坐标,最后得到瞳孔的精确圆心(xp,yp)和半径rpStep 8. Since the inner edge of the pupil is very similar to a circle, perform circle fitting on a series of pupil boundary points obtained in step 7, specifically: the circle equation is x 2 +y 2 +cx+dy+e =0, c, d and e are parameters about the radius of the circular curve and the center coordinate point, (x, y) is the coordinate value of the point on the circular curve, so the best circular curve relative to these coordinate points is to make the error Variance and min. The formula for the sum of error variances is: ϵ 2 = Σ i ( x i 2 + the y i 2 + cx i + dy i + e ) 2 , Among them, ε 2 refers to the error variance sum, (x i , y i ) is the coordinates of known points, and finally the precise center (x p , y p ) and radius r p of the pupil are obtained.

步骤9.计算坐标点(xp,yp)所在行的水平一阶差分,具体计算公式为:当xp<x<N-5时D(x,yp)=I(x+5,yp)-I(x,yp);当5<x ≤xp时D(x,yp)=I(x-5,yp)-I(x,yp)。其中D(x,yp)表示坐标点(x,yp)的水平一阶差分值,I(x,y)表示坐标点(x,y)的灰度值,N为图像宽度。Step 9. Calculate the horizontal first-order difference of the row where the coordinate point (x p , y p ) is located. The specific calculation formula is: when x p < x < N-5, D(x, y p )=I(x+5, y p )-I(x, y p ); when 5<x≤x p , D(x, y p )=I(x-5, y p )-I(x, y p ). Among them, D(x, y p ) represents the horizontal first-order difference value of the coordinate point (x, y p ), I(x, y) represents the gray value of the coordinate point (x, y), and N is the image width.

步骤10.在纵坐标为yp一行上,在区间[xp+rp+20,xp+rp+100]上计算每个点与后面20个点的水平一阶差分值之和。具体计算公式为:当xp+rp+20<x<xp+rp+100时, S ( x , y p ) = &Sigma; i = 0 20 D ( x + i , y p ) , 其中D(x+i,yp)是步骤7中得到的坐标点(x+i,yp)的水平一阶差分值。并在此区间中找出S(x,yp)取最大值时对应的坐标点(xi,yp)作为虹膜外缘边界点。Step 10. Calculate the sum of the horizontal first-order differences between each point and the next 20 points on the interval [x p +r p +20, x p +r p +100] on the line whose ordinate is y p . The specific calculation formula is: when x p +r p +20<x<x p +r p +100, S ( x , the y p ) = &Sigma; i = 0 20 D. ( x + i , the y p ) , Where D(x+i, y p ) is the horizontal first-order difference value of the coordinate point (x+i, y p ) obtained in step 7. And in this interval, find the corresponding coordinate point ( xi , y p ) when S(x, y p ) takes the maximum value as the boundary point of the outer edge of the iris.

步骤11.纵坐标为yp一行上,在区间[xp-rp-100,xp-rp-20]上计算每个点与前面20个点的水平一阶差分值之和。具体计算公式为:当xp-rp-100<x<xp-rp-20时, S ( x , y p ) = &Sigma; i = 0 20 D ( x - i , y p ) , 其中D(x+i,yp)是步骤9中得到的坐标点(x+i,yp)的水平一阶差分值。并在此区间中找出S(x,yp)取最大值时对应的坐标点(x,yp)作为虹膜外缘边界点。Step 11. On the line whose ordinate is y p , calculate the sum of the horizontal first-order differences between each point and the previous 20 points on the interval [x p -r p -100, x p -r p -20]. The specific calculation formula is: when x p -r p -100<x<x p -r p -20, S ( x , the y p ) = &Sigma; i = 0 20 D. ( x - i , the y p ) , Where D(x+i, y p ) is the horizontal first-order difference value of the coordinate point (x+i, y p ) obtained in step 9. And find the coordinate point (x, y p ) corresponding to the maximum value of S(x, y p ) in this interval as the boundary point of the outer edge of the iris.

步骤12.取坐标点(xp,yp)附近的若干行,在取出的每一行上进行虹膜外缘边界点的搜索,方法与步骤9、步骤10和步骤11中在yp一行进行的搜索方法相同,最终可以得到一系列虹膜外边缘边界点的坐标。Step 12. Get some lines near the coordinate point (x p , y p ), carry out the search of the iris outer edge boundary point on each line taken out, the method is carried out in the y p line in step 9, step 10 and step 11 The search method is the same, and finally a series of coordinates of the iris outer edge boundary points can be obtained.

步骤13.由于瞳孔的外边缘也非常类似于一个圆,因此,对步骤10中得到的一系列虹膜外边缘边界点进行与步骤8中类似的圆拟合,得到虹膜外边缘的精确圆心(xi,yi)和半径riStep 13. Since the outer edge of the pupil is also very similar to a circle, a series of iris outer edge boundary points obtained in step 10 are subjected to a circle fitting similar to that in step 8 to obtain the precise center of the iris outer edge (x i , y i ) and radius r i .

步骤14.对定位出的虹膜区域进行归一化处理,具体的计算公式为: x ( r , &theta; ) = ( 1 - r ) x p ( &theta; ) + rx i ( &theta; ) y ( r , &theta; ) = ( 1 - r ) y p ( &theta; ) + ry i ( &theta; ) 其中,r分布在区间[0,1],θ分布在区间[0,2π],而(xp(θ),yp(θ))和(xi(θ),yi(θ))分别表示θ方向上的虹膜内边界点和外边界点。Step 14. Perform normalization processing on the located iris area, and the specific calculation formula is: x ( r , &theta; ) = ( 1 - r ) x p ( &theta; ) + r x i ( &theta; ) the y ( r , &theta; ) = ( 1 - r ) the y p ( &theta; ) + ry i ( &theta; ) Among them, r is distributed in the interval [0, 1], θ is distributed in the interval [0, 2π], and (x p (θ), y p (θ)) and ( xi (θ), y i (θ)) Denote the iris inner boundary point and outer boundary point in the θ direction, respectively.

步骤15.计算步骤14中的到的大小为M×N的归一化虹膜图像的点锐度,具体计算公式为: f = &Sigma; i = 1 m &times; n &Sigma; j = 1 8 | dI / dx | / m &times; n , 其中dI为图像中某一点的8-邻域内象素点的灰度值与该点的灰度值的差值,dx为相邻点的距离,m和n分别为图像的高和宽。Step 15. the point sharpness of the normalized iris image that arrives in the size that calculates step 14 is M * N, and concrete computing formula is: f = &Sigma; i = 1 m &times; no &Sigma; j = 1 8 | iGO / dx | / m &times; no , Among them, dI is the difference between the gray value of the pixel point in the 8-neighborhood of a certain point in the image and the gray value of the point, dx is the distance between adjacent points, and m and n are the height and width of the image respectively.

步骤16:将步骤15中的到的归一化虹膜图像的点锐度值f与预先设定的用于判断虹膜图像是否清晰的阀值Vf进行比较,若f≥Vf,则认为图像的清晰度满足系统的要求,否则,认为不满足系统的要求。Step 16: Compare the point sharpness value f of the normalized iris image obtained in step 15 with the preset threshold value V f for judging whether the iris image is clear. If f≥V f , the image is considered The clarity of the system meets the requirements of the system, otherwise, it is considered not to meet the requirements of the system.

步骤17.统计归一化虹膜图像中有效象素点的个数,具体的计算公式为: K = &Sigma; x &Sigma; y n ( x , y ) , 其中 n ( x , y ) = 1 , V lash &le; I ( x , y ) &le; V eyelid 0 , I ( x , y ) > V eyelid orI ( x , y ) < V lash , 其中Vlash和Veyelid是判定是否为位于睫毛区域和眼睑区域的象素点的门限,I(x,y)为图像的灰度。Step 17. count the number of effective pixels in the normalized iris image, and the specific calculation formula is: K = &Sigma; x &Sigma; the y no ( x , the y ) , in no ( x , the y ) = 1 , V lash &le; I ( x , the y ) &le; V eyelid 0 , I ( x , the y ) > V eyelid or I ( x , the y ) < V lash , Among them, V lash and V eyelid are thresholds for judging whether they are pixels located in the eyelash area and the eyelid area, and I(x, y) is the grayscale of the image.

步骤18.将步骤17中得到的有效象素点的个数K与预先设定的用于判断虹膜图像是否存在眼睑和睫毛遮挡问题的阀值Vk进行比较,若K≥Vk,则认为虹膜图像的可见度满足系统的要求,否则,认为不满足系统的要求。Step 18. Compare the number K of effective pixels obtained in step 17 with the preset threshold value V k for judging whether there is eyelid and eyelash occlusion in the iris image. If K≥V k , it is considered The visibility of the iris image meets the requirements of the system, otherwise, it is deemed not to meet the requirements of the system.

通过以上步骤,我们就从原始的含有虹膜的图像中提取出归一化的虹膜图像,并且判断出该图像是否满足系统的要求。Through the above steps, we extract the normalized iris image from the original image containing iris, and judge whether the image meets the requirements of the system.

需要说明的是:It should be noted:

1.步骤2中进行二值化选取一个固定的阈值Vb选取的一个固定的阈值Vb,是通过大量试验得到的,并且这里选择一个固定的阀值是因为瞳孔区域的灰度值和虹膜区域的灰度值相差非常的大,即使在不同的光照条件下拍摄的虹膜图像也可以保证二值化的效果。1. Perform binarization in step 2 to select a fixed threshold V b The selected fixed threshold V b is obtained through a large number of experiments, and a fixed threshold is selected here because the gray value of the pupil area and the iris The gray value of the region is very different, even the iris image taken under different lighting conditions can guarantee the effect of binarization.

2.步骤5中定位瞳孔的粗略中心(xo,yo)是为了确定进行虹膜边界点搜索的范围。2. Locating the rough center of the pupil (x o , y o ) in step 5 is to determine the range of iris boundary point search.

3.步骤6中认为灰度值大于T的点就是瞳孔的边界点,是因为在瞳孔的边缘存在灰度值的明显递增,当大于某一值是就是瞳孔边缘。3. In step 6, it is considered that the point whose gray value is greater than T is the boundary point of the pupil, because there is an obvious increase in the gray value at the edge of the pupil, and when it is greater than a certain value, it is the edge of the pupil.

4.步骤5中,由于由步骤4得到的一阶差分水平投影曲线毛刺很多,不利于方法的精确定位,必须采用高斯函数对投影值进行平滑处理。4. In step 5, since the first-order difference horizontal projection curve obtained in step 4 has many burrs, it is not conducive to the precise positioning of the method, and the Gaussian function must be used to smooth the projection value.

5.步骤15中提到归一化虹膜图像的大小为M×N,值M是根据归一化操作时所取的θ的间隔值决定,值N由归一化操作时所取的r的间隔值决定。5. It is mentioned in step 15 that the size of the normalized iris image is M×N, the value M is determined according to the interval value of θ taken during the normalization operation, and the value N is determined by the value of r taken during the normalization operation The interval value is determined.

6.步骤15中的图像点锐度值主要表征了图像的清晰程度,点锐度值f越大图像越清晰,f越小图像越模糊。6. The point sharpness value of the image in step 15 mainly represents the clarity of the image. The larger the point sharpness value f is, the clearer the image is, and the smaller f is, the blurrier the image is.

7.步骤16中的阀值Vf是通过对同一采集设备的大量虹膜图像进行测试得到的,该值已经能够准确的分类清晰与模糊虹膜图像。7. The threshold V f in step 16 is obtained by testing a large number of iris images from the same acquisition device, and this value can accurately classify clear and fuzzy iris images.

8.步骤17中提到Vlash和Veyelid,我们认为灰度值小于Vlash的象素点是睫毛区域的象素点,灰度值大于Veyelid是眼睑区域的象素点,灰度值分布在Vlash和Veyelid之间的是虹膜区域的象素点。8. V lash and V eyelid are mentioned in step 17. We believe that the pixel points with a gray value smaller than V lash are pixels in the eyelash area, and those with a gray value greater than V eyelid are pixels in the eyelid area. The gray value Distributed between V lash and V eyelid are pixels in the iris area.

9.步骤17中得到的邮箱象素点个数K值越大未被遮挡的虹膜区域越大,K值越小存在的眼睑和睫毛遮挡越严重。9. The larger the mailbox pixel number K value obtained in step 17, the larger the unoccluded iris area, and the smaller the K value, the more serious the existing eyelid and eyelash occlusion.

本发明采用边界点搜索和圆拟合相结合,首先通过二值化、腐蚀、膨胀和灰度投影实现了瞳孔圆心的粗略定位;然后通过单一灰度值比较和灰度差分累加,搜索出边界点并进行曲线拟合;最后根据得到的归一化虹膜图像,从清晰度和可见度两个方面评价图像质量。采用本发明提出的基于边界点搜索和曲线拟合相结合的方法,可以有效地提高虹膜定位精度;采用本发明提出的基于点锐度和有效点个数的质量评价方法,提高了传统质量评估算法的通用性。The present invention adopts the combination of boundary point search and circle fitting, first realizes the rough positioning of the center of the pupil circle through binarization, corrosion, expansion and grayscale projection; then searches out the boundary through single grayscale value comparison and grayscale difference accumulation Points and curve fitting; Finally, according to the obtained normalized iris image, the image quality is evaluated from two aspects of clarity and visibility. Adopting the method based on the combination of boundary point search and curve fitting proposed by the present invention can effectively improve the iris positioning accuracy; adopting the quality evaluation method based on point sharpness and effective point number proposed by the present invention improves the traditional quality evaluation. Algorithm versatility.

本发明的创新之处在于:The innovation of the present invention is:

充分利用了虹膜图像的灰度信息和曲线拟合的方法,通过获得虹膜内外圆边界点的坐标来进行曲线拟合,从而获得虹膜区域的位置信息,达到分隔虹膜的目的;并且通过归一化虹膜图像的灰度信息正确得评价了虹膜图像得质量。本发明首先采用投影法,对经过光斑填充得二值化虹膜图像进行水平和垂直灰度投影,得到瞳孔的粗略中心。通过对水平灰度曲线的扫描,找到灰度值大于某一阀值的一点作为虹膜的内边界点。对上述的一系列内边界点进行圆拟合,从而得到虹膜内缘的位置信息。之后,再通过对水平一阶差分进行相邻20个点的积分,得到当积分值取最大值时的位置坐标作为虹膜的边界点,进而利用这些边界点进行圆拟合,得虹膜外缘的位置信息。利用灰度信息和圆拟合相结合的方法进行虹膜区域的定位是本发明的一个特色,与一般的两步虹膜定位方法相比,本发明的定位准确率要高5个百分点,并且速度提高60%。然后在进行质量评估时,本发明统计归一化虹膜图像的点锐度和有效象素点个数,通过与预先设定的阀值进行比较,从而对虹膜图像质量进行了正确的评价,并且通用性很强。Make full use of the grayscale information of the iris image and the method of curve fitting, and perform curve fitting by obtaining the coordinates of the boundary points of the inner and outer circles of the iris, so as to obtain the position information of the iris area and achieve the purpose of separating the iris; and through normalization The gray information of the iris image correctly evaluates the quality of the iris image. The present invention first adopts the projection method to carry out horizontal and vertical gray scale projection on the binary iris image filled with light spots to obtain the rough center of the pupil. By scanning the horizontal grayscale curve, a point whose grayscale value is greater than a certain threshold is found as the inner boundary point of the iris. Circle fitting is performed on the above series of inner boundary points, so as to obtain the position information of the inner edge of the iris. Afterwards, by integrating the horizontal first-order difference of 20 adjacent points, the position coordinates when the integral value takes the maximum value are obtained as the boundary points of the iris, and then these boundary points are used for circle fitting to obtain the outer edge of the iris location information. It is a characteristic of the present invention to use the method of combining grayscale information and circle fitting to locate the iris area. Compared with the general two-step iris positioning method, the positioning accuracy of the present invention is 5 percentage points higher, and the speed is improved. 60%. Then when performing quality assessment, the present invention statistically normalizes the point sharpness and the number of effective pixel points of the iris image, and by comparing with the preset threshold value, the iris image quality has been correctly evaluated, and Very versatile.

附图说明 Description of drawings

图1是含有虹膜的原始图像;;Figure 1 is the original image containing the iris;

其中,1表示瞳孔;2表示虹膜;3表示瞳孔中的光斑;4表示虹膜的内缘;5表示虹膜的外缘。Among them, 1 represents the pupil; 2 represents the iris; 3 represents the spot in the pupil; 4 represents the inner edge of the iris; 5 represents the outer edge of the iris.

图2是象素p的8-邻域示意图;Fig. 2 is a schematic diagram of the 8-neighborhood of the pixel p;

其中,r是水平和垂直紧邻象素,s是对角近邻象素。where r is the horizontal and vertical adjacent pixels, and s is the diagonal adjacent pixels.

图3是本发明方法的定位结果图。Fig. 3 is a diagram of the positioning result of the method of the present invention.

具体实施方式 Detailed ways

采用本发明的方法,首先使用C语言和汇编语言编写虹膜预处理程序;然后采用CMOS或者CCD摄像装置自动拍摄虹膜的原始图像;接着把拍摄到的虹膜原始图像作为源数据输入到DSP嵌入式系统的虹膜预处理程序中进行处理;经过虹膜定位和图像质量评估,质量合格的虹膜图像定位后输出包含丰富纹理信息的虹膜归一化图像。采用2400张拍摄好的、包括不同人的不同光照条件、不同拍摄姿势的灰度虹膜图像作为源数据,定位准确率为97.5%,定位一幅图像仅需100ms。Adopt method of the present invention, at first use C language and assembly language to write iris preprocessing program; Then adopt CMOS or CCD camera device to take the original image of iris automatically; Then the iris original image that is taken is input to DSP embedded system as source data It is processed in the iris preprocessing program; after iris positioning and image quality evaluation, the qualified iris image is positioned and output iris normalized image containing rich texture information. Using 2,400 gray-scale iris images of different people with different lighting conditions and different shooting postures as source data, the positioning accuracy rate is 97.5%, and it only takes 100ms to locate an image.

综上所述,本发明的方法充分利用虹膜图像的灰度信息,结合圆拟合的方法,从而实现快速准确地从所提供的虹膜原始图像中定位虹膜区域并做出准确的质量评估。In summary, the method of the present invention makes full use of the grayscale information of the iris image, combined with the circle fitting method, so as to quickly and accurately locate the iris region from the provided iris original image and make an accurate quality assessment.

Claims (2)

1.本发明涉及一种基于灰度信息的虹膜识别预处理方法,其特征在于包括如下步骤:1. the present invention relates to a kind of iris recognition preprocessing method based on gray scale information, it is characterized in that comprising the steps: 步骤1.通过摄像装置,对人眼中的虹膜进行图像采集,得到含有虹膜图像的原始灰度图像;Step 1. Through the camera device, the iris in the human eye is image-acquired to obtain the original grayscale image containing the iris image; 步骤2.选取一个固定的阈值Vb,将原始虹膜图像进行二值化;Step 2. Select a fixed threshold V b to binarize the original iris image; 步骤3.对步骤2中得到的二值图像,进行数学形态学中的闭合运算来消除二值图像中的小空洞;Step 3. to the binary image obtained in step 2, carry out the closing operation in the mathematical morphology to eliminate the small hole in the binary image; 步骤4.计算步骤3中得到图像的水平对度投影Sh(x)和垂直灰度投影Sv(y);并搜索水平灰度投影Sh(x)取最小值时的横坐标xo和垂直灰度投影Sh(y)取最小值是的纵坐标yo,将(xo,yo)视为瞳孔的粗略中心;Step 4. Calculate the horizontal pair projection Sh (x) and the vertical grayscale projection Sv (y) of the image obtained in step 3; and search for the abscissa x o when the horizontal grayscale projection Sh (x) takes the minimum value And the vertical grayscale projection Sh (y) takes the minimum value as the vertical coordinate y o , and (x o , y o ) is regarded as the rough center of the pupil; 步骤5.在点(xo,yo)所在的行和该点附近的若干行上,通过灰度值的比较,搜索出一系列一系列瞳孔边界点的坐标;Step 5. On the line where the point (x o , y o ) is located and several lines near the point, search for a series of coordinates of pupil boundary points by comparing the gray values; 步骤6.由于瞳孔的内边缘非常类似于一个圆,因此,对步骤5中得到的一系列瞳孔边界点进行圆拟合,最后得到瞳孔的精确圆心(xp,yp)和半径rpStep 6. Since the inner edge of the pupil is very similar to a circle, a series of pupil boundary points obtained in step 5 are circle-fitted, and finally the precise center of circle (x p , y p ) and radius r p of the pupil are obtained; 步骤7.计算坐标点(xp,yp)所在行的水平一阶差分;并在纵坐标为yp一行及其临近行上,通过在虹膜外边缘可能存在的区间搜索水平一阶差分值之和取最大值时对应的坐标点,可以得到一系列虹膜外缘边界点;Step 7. Calculate the horizontal first-order difference of the row where the coordinate point (x p , y p ) is located; and on the row whose ordinate is y p and its adjacent rows, search for the horizontal first-order difference value in the interval that may exist on the outer edge of the iris The corresponding coordinate points when the sum takes the maximum value can get a series of iris outer edge boundary points; 步骤8.由于瞳孔的外边缘也非常类似于一个圆,因此,对步骤7中得到的一系列虹膜外边缘边界点进行与步骤6中类似的圆拟合,得到虹膜外边缘的精确圆心(xi,yi)和半径riStep 8. Since the outer edge of the pupil is also very similar to a circle, therefore, a series of iris outer edge boundary points obtained in step 7 are fitted with a circle similar to that in step 6 to obtain the precise center of the iris outer edge (x i , y i ) and radius r i ; 步骤9.对定位出的虹膜区域进行归一化处理;Step 9. Normalize the located iris region; 步骤10.计算步骤11中的到的归一化虹膜图像的点锐度,并与预先设定的用于判断虹膜图像是否清晰的阀值Vf进行比较,若f≥Vf,则认为图像的清晰度满足系统的要求,否则,认为不满足系统的要求;Step 10. Calculate the point sharpness of the normalized iris image obtained in step 11, and compare it with the preset threshold value V f for judging whether the iris image is clear. If f≥V f , the image is considered The clarity of the system meets the requirements of the system, otherwise, it is deemed not to meet the requirements of the system; 步骤11.统计归一化虹膜图像中有效象素点的个数,将有效象素点的个数K与预先设定的用于判断虹膜图像是否存在眼睑和睫毛遮挡问题的阀值Vk进行比较,若K≥Vk,则认为虹膜图像的可见度满足系统的要求,否则,认为不满足系统的要求;Step 11. Statistically normalize the number of effective pixels in the iris image, and compare the number K of effective pixels with the preset threshold value V k for judging whether the iris image has the problem of eyelid and eyelash occlusion In comparison, if K≥V k , it is considered that the visibility of the iris image meets the requirements of the system; otherwise, it is considered not to meet the requirements of the system; 通过以上步骤我们就从原始的含有虹膜的图像中提取出归一化的虹膜图像,并且判断出该图像是否满足系统的要求。Through the above steps, we can extract the normalized iris image from the original image containing iris, and judge whether the image meets the requirements of the system. 2.如权利要求1所说,一种基于灰度信息的虹膜识别预处理方法,其特征在于:2. as claimed in claim 1, a kind of iris recognition preprocessing method based on grayscale information, is characterized in that: 步骤5.在纵坐标为yo这一行上,以(xo,yo)为中心,沿水平方向向左搜索象素灰度值大于T的点,当搜索到象素灰度值大于T时立即停止搜索,记下此时的坐标(xl,yo)作为瞳孔边界点的坐标,再按同样的方式进行沿水平方向向右的搜索,得到另一边界点坐标(xr,yo);取坐标点(xo,yo)附近的若干行,在取出的每一行上进行瞳孔边界点的搜索,方法与在yo一行进行的搜索方法相同,最终可以得到一系列瞳孔边界点的坐标;Step 5. On the line where the ordinate is y o , with (x o , y o ) as the center, search for a point with a pixel gray value greater than T along the horizontal direction to the left, when the searched pixel gray value is greater than T Stop searching immediately when , record the coordinates (x l , y o ) at this time as the coordinates of the boundary point of the pupil, and then search to the right along the horizontal direction in the same way, and obtain the coordinates of another boundary point (x r , y o ); take several lines near the coordinate point (x o , y o ), and search for pupil boundary points on each line taken out, the method is the same as the search method in y o line, and finally a series of pupil boundaries can be obtained the coordinates of the point; 步骤7.(1)计算坐标点(xp,yp)所在行的水平一阶差分,具体计算公式为:当xp<x<N-5时,D(x,yp)=I(x+5,yp)-I(x,yp);当5<x≤xp时D(x,yp)=I(x-5,yp)-I(x,yp);其中D(x,yp)表示坐标点(x,yp)的水平一阶差分值,I(x,y)表示坐标点(x,y)的灰度值,N为图像宽度;Step 7. (1) Calculate the horizontal first-order difference of the row where the coordinate point (x p , y p ) is located. The specific calculation formula is: when x p <x<N-5, D(x, y p )=I( x+5, y p )-I(x, y p ); when 5<x≤x p , D(x, y p )=I(x-5, y p )-I(x, y p ); Wherein D(x, y p ) represents the horizontal first-order difference value of the coordinate point (x, y p ), I(x, y) represents the gray value of the coordinate point (x, y), and N is the image width; (2)在纵坐标为yp一行上,在区间[xp+rp+20,xp+rp+100]上计算每个点与后面20个点的水平一阶差分值之和;具体计算公式为:当xp+rp+20<x<xp+rp+100时, S ( x , y p ) = &Sigma; i = 0 20 D ( x + i , y p ) , 其中D(x+i,yp)是步骤(1)中得到的坐标点(x+i,yp)的水平一阶差分值;并在此区间中找出S(x,yp)取最大值时对应的坐标点作为虹膜外缘边界点;再在区间[xp-rp-100,xp-rp-20]上计算每个点与前面20个点的水平一阶差分值之和;具体计算公式为:当xp-rp-100<x<xp-rp-20时, S ( x , y p ) = &Sigma; i = 0 20 D ( x - i , y p ) , 其中D(x-i,yp)是步骤(1)中得到的坐标点(x-i,yp)的水平一阶差分值;并在此区间中找出S(x,yp)取最大值时对应的坐标点作为虹膜外缘边界点;(2) Calculate the sum of the horizontal first-order differences between each point and the next 20 points on the interval [x p +r p +20, x p +r p +100] on the line whose ordinate is y p ; The specific calculation formula is: when x p +r p +20<x<x p +r p +100, S ( x , the y p ) = &Sigma; i = 0 20 D. ( x + i , the y p ) , Among them, D(x+i, y p ) is the horizontal first-order difference value of the coordinate point (x+i, y p ) obtained in step (1); and find out S(x, y p ) in this interval to take The coordinate point corresponding to the maximum value is used as the boundary point of the outer edge of the iris; then calculate the horizontal first-order difference value between each point and the previous 20 points on the interval [x p -r p -100, x p -r p -20] The sum; the specific calculation formula is: when x p -r p -100<x<x p -r p -20, S ( x , the y p ) = &Sigma; i = 0 20 D. ( x - i , the y p ) , Among them, D(xi, y p ) is the horizontal first-order difference value of the coordinate point (xi, y p ) obtained in step (1); The coordinate point of is used as the boundary point of the outer edge of the iris; (3)取瞳孔圆心(xp,yp)附近的若干行,在取出的每一行上进行虹膜外缘边界点的搜索,方法与步骤7中在yp一行进行的搜索方法相同,最终可以得到一系列虹膜外边缘边界点的坐标;(3) Take several lines near the center of the pupil (x p , y p ), and search for the boundary points of the outer edge of the iris on each line taken out. The method is the same as the search method for the line y p in step 7. Finally, it can be Obtain the coordinates of a series of iris outer edge boundary points; 步骤10.计算步骤9中的到的大小为M×N的归一化虹膜图像的点锐度,具体计算公式为: f = &Sigma; i = 1 m &times; n &Sigma; j = 1 8 | dI / dx | / m &times; n , 其中dI为图像中某一点的8-邻域内象素点的灰度值与该点的灰度值的差值,dx为相邻点的距离,m和n分别为图像的高和宽;Step 10. the point sharpness of the normalized iris image that arrives in the size that calculates in step 9 is M * N, and concrete computing formula is: f = &Sigma; i = 1 m &times; no &Sigma; j = 1 8 | iGO / dx | / m &times; no , Wherein dI is the difference between the gray value of the pixel point in the 8-neighborhood of a certain point in the image and the gray value of the point, dx is the distance between adjacent points, and m and n are respectively the height and width of the image; 步骤11:将步骤9中的到的归一化虹膜图像的点锐度值f与预先设定的用于判断虹膜图像是否清晰的阀值Vf进行比较,若f≥Vf,则认为图像的清晰度满足系统的要求,否则,认为不满足系统的要求。Step 11: Compare the point sharpness value f of the normalized iris image obtained in step 9 with the preset threshold value V f for judging whether the iris image is clear. If f≥V f , the image is considered The clarity of the system meets the requirements of the system, otherwise, it is considered not to meet the requirements of the system.
CNA2006101225281A 2006-09-30 2006-09-30 Iris recognition preprocessing method based on gray information Pending CN101201893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2006101225281A CN101201893A (en) 2006-09-30 2006-09-30 Iris recognition preprocessing method based on gray information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2006101225281A CN101201893A (en) 2006-09-30 2006-09-30 Iris recognition preprocessing method based on gray information

Publications (1)

Publication Number Publication Date
CN101201893A true CN101201893A (en) 2008-06-18

Family

ID=39517052

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101225281A Pending CN101201893A (en) 2006-09-30 2006-09-30 Iris recognition preprocessing method based on gray information

Country Status (1)

Country Link
CN (1) CN101201893A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930543A (en) * 2010-08-27 2010-12-29 南京大学 A method for adjusting eye images in selfie videos
CN101576951B (en) * 2009-05-20 2011-11-09 电子科技大学 Iris external boundary positioning method based on shades of gray and classifier
CN102332098A (en) * 2011-06-15 2012-01-25 夏东 Method for pre-processing iris image
US20140022371A1 (en) * 2012-07-20 2014-01-23 Pixart Imaging Inc. Pupil detection device
CN103605959A (en) * 2013-11-15 2014-02-26 武汉虹识技术有限公司 A method for removing light spots of iris images and an apparatus
CN104166848A (en) * 2014-08-28 2014-11-26 武汉虹识技术有限公司 Matching method and system applied to iris recognition
CN104463159A (en) * 2014-12-31 2015-03-25 北京释码大华科技有限公司 Image processing method and device of iris positioning
CN105260725A (en) * 2015-10-23 2016-01-20 北京无线电计量测试研究所 Iris recognition system
CN105389574A (en) * 2015-12-25 2016-03-09 成都品果科技有限公司 Method and system for detecting human eye irises in pictures
CN105488487A (en) * 2015-12-09 2016-04-13 湖北润宏科技有限公司 Iris positioning method and device
CN105574865A (en) * 2015-12-14 2016-05-11 沈阳工业大学 Method for extracting eyelashes based on improved ant colony algorithm
WO2016150239A1 (en) * 2015-03-24 2016-09-29 北京天诚盛业科技有限公司 Method and apparatus for screening iris images
CN106203358A (en) * 2016-07-14 2016-12-07 北京无线电计量测试研究所 A kind of iris locating method and equipment
CN106419830A (en) * 2016-11-10 2017-02-22 任秋生 Method for measuring diameters of pupils
CN106650616A (en) * 2016-11-09 2017-05-10 北京巴塔科技有限公司 Iris location method and visible light iris identification system
CN106778631A (en) * 2016-12-22 2017-05-31 江苏大学 The quick heterogeneous iris classification device method for designing for filtering false iris in a kind of iris recognition preprocessing process
WO2017092679A1 (en) * 2015-12-02 2017-06-08 中国银联股份有限公司 Eyeball tracking method and apparatus, and device
US9854159B2 (en) 2012-07-20 2017-12-26 Pixart Imaging Inc. Image system with eye protection
WO2018108124A1 (en) * 2016-12-15 2018-06-21 腾讯科技(深圳)有限公司 Method and system for positioning pupil
CN108288248A (en) * 2018-01-02 2018-07-17 腾讯数码(天津)有限公司 A kind of eyes image fusion method and its equipment, storage medium, terminal
CN109409223A (en) * 2018-09-21 2019-03-01 昆明理工大学 A kind of iris locating method
CN109559294A (en) * 2017-09-26 2019-04-02 凌云光技术集团有限责任公司 A kind of detection method and device of drop circular hole quality
CN109738433A (en) * 2018-11-30 2019-05-10 西北大学 Method and device for detecting water content of water-oil layered mixture based on image processing
CN110026902A (en) * 2017-12-27 2019-07-19 株式会社迪思科 Cutting apparatus
CN110276229A (en) * 2018-03-14 2019-09-24 京东方科技集团股份有限公司 Target object regional center localization method and device
CN112489042A (en) * 2020-12-21 2021-03-12 大连工业大学 Detection method of metal printing defects and surface damage based on super-resolution reconstruction
CN112906431A (en) * 2019-11-19 2021-06-04 北京眼神智能科技有限公司 Iris image segmentation method and device, electronic equipment and storage medium
CN114993963A (en) * 2022-05-27 2022-09-02 哈尔滨工程大学 A non-destructive testing method for apple sugar content based on machine learning

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576951B (en) * 2009-05-20 2011-11-09 电子科技大学 Iris external boundary positioning method based on shades of gray and classifier
CN101930543B (en) * 2010-08-27 2012-06-27 南京大学 Method for adjusting eye image in self-photographed video
CN101930543A (en) * 2010-08-27 2010-12-29 南京大学 A method for adjusting eye images in selfie videos
CN102332098B (en) * 2011-06-15 2014-03-12 湖南领创智能科技有限公司 Method for pre-processing iris image
CN102332098A (en) * 2011-06-15 2012-01-25 夏东 Method for pre-processing iris image
US10574878B2 (en) 2012-07-20 2020-02-25 Pixart Imaging Inc. Electronic system with eye protection
US20140022371A1 (en) * 2012-07-20 2014-01-23 Pixart Imaging Inc. Pupil detection device
US9854159B2 (en) 2012-07-20 2017-12-26 Pixart Imaging Inc. Image system with eye protection
CN103605959A (en) * 2013-11-15 2014-02-26 武汉虹识技术有限公司 A method for removing light spots of iris images and an apparatus
CN104166848A (en) * 2014-08-28 2014-11-26 武汉虹识技术有限公司 Matching method and system applied to iris recognition
CN104166848B (en) * 2014-08-28 2017-08-29 武汉虹识技术有限公司 A kind of matching process and system applied to iris recognition
CN104463159A (en) * 2014-12-31 2015-03-25 北京释码大华科技有限公司 Image processing method and device of iris positioning
CN104463159B (en) * 2014-12-31 2017-11-28 北京释码大华科技有限公司 A kind of image processing method and device for positioning iris
WO2016150239A1 (en) * 2015-03-24 2016-09-29 北京天诚盛业科技有限公司 Method and apparatus for screening iris images
CN105260725A (en) * 2015-10-23 2016-01-20 北京无线电计量测试研究所 Iris recognition system
US10699420B2 (en) 2015-12-02 2020-06-30 China Unionpay Co., Ltd. Eyeball tracking method and apparatus, and device
WO2017092679A1 (en) * 2015-12-02 2017-06-08 中国银联股份有限公司 Eyeball tracking method and apparatus, and device
CN105488487A (en) * 2015-12-09 2016-04-13 湖北润宏科技有限公司 Iris positioning method and device
CN105488487B (en) * 2015-12-09 2018-11-02 湖北润宏科技股份有限公司 A kind of iris locating method and device
CN105574865B (en) * 2015-12-14 2019-11-12 沈阳工业大学 Method of extracting eyelashes based on improved ant colony algorithm
CN105574865A (en) * 2015-12-14 2016-05-11 沈阳工业大学 Method for extracting eyelashes based on improved ant colony algorithm
CN105389574A (en) * 2015-12-25 2016-03-09 成都品果科技有限公司 Method and system for detecting human eye irises in pictures
CN105389574B (en) * 2015-12-25 2019-03-22 成都品果科技有限公司 The method and system of human eye iris in a kind of detection picture
CN106203358A (en) * 2016-07-14 2016-12-07 北京无线电计量测试研究所 A kind of iris locating method and equipment
CN106203358B (en) * 2016-07-14 2019-11-19 北京无线电计量测试研究所 A kind of iris locating method and equipment
CN106650616A (en) * 2016-11-09 2017-05-10 北京巴塔科技有限公司 Iris location method and visible light iris identification system
CN106419830A (en) * 2016-11-10 2017-02-22 任秋生 Method for measuring diameters of pupils
US10878593B2 (en) 2016-12-15 2020-12-29 Tencent Technology (Shenzhen) Company Limited Pupil localizing method and system
WO2018108124A1 (en) * 2016-12-15 2018-06-21 腾讯科技(深圳)有限公司 Method and system for positioning pupil
CN106778631A (en) * 2016-12-22 2017-05-31 江苏大学 The quick heterogeneous iris classification device method for designing for filtering false iris in a kind of iris recognition preprocessing process
CN106778631B (en) * 2016-12-22 2020-11-20 江苏大学 A design method of heterogeneous iris classifier for fast filtering of fake irises during iris recognition preprocessing
CN109559294A (en) * 2017-09-26 2019-04-02 凌云光技术集团有限责任公司 A kind of detection method and device of drop circular hole quality
CN109559294B (en) * 2017-09-26 2021-01-26 凌云光技术股份有限公司 Method and device for detecting quality of circular hole of drop
CN110026902A (en) * 2017-12-27 2019-07-19 株式会社迪思科 Cutting apparatus
CN108288248A (en) * 2018-01-02 2018-07-17 腾讯数码(天津)有限公司 A kind of eyes image fusion method and its equipment, storage medium, terminal
CN110276229A (en) * 2018-03-14 2019-09-24 京东方科技集团股份有限公司 Target object regional center localization method and device
CN109409223A (en) * 2018-09-21 2019-03-01 昆明理工大学 A kind of iris locating method
CN109738433A (en) * 2018-11-30 2019-05-10 西北大学 Method and device for detecting water content of water-oil layered mixture based on image processing
CN109738433B (en) * 2018-11-30 2021-03-26 西北大学 Method and device for detecting water content of water-oil layered mixed liquid based on image processing
CN112906431A (en) * 2019-11-19 2021-06-04 北京眼神智能科技有限公司 Iris image segmentation method and device, electronic equipment and storage medium
CN112906431B (en) * 2019-11-19 2024-05-24 北京眼神智能科技有限公司 Iris image segmentation method and device, electronic equipment and storage medium
CN112489042A (en) * 2020-12-21 2021-03-12 大连工业大学 Detection method of metal printing defects and surface damage based on super-resolution reconstruction
CN112489042B (en) * 2020-12-21 2024-07-19 大连工业大学 Method for detecting metal printing defects and surface damage based on super-resolution reconstruction
CN114993963A (en) * 2022-05-27 2022-09-02 哈尔滨工程大学 A non-destructive testing method for apple sugar content based on machine learning

Similar Documents

Publication Publication Date Title
CN100373397C (en) A kind of iris image preprocessing method
CN101201893A (en) Iris recognition preprocessing method based on gray information
Radman et al. Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut
CN101359365B (en) A Method of Iris Location Based on Maximum Inter-class Variance and Gray Level Information
CN101246544B (en) Iris positioning method based on boundary point search and minimum kernel value similarity region edge detection
CN101339603A (en) Method for selecting iris image with qualified quality from video stream
CN101266645B (en) A method of iris localization based on multi-resolution analysis
CN108009472B (en) Finger back joint print recognition method based on convolutional neural network and Bayes classifier
CN103164704B (en) A kind of iris segmentation algorithm based on mixed Gauss model
CN105956578A (en) Face verification method based on identity document information
WO2013087026A1 (en) Locating method and locating device for iris
Thalji et al. Iris Recognition using robust algorithm for eyelid, eyelash and shadow avoiding
CN101241550B (en) A method for judging the quality of iris images
Li et al. Robust iris segmentation based on learned boundary detectors
CN102411709A (en) Iris segmentation and identification method
CN105574509A (en) Face identification system playback attack detection method and application based on illumination
WO2019014814A1 (en) Method for quantitatively detecting forehead wrinkles on human face, and intelligent terminal
Wang et al. Hand vein recognition based on multi-scale LBP and wavelet
CN105809089A (en) Multi-face detection method and device under complex background
CN101866420B (en) Image preprocessing method for optical volume holographic iris recognition
CN107862298A (en) It is a kind of based on the biopsy method blinked under infrared eye
Pundlik et al. Iris segmentation in non-ideal images using graph cuts
CN106778631B (en) A design method of heterogeneous iris classifier for fast filtering of fake irises during iris recognition preprocessing
Wang et al. V-Vibe: A robust ROI extraction method based on background subtraction for vein images collected by infrared device
Puhan et al. Robust eyeball segmentation in noisy iris images using fourier spectral density

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication