CN101201498A - Display device, terminal device, display panel and optical member - Google Patents
Display device, terminal device, display panel and optical member Download PDFInfo
- Publication number
- CN101201498A CN101201498A CNA2007101668636A CN200710166863A CN101201498A CN 101201498 A CN101201498 A CN 101201498A CN A2007101668636 A CNA2007101668636 A CN A2007101668636A CN 200710166863 A CN200710166863 A CN 200710166863A CN 101201498 A CN101201498 A CN 101201498A
- Authority
- CN
- China
- Prior art keywords
- image
- scattering
- anisotropic scattering
- display
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 65
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims description 175
- 230000004888 barrier function Effects 0.000 claims description 79
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 134
- 238000000926 separation method Methods 0.000 abstract description 40
- 230000015556 catabolic process Effects 0.000 abstract description 28
- 238000006731 degradation reaction Methods 0.000 abstract description 28
- 230000000694 effects Effects 0.000 description 90
- 239000011295 pitch Substances 0.000 description 76
- 230000002829 reductive effect Effects 0.000 description 55
- 230000000903 blocking effect Effects 0.000 description 38
- 239000010410 layer Substances 0.000 description 32
- 239000000758 substrate Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 24
- 230000006866 deterioration Effects 0.000 description 19
- 230000001965 increasing effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 239000003292 glue Substances 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000004304 visual acuity Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000004935 right thumb Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
本发明涉及显示设备、终端设备、显示面板和光学构件。反射液晶显示面板是用于三维显示的显示面板,其中,按矩阵提供作为由一个左眼像素L和一个右眼像素R组成的显示元件的像素对。荚状透镜是用于图像分离的光学构件,被提供用来分离来自左右像素的光,并且多个荚状透镜形成一维排列的透镜阵列。在荚状透镜和反射液晶显示面板间提供作为各向异性散射元件的各向异性散射板。根据该结构,能最小化反射显示的质量降低,以及能实现提高的图像质量,而不改变能向多个视点显示不同图像的显示设备中反射面板的凹凸结构和荚状透镜的透镜形状。
The present invention relates to a display device, a terminal device, a display panel and an optical member. The reflective liquid crystal display panel is a display panel for three-dimensional display in which pairs of pixels as display elements consisting of one left-eye pixel L and one right-eye pixel R are provided in a matrix. A lenticular lens is an optical member for image separation, provided to separate light from left and right pixels, and a plurality of lenticular lenses form a one-dimensionally arranged lens array. An anisotropic scattering plate as an anisotropic scattering element is provided between the lenticular lens and the reflective liquid crystal display panel. According to this structure, degradation of reflective display can be minimized, and improved image quality can be realized without changing the concave-convex structure of the reflective panel and the lens shape of the lenticular lens in a display device capable of displaying different images to a plurality of viewpoints.
Description
技术领域technical field
本发明涉及能向多个视点的每一个显示图像的显示设备,涉及终端设备,以及更具体地说,涉及能降低由显示设备的结构引起的显示质量恶化的显示设备,涉及终端设备,以及涉及能合适地用在显示设备和终端设备中的显示面板和光学构件。The present invention relates to a display device capable of displaying images to each of a plurality of viewpoints, to a terminal device, and more particularly, to a display device capable of reducing deterioration of display quality caused by a structure of the display device, to a terminal device, and to a terminal device A display panel and an optical member that can be suitably used in display devices and terminal devices.
背景技术Background technique
由于近来技术发展,显示面板被配置并用在包括监视器,电视接收器和其他大的终端设备;笔记本个人计算机,自动柜员机,售货机和其他中型终端设备;以及个人TVs、PDAs(个人数字助理:个人信息终端),移动电话,移动游戏设备和其他小的终端设备的范围中的各个位置中。因为它们的薄外观、体轻、小型、低能耗和其他优点,特别是使用液晶的显示设备配置在大量终端设备中。目前的显示设备显示出即使当从不处于正面的方向的视点看时,也能看到与正面相同的内容,但正在开发能够根据视点观看不同图像的显示设备,以及期望为下一代显示设备。三维图像显示设备用作能向多个视点的每一个显示不同图像的设备的例子。三维图像显示设备必须具有用于对左右眼提供用于左右视点的不同图像,即视差图像的功能。Due to recent technological developments, display panels are configured and used in monitors, television receivers and other large terminal equipment; notebook personal computers, automatic teller machines, vending machines and other medium-sized terminal equipment; and personal TVs, PDAs (personal digital assistants: personal information terminals), mobile phones, mobile game devices and other small terminal devices in various locations. Especially, display devices using liquid crystals are deployed in a large number of terminal devices because of their thin appearance, light weight, small size, low power consumption, and other advantages. Current display devices show that the same content as the front can be seen even when viewed from a viewpoint that is not in the direction of the front, but display devices that can view different images according to viewpoints are being developed, and are expected to be next-generation display devices. A three-dimensional image display device is used as an example of a device capable of displaying a different image to each of a plurality of viewpoints. A three-dimensional image display device must have a function for providing different images for left and right viewpoints, that is, parallax images, to left and right eyes.
过去,作为用于具体地实现上述功能的方法,已经研究了多种三维图像显示系统, 以及这些系统能宽泛地划分成使用眼镜的系统和不使用眼镜的系统。使用眼镜的系统包括使用色差的立体影片系统、使用偏振光的偏振光眼镜系统和其他系统,但眼镜的不便对这些系统来说是固有的。因此,近年来,已经大量地研究不使用眼镜的无眼镜系统。In the past, various three-dimensional image display systems have been studied as methods for specifically realizing the above-mentioned functions, and these systems can be broadly classified into systems using glasses and systems not using glasses. Systems that use glasses include anaglyph systems that use chromatic aberration, polarized glasses systems that use polarized light, and others, but the inconvenience of glasses is inherent to these systems. Therefore, in recent years, a glasses-free system that does not use glasses has been intensively studied.
无眼镜系统包括荚状透镜系统、视差栅栏系统等等。如在日本公开专利申请No.2004-280079中所述,荚状透镜系统将荚状透镜用作用于相对于多个视点,划分图像的装置。在该荚状透镜中,表面的一个由平面组成,以及相对面具有在纵向中,形成为彼此平行的、在一个方向延伸的多个半圆柱凸面部(柱面透镜)。在荚状透镜三维图像显示设备中,按从观察者的方向的顺序,排列荚状透镜和显示面板,以及显示面板的像素位于荚状透镜的焦面。在显示面板中,按交替方式排列用于显示右眼图像的像素和用于显示左眼图像的像素。此时,相邻像素组对应于荚状透镜的凸面部。由此,通过荚状透镜的凸面部,将来自像素的光分配到左和右眼方向。能由左右眼识别不同的图像,以及观察者能识别三维图像。Glasses-free systems include lenticular systems, parallax barrier systems, and the like. As described in Japanese Laid-Open Patent Application No. 2004-280079, a lenticular lens system uses a lenticular lens as means for dividing an image with respect to a plurality of viewpoints. In this lenticular lens, one of the surfaces is composed of a plane, and the opposite surface has a plurality of semicylindrical convex portions (cylindrical lenses) extending in one direction formed parallel to each other in the longitudinal direction. In the lenticular lens three-dimensional image display device, the lenticular lens and the display panel are arranged in order from the direction of the observer, and the pixels of the display panel are located on the focal plane of the lenticular lens. In the display panel, pixels for displaying a right-eye image and pixels for displaying a left-eye image are alternately arranged. At this time, adjacent pixel groups correspond to convex portions of the lenticular lens. Thus, the light from the pixel is distributed to the left and right eye directions through the convex portion of the lenticular lens. Different images can be recognized by the left and right eyes, and the observer can recognize three-dimensional images.
视差栅栏系统使用栅栏(阻光面板),在所述栅栏中窄垂直条纹的形状的多个开口,例如狭缝,形成为用于划分图像的装置。将包括用于显示左眼图像的像素和用于显示右眼图像的像素的组排列成对应于视差栅栏的狭缝。因此,由栅栏阻挡用于显示左眼图像的像素以及不能由观察者的右眼看到,以及只有用于显示右眼图像的像素对观察者的右眼是可见的。用相同的方式,由栅栏挡住用于显示右眼图像的像素以及观察者的左眼不能看到,以及用于显示左眼图像的像素仅观察者的左眼能看到。因此,当显示视差图像时,观察者能识别三维图像。The parallax barrier system uses a barrier (light blocking panel) in which a plurality of openings in the shape of narrow vertical stripes, such as slits, are formed as means for dividing an image. Groups including pixels for displaying a left-eye image and pixels for displaying a right-eye image are arranged to correspond to slits of the parallax barrier. Thus, the pixels for displaying the left-eye image are blocked by the barrier and cannot be seen by the observer's right eye, and only the pixels for displaying the right-eye image are visible to the observer's right eye. In the same way, the pixels for displaying the image for the right eye are blocked by the barrier and cannot be seen by the left eye of the observer, and the pixels for displaying the image for the left eye are visible only for the left eye of the observer. Therefore, when the parallax image is displayed, the observer can recognize the three-dimensional image.
当第一次提出视差栅栏系统时,在像素和眼睛间放置视差栅栏,由此防碍观看以及造成不良可见度的问题。然而,液晶显示设备的近来发展已经允许将视差栅栏放在显示面板后,由此提高可见度。因此,正积极地研究视差栅栏三维图像显示设备。然而,视差栅栏系统是用于使用栅栏,“隐蔽”不必要的光线的系统,而荚状透镜系统改变光的传播方向,以及荚状透镜系统具有原理上,未降低显示图像的亮度的优点。因此,荚状透镜系统被研究用于特别是移动设备等等中,其中,高亮度显示和低功耗很重要。When the parallax barrier system was first proposed, the parallax barrier was placed between the pixels and the eyes, thereby obstructing viewing and causing poor visibility problems. However, recent developments in liquid crystal display devices have allowed for a parallax barrier to be placed behind the display panel, thereby improving visibility. Therefore, a parallax barrier three-dimensional image display device is being actively studied. However, the parallax barrier system is a system for "concealing" unnecessary light rays using a barrier, while the lenticular lens system changes the propagation direction of light, and the lenticular lens system has an advantage in principle of not lowering the brightness of a displayed image. Therefore, lenticular lens systems are studied for use in mobile devices and the like in particular, where high brightness display and low power consumption are important.
作为能向多个视点显示不同图像的设备的另一例子,已经开发了能同时向多个视点显示多个不同图像的多图像同时显示设备(例如见日本公开专利申请No.06-332354)。在该显示中,在相同条件下,利用使用荚状透镜分配图像的功能来对每一观察方向同时显示不同图像。因此,单一多图像同时显示设备能同时向相对于显示设备位于彼此不同方向的多个观察者提供彼此不同的图像。根据日本公开专利申请No.06-332354,与准备与将同时显示的多个图像的数目相等的多个常规单图像显示设备相比,使用这种多图像同时显示设备使得减少安装空间以及电力成本。As another example of a device capable of displaying different images to multiple viewpoints, a multi-image simultaneous display device capable of simultaneously displaying multiple different images to multiple viewpoints has been developed (see, for example, Japanese Laid-Open Patent Application No. 06-332354). In this display, under the same conditions, different images are simultaneously displayed for each viewing direction using a function of distributing images using a lenticular lens. Therefore, a single multi-image simultaneous display device can simultaneously provide images different from each other to a plurality of observers located in different directions from each other with respect to the display device. According to Japanese Laid-Open Patent Application No. 06-332354, use of such a multi-image simultaneous display device enables reduction of installation space as well as power cost as compared with preparing a plurality of conventional single-image display devices equal to the number of multiple images to be simultaneously displayed .
由于能由此向每一不同视点显示不同图像,正积极地研究提供荚状透镜、视差栅栏或其他光学构件的显示设备。然而,本发明人已经发现当仅提供光学构件时,会产生几个问题,以及本发明人已经提出了用于克服这些问题的手段。Since different images can thus be displayed to each different viewpoint, display devices providing lenticular lenses, parallax barriers, or other optical members are being actively researched. However, the present inventors have found that when only optical members are provided, several problems arise, and the present inventors have proposed means for overcoming these problems.
例如,当如在日本公开专利申请No.2004-280079中所述,使用半透射显示面板和反射显示面板,其具有像素中带凸凹结构的反射面板时,产生根据观察位置部分地降低显示的亮度的区域,当改变观察位置时,在降低亮度的位置中显示器看起来变暗,以及在一些情况下,观察到暗线图案重叠在图像上。可看出由显示的亮度的变化引起显示质量降低。这一问题的原因是当通过在反射面板上形成的凹凸结构反射由荚状透镜聚焦的外部光时,反射角根据构成凹凸结构的倾斜面的倾斜角改变。因此,日本公开专利申请No.2004-280079提出了一种用于提供荚状透镜以便其焦距不同于反射面板和透镜间的距离的方法;用于设置凹凸结构的倾斜面以便凹凸结构多次反射由荚状透镜聚焦的光的方法;以及用于设置凹凸结构以便具有存在于凹凸结构中的某一倾斜角的倾斜面的概率在柱面透镜的对齐方向中的像素间是均匀的方法。For example, when a semi-transmissive display panel and a reflective display panel having a reflective panel with a convex-concave structure in a pixel are used as described in Japanese Laid-Open Patent Application No. 2004-280079, partial reduction in brightness of display depending on the viewing position occurs. In an area where the viewing position is changed, the display appears darkened in a position where the brightness is reduced, and in some cases, a pattern of dark lines is observed superimposed on the image. It can be seen that the display quality is degraded by the change in the brightness of the display. The reason for this problem is that when the external light focused by the lenticular lens is reflected by the concave-convex structure formed on the reflective panel, the reflection angle changes according to the inclination angle of the inclined surface constituting the concave-convex structure. Therefore, Japanese Laid-Open Patent Application No. 2004-280079 proposes a method for providing a lenticular lens so that its focal length is different from the distance between the reflective panel and the lens; for setting the inclined surface of the concave-convex structure so that the concave-convex structure reflects multiple times A method of light focused by a lenticular lens; and a method for arranging a concavo-convex structure so that the probability of an inclined surface having a certain inclination angle existing in the concavo-convex structure is uniform among pixels in the alignment direction of the cylindrical lens.
如在日本公开专利申请No.2006-17820中所述,当提供光学构件时产生的另一问题是条纹图案叠加在显示图像上,以及当将用于图像分离的光学构件包含在透射式显示设备中时,由于透射显示设备的照明构件中形成的凹凸结构的影响,严重地降低显示质量。这一问题的原因是由于在照明构件中形成的凹凸结构,在从照明构件发出的光线的方向中,出现面内分布,以及该面内分布可视地由用于图像分离的光学构件放大。由于厚度减少等等,随着使照明构件的凹凸结构越接近荚状透镜的焦面,加重这一问题。因此,日本公开专利申请No.2006-17820提出了一种用于通过使凹凸结构中的相邻凸面部间的距离小于通过将凹凸结构和像素间的距离乘以荚状透镜的透镜间距获得的值,以及将该结果除以焦距,以及通过根据所使用的凹凸透镜,改变凹凸结构,最小化显示质量的降低的方法。As described in Japanese Laid-Open Patent Application No. 2006-17820, another problem that arises when providing an optical member is that a fringe pattern is superimposed on a display image, and when an optical member for image separation is included in a transmissive display device When it is medium, the display quality is severely degraded due to the influence of the concave-convex structure formed in the illumination member of the transmission display device. The cause of this problem is that in the direction of light emitted from the lighting member, an in-plane distribution occurs due to the concave-convex structure formed in the lighting member, and this in-plane distribution is visually magnified by the optical member for image separation. This problem is exacerbated as the concavo-convex structure of the lighting member is brought closer to the focal plane of the lenticular lens due to thickness reduction and the like. Therefore, Japanese Laid-Open Patent Application No. 2006-17820 proposes a method for making the distance between adjacent convex portions in the concave-convex structure smaller than that obtained by multiplying the distance between the concave-convex structure and the pixel by the lens pitch of the lenticular lens. value, and dividing the result by the focal length, and a method of minimizing degradation in display quality by changing the concave-convex structure according to the meniscus lens used.
然而,在为通过改变凹凸结构或荚状透镜的性能,克服上述问题,即由在反射面板中形成的凹凸结构引起的显示质量的降低,或由于在照明构件中形成的凹凸结构的图像质量降低的上述方法中,与下文相同的问题是显而易见的。特别地,出现必须改变透镜或其他光学元件,以及反射面板的凹凸结构,以及照明构件的凹凸结构的问题。特别当普通、标准产品用于上述构件时,除修改外,毫无选择。在透镜、照明构件或具有三维形状的其他构件的情况下,在表面形状变更的情况下,必须从模塑阶段进行修改,这有可能包含大规模的修改。因此,存在通过更简单手段克服上述问题,而不修改透镜面或凹凸结构的需要。However, in order to overcome the above-mentioned problem, that is, the degradation of display quality caused by the concave-convex structure formed in the reflective panel, or the image quality degradation due to the concave-convex structure formed in the lighting member, by changing the properties of the concave-convex structure or the lenticular lens In the above method of , the same problem as below is apparent. In particular, there arises the problem of having to change lenses or other optical elements, as well as the concave-convex structure of the reflective panel, and the concave-convex structure of the lighting member. Especially when ordinary, standard products are used for the above components, there is no choice but to modify. In the case of lenses, lighting components or other components with a three-dimensional shape, modifications must be made from the molding stage, possibly involving large-scale modifications, in case of changes in surface shape. Therefore, there is a need to overcome the above-mentioned problems by simpler means without modifying the lens face or the concave-convex structure.
根据对具有荚状透镜、视差栅栏或其他光学构件的显示设备的集中研究的结果,发明人发现在这些显示设备中,对显示没有用的相邻像素或其他区间的边界区的图案被观察为透镜或狭缝的排列方向中的平行线,以及产生降低图像质量的问题。As a result of intensive research on display devices having lenticular lenses, parallax barriers, or other optical components, the inventors have found that in these display devices, patterns of adjacent pixels or border regions of other intervals that are not useful for display are observed as Parallel lines in the arrangement direction of lenses or slits, and a problem of lowering image quality arises.
发明内容Contents of the invention
本发明的第一目的是提供一种显示设备,能最小化反射显示的质量的降低以及实现增加图像质量,而不改变具有用于图像分离的光学构件的显示设备中,反射面板的凹凸结构和荚状透镜的透镜形状,提供终端设备、提供显示面板和提供光学构件。A first object of the present invention is to provide a display device capable of minimizing degradation of reflective display quality and achieving increased image quality without changing the concavo-convex structure of the reflective panel and the display device having an optical member for image separation The lens shape of the lenticular lens provides a terminal device, provides a display panel, and provides an optical member.
本发明的第二目的是提供一种显示设备,能最小化透射显示质量的降低和实现增加图像质量,而不改变照明构件中形成的凹凸结构和荚状透镜的透镜形状,提供终端设备,提供显示面板和提供光学元件。A second object of the present invention is to provide a display device capable of minimizing the reduction in transmission display quality and achieving an increase in image quality without changing the concave-convex structure formed in the lighting member and the lens shape of the lenticular lens, providing a terminal device, providing display panel and provide optical components.
本发明的第三目的是提供一种显示设备,能实现增加图像质量和最小化由观察为与透镜和狭缝的排列方向平行的线、对显示无作用的区域的图案引起的图像质量的降低,提供终端设备,提供显示面板和提供光学构件。A third object of the present invention is to provide a display device capable of achieving an increase in image quality and minimizing a decrease in image quality caused by a pattern observed as a line parallel to the arrangement direction of lenses and slits, an area that has no effect on display , providing a terminal device, providing a display panel and providing an optical member.
本发明的特征在于向显示设备提供各向异性散射部,由此可以最小化使用图像分离光学装置和显示面板显示的图像的质量下降,而不显著地折衷透镜、栅栏、或其他图像分离光学装置的图像分离效果。为实现此,优选提供各向异性散射部,用于散射相对于显示面板的像素入射或出射的光,以便图像分配方向中的散射不同于其他方向中的散射。因此,不仅可以防止显示图像质量下降,而且能降低成本,因为不需要改变图像分配部和显示面板的结构。The present invention is characterized in that an anisotropic scattering portion is provided to a display device, whereby degradation in image quality displayed using image separation optics and a display panel can be minimized without significantly compromising lenses, barriers, or other image separation optics image separation effect. To achieve this, it is preferable to provide an anisotropic scattering section for scattering light incident or emitted with respect to the pixels of the display panel so that scattering in the image distribution direction differs from scattering in other directions. Therefore, not only the deterioration of the display image quality can be prevented, but also the cost can be reduced because there is no need to change the structure of the image distribution section and the display panel.
特别地,通过各向异性散射部的最大散射方向是垂直于图像分离方向的方向,由此,能提高图像质量,而不折衷图像分离光学装置的图像分离效果。各向异性散射部优选位于显示面板像素的图像分离装置侧上。在这种情况下,结合具有以像素为单位的反射板的显示面板,通过图像分配部和在反射板上形成的凹凸结构,能最小化图像质量下降,以及能提高反射显示的图像质量。结合半透射或全透射显示面板,可以降低由于图像分配部和相邻像素的边界的结合而引起的图像质量的任何恶化,以及提高图像质量。In particular, the maximum scattering direction by the anisotropic scattering portion is a direction perpendicular to the image separation direction, whereby image quality can be improved without compromising the image separation effect of the image separation optics. The anisotropic scattering portion is preferably located on the image separation device side of the display panel pixel. In this case, image quality degradation can be minimized and image quality of reflective display can be improved by the image distribution portion and the concavo-convex structure formed on the reflective plate in combination with a display panel having a reflective plate in units of pixels. In combination with a semi-transmissive or full-transmissive display panel, it is possible to reduce any deterioration of the image quality due to the combination of the image distribution portion and the boundary of adjacent pixels, and to improve the image quality.
根据本发明的显示设备,此外,各向异性散射部的最大散射方向能是第一方向,其中,在显示单元中排列用于显示用于第一视点的图像的像素和用于显示用于第二视点的图像的像素。图像分配部沿第一方向,将从像素发出的光分配到不同方向。在这种情况下,各向异性散射部位于显示面板的背侧上,由此最大化抑制由各向异性散射部引起的图像质量的恶化的影响。特别是在将用于发出平面中的光的平面光源提供给显示面板的背侧的情况下,也可以增加图像质量。这是因为经在平面光源的表面和内部上形成的凹凸结构,在平面中发出光,但本发明能最小化由平面光源的凹凸结构和图像分配部引起的显示质量的任何恶化。此外,使用各向异性散射部允许限制散射方向,相应地,能最小化正面亮度的任何减小。According to the display device of the present invention, furthermore, the maximum scattering direction of the anisotropic scattering portion can be a first direction in which pixels for displaying an image for the first viewpoint and pixels for displaying an image for the second viewpoint are arranged in the display unit. The pixels of the two-viewpoint image. The image distribution unit distributes the light emitted from the pixels to different directions along the first direction. In this case, the anisotropic scattering part is located on the backside of the display panel, thereby maximally suppressing the influence of deterioration of image quality caused by the anisotropic scattering part. The image quality can also be increased especially in the case where a planar light source for emitting light in a plane is provided to the rear side of the display panel. This is because light is emitted in a plane via the concave-convex structure formed on the surface and inside of the planar light source, but the present invention can minimize any deterioration of display quality caused by the concave-convex structure and the image distribution portion of the planar light source. Furthermore, the use of anisotropic scattering sections allows limiting the direction of scattering, and accordingly, any reduction in frontal brightness can be minimized.
根据本发明,在其中提供有用于图像分配的荚状透镜和视差栅栏或其他光学构件的显示设备中,提供各向异性散射部,所述各向异性散射部在垂直于显示平面中的光学构件的图像分配方向的方向中产生比图像分配方向中的散射更大的散射。因此,能降低在反射面板上形成的凹凸结构的影响,以及能提高图像质量。也能降低在照明构件上形成的凹凸结构的影响,以及能提高图像质量。此外,能降低观察为平行于图像分配方向的线段的非显示区的影响,以及能提高图像质量。According to the present invention, in a display device in which a lenticular lens and a parallax barrier or other optical member for image distribution are provided, an anisotropic scattering portion is provided which is perpendicular to the optical member in the display plane. The scatter in the direction of the image-assigned direction produces a larger scatter than the scatter in the image-assigned direction. Therefore, the influence of the concavo-convex structure formed on the reflective panel can be reduced, and image quality can be improved. It is also possible to reduce the influence of the concavo-convex structure formed on the lighting member, and to improve image quality. In addition, the influence of the non-display area viewed as a line segment parallel to the image distribution direction can be reduced, and the image quality can be improved.
附图说明Description of drawings
图1是表示根据本发明的实施例1的显示设备的截面图;1 is a sectional view showing a display device according to
图2是表示图1中所示的显示设备的各向异性散射板的俯视图;2 is a top view showing an anisotropic scattering plate of the display device shown in FIG. 1;
图3是表示图像分配部的图像分配方向和各向异性散射板的散射方向间的关系的俯视图;3 is a plan view showing the relationship between the image distribution direction of the image distribution unit and the scattering direction of the anisotropic scattering plate;
图4是表示本实施例的终端设备的透视图;FIG. 4 is a perspective view showing a terminal device of the present embodiment;
图5是表示在本实施例的反射液晶显示设备中,与X轴方向平行的线段产生的截面中的光学模型的图;5 is a diagram showing an optical model in a cross-section generated by a line segment parallel to the X-axis direction in the reflective liquid crystal display device of the present embodiment;
图6是表示当使用荚状透镜时的光学模型的截面图;6 is a sectional view showing an optical model when a lenticular lens is used;
图7是表示为计算荚状透镜的图像分离条件,当曲率半径最小时的实例的光学模型图;Fig. 7 is an optical model diagram representing an example when the radius of curvature is the smallest for calculating the image separation condition of the lenticular lens;
图8是表示为计算荚状透镜的图像分离条件,当曲率半径最大时的实例的光学模型图;Fig. 8 is an optical model diagram showing an example when the radius of curvature is maximum for calculating the image separation condition of the lenticular lens;
图9是表示当各向异性散射结构存在于柱面透镜的焦点附近时的实例的截面图,以及特别表示该结构具有主要影响的实例;9 is a sectional view showing an example when an anisotropic scattering structure exists in the vicinity of the focal point of a cylindrical lens, and an example showing in particular that the structure has a major influence;
图10是表示当各向异性散射结构存在于柱面透镜的焦点附近时的实例的截面图,以及特别表示该结构具有次要影响的实例;10 is a cross-sectional view showing an example when an anisotropic scattering structure exists in the vicinity of the focal point of a cylindrical lens, and an example showing in particular that the structure has a secondary influence;
图11是表示当各向异性散射结构存在于与柱面透镜的焦点充分地分开的位置中时的实例的截面图;11 is a cross-sectional view showing an example when an anisotropic scattering structure exists in a position sufficiently separated from a focal point of a cylindrical lens;
图12是用来计算沿各向异性散射结构的z轴方向的位置的光学模型图;12 is an optical model diagram used to calculate the position along the z-axis direction of the anisotropic scattering structure;
图13是表示当使用视差栅栏时的光学模型的截面图;13 is a sectional view showing an optical model when a parallax barrier is used;
图14是表示为计算视差栅栏的图像分离条件,当狭缝开口宽度最大时的实例的光学模型图;Fig. 14 is an optical model diagram showing an example when the slit opening width is maximum for calculating the image separation condition of the parallax barrier;
图15是用于计算沿各向异性散射结构的z轴方向的位置的光学模型图;15 is an optical model diagram for calculating the position along the z-axis direction of the anisotropic scattering structure;
图16是表示根据本发明的实施例2的显示设备的截面图;16 is a sectional view showing a display device according to
图17是表示根据本发明的实施例3的显示设备的截面图;17 is a sectional view showing a display device according to
图18是表示根据本发明的实施例4的显示设备的截面图;18 is a sectional view showing a display device according to
图19是表示根据本发明的实施例5的显示设备的截面图;19 is a sectional view showing a display device according to
图20是表示图19中所示的导光面板和LED的俯视图;Fig. 20 is a top view showing the light guide panel and LED shown in Fig. 19;
图21是表示图19中所示的导光面板和LED的截面图;Fig. 21 is a sectional view showing the light guide panel and LED shown in Fig. 19;
图22是表示在本实施例的透射液晶显示设备中,由与x轴方向平行的线段产生的截面中的光学模型的图;FIG. 22 is a diagram showing an optical model in a cross section generated by a line segment parallel to the x-axis direction in the transmissive liquid crystal display device of the present embodiment;
图23是表示用于视差栅栏排列在显示面板的后面的实施例的光学模型的截面图;23 is a cross-sectional view showing an optical model for an embodiment in which a parallax barrier is arranged behind a display panel;
图24是表示根据本发明的实施例6的显示设备的截面图;24 is a sectional view showing a display device according to
图25是表示根据本发明的比较例子1的显示设备的截面图;25 is a sectional view showing a display device according to Comparative Example 1 of the present invention;
图26是表示根据比较例子1的显示面板中的像素的俯视图;26 is a plan view showing pixels in a display panel according to Comparative Example 1;
图27是表示当由观察者观看根据比较例子1的显示设备时,显示屏的可视图像的图;27 is a diagram showing a visible image of the display screen when the display device according to Comparative Example 1 is viewed by an observer;
图28是表示根据本发明的实施例7的显示设备的截面图;28 is a sectional view showing a display device according to
图29是表示根据本实施例的透射液晶显示面板的像素的俯视图;29 is a plan view showing pixels of the transmissive liquid crystal display panel according to the present embodiment;
图30是表示用来计算最大观察距离的光学模型的截面图;30 is a cross-sectional view showing an optical model used to calculate the maximum viewing distance;
图31是表示用来计算最小观察距离的光学模型的截面图;31 is a cross-sectional view showing an optical model used to calculate the minimum viewing distance;
图32是表示视敏度的定义的示意图;Figure 32 is a schematic diagram representing the definition of visual acuity;
图33是表示根据本发明的实施例8的显示设备的截面图;33 is a sectional view showing a display device according to
图34是表示根据本实施例的透射液晶显示面板的像素的俯视图;34 is a plan view showing pixels of the transmissive liquid crystal display panel according to the present embodiment;
图35是表示根据本实施例的透射液晶显示面板的像素的另一例子的俯视图;35 is a plan view showing another example of pixels of the transmissive liquid crystal display panel according to the present embodiment;
图36是表示根据本发明的实施例9的显示设备的截面图;36 is a sectional view showing a display device according to Embodiment 9 of the present invention;
图37是表示根据本实施例的透射液晶显示面板的像素的俯视图;37 is a plan view showing pixels of the transmissive liquid crystal display panel according to the present embodiment;
图38是表示根据本发明的实施例10的显示设备的截面图;38 is a sectional view showing a display device according to
图39是表示根据本实施例的透射液晶显示面板的像素的俯视图;39 is a plan view showing pixels of the transmissive liquid crystal display panel according to the present embodiment;
图40是表示根据本发明的实施例11的终端设备的截面图;40 is a cross-sectional view showing a terminal device according to
图41是表示根据本实施例的显示设备的截面图;FIG. 41 is a sectional view showing a display device according to the present embodiment;
图42是表示根据实施例12的显示设备的截面图;42 is a sectional view showing a display device according to
图43是表示根据实施例13的显示设备的截面图;43 is a sectional view showing a display device according to
图44是表示根据实施例14的显示设备的截面图;44 is a sectional view showing a display device according to
图45是表示根据实施例15的显示设备的截面图;45 is a sectional view showing a display device according to
图46是表示根据实施例16的显示设备的截面图;46 is a sectional view showing a display device according to Embodiment 16;
图47是根据本实施例的显示设备的结构元件复眼透镜的透视图;47 is a perspective view of a fly-eye lens, a structural element of the display device according to the present embodiment;
图48是表示复眼透镜的俯视图;Fig. 48 is a top view showing a fly-eye lens;
图49表示与显示设备的结构元件各向异性散射板有关的图,其中,图49A表示本发明的实施例1的散射特性,以及图49B表示实施例16的散射特性;Fig. 49 represents a diagram related to an anisotropic scattering plate of a structural element of a display device, wherein Fig. 49A represents the scattering characteristics of
图50是表示根据实施例17的显示设备的截面图;50 is a sectional view showing a display device according to Embodiment 17;
图51是表示根据本实施例的显示设备的结构元件复眼透镜的俯视图;51 is a plan view showing a fly-eye lens, a structural element of the display device according to the present embodiment;
图52是表示根据本实施例的各向异性散射部的散射特性的图;以及FIG. 52 is a graph showing the scattering characteristics of the anisotropic scattering part according to the present embodiment; and
图53是表示根据本实施例的各向异性散射板的散射特性的图,其中,x轴表示显示面内的角度,以及y轴表示散射性能。FIG. 53 is a graph showing the scattering characteristics of the anisotropic scattering plate according to the present embodiment, where the x-axis represents the angle in the display plane and the y-axis represents the scattering performance.
具体实施方式Detailed ways
本发明的显示设备能构造如下。即,本发明的显示设备包括:显示面板,其中,按矩阵排列至少包括用于显示用于第一视点的图像的像素以及用于显示用于第二视点的图像的像素的多个显示单元;图像分配部,用于沿第一方向,将从像素发出的光分配到不同方向,沿所述第一方向,在显示单元中排列用于显示用于第一视点的图像的像素和用于显示用于第二视点的图像的像素;以及各向异性散射部,用于相对于显示面板,散射入射光或出射光,以便在与第一方向垂直的第二方向中的散射不同于第一方向中的散射。The display device of the present invention can be constructed as follows. That is, the display device of the present invention includes: a display panel in which a plurality of display units including at least pixels for displaying an image for a first viewpoint and pixels for displaying an image for a second viewpoint are arranged in a matrix; an image distributing section for distributing light emitted from the pixels to different directions along a first direction along which pixels for displaying an image for a first viewpoint and for displaying an image for a first viewpoint are arranged in the display unit a pixel for an image of the second viewpoint; and an anisotropic scattering section for scattering incident light or outgoing light with respect to the display panel so that scattering in a second direction perpendicular to the first direction is different from the first direction Scattering in .
在本发明中,能防止由图像分配部和显示面板的结构引起的图像质量的下降,以及能提高图像质量。由于不需要改变图像分配部和显示面板的结构,也能降低价格。In the present invention, it is possible to prevent degradation of image quality caused by the structures of the image distribution section and the display panel, and to improve image quality. Since there is no need to change the structure of the image distribution unit and the display panel, the price can also be reduced.
通过各向异性散射部的最大散射方向是第二方向,由此能将有关图像分配部的图像分配效果的不利影响保持到最小,以及能通过各向异性散射部,提高图像质量。The direction of maximum scattering by the anisotropic scattering part is the second direction, whereby adverse effects on the image distribution effect of the image distribution part can be kept to a minimum and image quality can be improved by the anisotropic scattering part.
此外,通过各向异性散射部的最大散射方向是从第二方向旋转到第一方向的方向,由此能容易调整第一方向和第二方向中的散射,以及能防止构件的大的修改。因此,能降低成本。Furthermore, the maximum scattering direction by the anisotropic scattering portion is a direction rotated from the second direction to the first direction, whereby scattering in the first and second directions can be easily adjusted, and large modification of the member can be prevented. Therefore, cost can be reduced.
此外,各向异性散射部可以是在一个方向中延伸的、形成凸面部或凹面部的结构,以及各向异性散射部可以具有一维排列的棱镜结构,其中,彼此平行地排列在一个方向中延伸的多个棱镜。各向异性散射部也可以具有荚状透镜结构,其中,彼此平行地排列在一个方向中延伸的多个柱面透镜,以及可以使荚状透镜的间距小于像素的排列间距。In addition, the anisotropic scattering part may be a structure extending in one direction, forming a convex part or a concave part, and the anisotropic scattering part may have a one-dimensionally arranged prism structure in which the prisms are arranged parallel to each other in one direction Extended multiple prisms. The anisotropic scattering part may also have a lenticular lens structure in which a plurality of cylindrical lenses extending in one direction are arranged in parallel to each other, and the pitch of the lenticular lenses may be made smaller than the arrangement pitch of pixels.
例如,各向异性散射部可以位于图像分配部和显示面板间。因此,能防止由于图像分配部和显示面板的结构而引起的图像质量下降,以及特别当使用反射显示面板时,能防止由于反射面板的凹凸结构而引起的显示质量的下降。For example, the anisotropic scattering part may be located between the image distribution part and the display panel. Therefore, it is possible to prevent degradation of image quality due to the structure of the image distribution section and the display panel, and especially when a reflective display panel is used, degradation of display quality due to the concave-convex structure of the reflective panel can be prevented.
在这种情况下,各向异性散射部可以具有透明衬底和在透明衬底的表面上形成的各向异性散射结构。这种结构使得可以使用通用的各向异性散射板,以及当有必要改进各向异性散射效果时,也可以最小化对其他构件的影响。In this case, the anisotropic scattering part may have a transparent substrate and an anisotropic scattering structure formed on the surface of the transparent substrate. This structure makes it possible to use a general-purpose anisotropic scattering plate, and when it is necessary to improve the anisotropic scattering effect, also minimize the influence on other members.
此外,在其上形成各向异性散射部的各向异性散射结构的表面可以面向显示设备的图像分配部。由此能减少与图像分配部的不期望的相互作用,以及能提高图像质量。In addition, the surface of the anisotropic scattering structure on which the anisotropic scattering part is formed may face the image distribution part of the display device. Undesired interactions with the image distributor can thereby be reduced and the image quality can be increased.
此外,可以将各向异性散射部与图像分配部集成,由此不需要用于支撑各向异性散射部的各向异性散射结构的部件,因此,能获得更薄的外观。由于能整体地形成各向异性散射部和图像分配部,而不是分开形成并组合,,因此,能降低构件的数量,以及能缩减组装步骤的数量。因此,能降低成本。由于也可以消除组装期间,各向异性散射部和图像分配部的相对定位的变动,因此,也能减少不均匀性。In addition, the anisotropic scattering part can be integrated with the image distribution part, thereby eliminating the need for components for supporting the anisotropic scattering structure of the anisotropic scattering part, and thus, a thinner appearance can be obtained. Since the anisotropic scattering portion and the image distribution portion can be integrally formed instead of being separately formed and combined, the number of components can be reduced, and the number of assembly steps can be reduced. Therefore, cost can be reduced. Since variations in the relative positioning of the anisotropic scattering portion and the image distribution portion during assembly can also be eliminated, non-uniformity can also be reduced.
此外,各向异性散射部由面向显示面板的图像分配部的表面形成,由此,能在制造图像分配部期间,在背面同时形成各向异性散射部。因此,能降低制造成本,以及也能降低整体成本。In addition, the anisotropic scattering part is formed from the surface facing the image distribution part of the display panel, whereby the anisotropic scattering part can be simultaneously formed on the back surface during manufacture of the image distribution part. Therefore, the manufacturing cost can be reduced, and the overall cost can also be reduced.
在这种情况下,在用于固定图像分配部的粘合层上形成各向异性散射部,由此消除用于模塑各向异性散射结构的模具,以及用于传送各向异性散射结构的过程的需要。因此,能降低成本。In this case, the anisotropic scattering part is formed on the adhesive layer for fixing the image distribution part, thereby eliminating a mold for molding the anisotropic scattering structure and a mold for delivering the anisotropic scattering structure. process needs. Therefore, cost can be reduced.
可选地,在图像分配部的内部结构中形成各向异性散射部,由此能从更宽选择范围中选择粘合层,以及能降低成本。Alternatively, the anisotropic scattering part is formed in the internal structure of the image distribution part, whereby the adhesive layer can be selected from a wider selection range, and the cost can be reduced.
可选地,可以在显示面板上形成各向异性散射部,在这一情况下,显示面板具有光学薄膜,以及各向异性散射部可以是用于将光学薄膜固定到显示面板的衬底的各向异性散射粘合层。Alternatively, the anisotropic scattering part may be formed on the display panel, in this case, the display panel has an optical film, and the anisotropic scattering part may be each of the substrates for fixing the optical film to the display panel. Anisotropic scattering adhesive layer.
在本发明的显示设备中,通过各向异性散射部的最大散射方向可以是第一方向。在这种情况下,将各向异性散射部提供到显示面板的背面,由此能最大化用于防止图像质量下降的各向异性散射部的影响。In the display device of the present invention, the maximum scattering direction by the anisotropic scattering part may be the first direction. In this case, the anisotropic scattering part is provided to the rear surface of the display panel, whereby the influence of the anisotropic scattering part for preventing image quality degradation can be maximized.
也可以采用一种结构,其中,各向异性散射部具有透明衬底以及在该透明衬底的表面上形成的各向异性散射结构,以及使其上形成各向异性散射部的各向异性散射结构的表面放置到显示设备的背面。由此能将对图像分配部的图像分配效果的不利影响保持到最小,以及能通过各向异性散射部提高图像质量。It is also possible to adopt a structure in which the anisotropic scattering part has a transparent substrate, an anisotropic scattering structure formed on the surface of the transparent substrate, and an anisotropic scattering structure on which the anisotropic scattering part is formed. The surface of the structure is placed to the back of the display device. As a result, adverse effects on the image distribution effect of the image distribution section can be kept to a minimum, and the image quality can be increased by the anisotropic scattering section.
也可以采用一种结构,其中,本发明的显示设备具有平面光源,用于在显示面板的背面上的平面中发出光,以及该平面光源通过使用在该平面光源的内部中或表面上形成的凹凸结构,在平面中发出光。因此,能防止由于平面光源的凹凸结构和图像分配部引起的图像质量下降,而不会不利地影响图像分配部的图像分配效果。由于能通过使用各向异性散射部,限制散射方向,因此也能防止正面亮度的降低。It is also possible to adopt a structure in which the display device of the present invention has a planar light source for emitting light in a plane on the back surface of the display panel, and the planar light source is formed by using a A concave-convex structure that emits light in a flat surface. Therefore, it is possible to prevent image quality degradation due to the concavo-convex structure of the planar light source and the image distribution section without adversely affecting the image distribution effect of the image distribution section. Since the scattering direction can be restricted by using the anisotropic scattering part, it is also possible to prevent a decrease in frontal brightness.
平面光源可以具有导光面板,以及凹凸结构可以形成在导光面板中。此外,平面光源可以具有用于提高亮度的光学装置,以及用于提高亮度的光学装置可以具有凹凸结构。由此能增加用于选择用于提高亮度的光学构件的选择范围,以及能降低成本。The planar light source may have a light guide panel, and the concavo-convex structure may be formed in the light guide panel. In addition, the planar light source may have an optical device for increasing brightness, and the optical device for increasing brightness may have a concavo-convex structure. As a result, the range of options for selecting an optical component for increasing brightness can be increased, and costs can be reduced.
在本发明的显示设备中,例如,显示面板是透射式的。在本发明中,能防止由于图像分配部和相邻像素的边界的结合而引起的图像质量下降,以及能提高图像质量。此外,当将平面光源提供给背面时,能防止由于图像分配部和平面光源的结合而引起的图像质量下降,以及能提高图像质量。In the display device of the present invention, for example, the display panel is transmissive. In the present invention, it is possible to prevent degradation of image quality due to the combination of the image distribution portion and the boundary of adjacent pixels, and to improve image quality. In addition, when the planar light source is provided to the rear surface, image quality degradation due to the combination of the image distribution part and the planar light source can be prevented, and image quality can be improved.
显示面板可以是例如具有以像素为单位的反射面板的显示面板,以及可以在反射面板中形成凹凸结构。由此能防止由于图像分配部和反射面板的凹凸结构而引起的图像质量下降,以及能提高反射面板的图像质量。The display panel may be, for example, a display panel having a reflective panel in units of pixels, and a concavo-convex structure may be formed in the reflective panel. Accordingly, it is possible to prevent image quality degradation due to the concave-convex structure of the image distribution portion and the reflective panel, and to improve the image quality of the reflective panel.
在这种情况下,反射面板可以是在像素的一部分的区域中形成的半透射显示面板。这种结构使得不仅减少由各向异性散射部在阻光区中引起的条带,而且也减少在透射显示期间,用于反射的显示区中引起的条带,因此,能提高透射显示的质量。在反射显示期间,不仅可以减少由各向异性散射部在阻光区中引起的条带,而且可以减少在用于透射的显示区中引起的条带,因此,能提高反射显示的质量。特别地,能提高半透射显示设备中的透射显示和反射显示的质量。In this case, the reflective panel may be a transflective display panel formed in a region of a part of the pixels. This structure makes it possible to reduce not only the banding caused by the anisotropic scattering part in the light-blocking area, but also the banding caused in the display area for reflection during the transmissive display, thereby improving the quality of the transmissive display . During reflective display, not only the banding caused by the anisotropic scattering part in the light blocking area but also the banding caused in the display area for transmission can be reduced, thus improving the quality of reflective display. In particular, the quality of transmissive display and reflective display in semi-transmissive display devices can be improved.
在这种情况下,在第二方向中,可以以重复方式,排列其中形成有反射面板的用于反射显示的区域和其中像素光透射用于透射显示的区域。因此,能最大程度地例示用于防止由于各向异性散射部引起的图像质量下降的效果。In this case, in the second direction, a region for reflective display in which the reflective panel is formed and a region for transmissive display in which pixel light is transmitted may be arrayed in a repeated manner. Therefore, the effect for preventing image quality degradation due to the anisotropic scattering portion can be exemplified to the maximum.
显示面板可以是例如液晶显示面板。液晶显示面板例如是横向场模式液晶显示面板或多域垂直取向模式液晶显示面板。在本发明中,能最小化由于图像分配部和液晶层的定向划分装置而引起的图像质量下降,以及能获得具有宽视角的显示设备。The display panel may be, for example, a liquid crystal display panel. The liquid crystal display panel is, for example, a lateral field mode liquid crystal display panel or a multi-domain vertical alignment mode liquid crystal display panel. In the present invention, image quality degradation due to the image distribution portion and the orientation dividing means of the liquid crystal layer can be minimized, and a display device having a wide viewing angle can be obtained.
另外,显示面板的显示单元具有用于产生彩色显示的条纹状彩色像素排列,以及例如,彩条的排列方向是第二方向。当彩条的排列方向是第二方向时,在第一方向中延伸的像素边界的比率增加,但通过本发明,能减少该增加的影响,因此,能提高图像质量。In addition, the display unit of the display panel has a stripe-shaped color pixel arrangement for producing a color display, and for example, the arrangement direction of the color stripes is the second direction. When the arrangement direction of the color bars is the second direction, the ratio of pixel boundaries extending in the first direction increases, but according to the present invention, the influence of this increase can be reduced, and thus image quality can be improved.
此外,可以在正方形内形成图像单元。由此,能使显示图像的垂直和水平分辩率相同,以及能进一步提高图像质量。In addition, image cells may be formed within a square. Thereby, the vertical and horizontal resolutions of the displayed image can be made the same, and the image quality can be further improved.
显示单元中的像素也可以具有其显示区的外围上的阻光区,以及可以相对于第二方向,能倾斜在第二方向中延伸的阻光区。由此,能增加显示图像的可见度范围,以及能增强本发明的效果。A pixel in the display unit may also have a light-blocking area on the periphery of its display area, and the light-blocking area extending in the second direction may be tiltable relative to the second direction. Thereby, the visibility range of a displayed image can be increased, and the effect of the present invention can be enhanced.
此外,可以采用一种结构,其中,显示单元中的像素具有梯形显示区以及相对于相邻像素以点对称地排列。该结构允许本发明来适当地应用于特别是使用薄膜晶体管的有源矩阵显示面板,以及允许增加的开放区比率。Furthermore, a structure may be employed in which pixels in the display unit have a trapezoidal display area and are arranged point-symmetrically with respect to adjacent pixels. This structure allows the present invention to be suitably applied to active matrix display panels using thin film transistors in particular, and allows an increased open area ratio.
在本发明的显示设备中,图像分配部是形成为例如在第一方向中排列透镜的透镜阵列。由于该结构消除由于图像划分装置而引起的光损失,因此能获得明亮显示。In the display device of the present invention, the image distributing section is formed as, for example, a lens array in which lenses are arranged in the first direction. Since this structure eliminates light loss due to the image dividing means, bright display can be obtained.
在本发明的显示设备中,图像分配部是形成为例如在第一方向中排列具有有限宽度的开口的视差栅栏。由此,使用光刻技术,能易于形成图像分配部,因此能降低成本。In the display device of the present invention, the image distributing section is a parallax barrier formed such that openings having a finite width are arrayed in the first direction. Thereby, the image distribution portion can be easily formed using the photolithography technique, so that the cost can be reduced.
本发明的终端设备具有显示设备。终端设备是例如移动电话、个人信息终端、个人电视、游戏设备、数码相机、录像机、视频播放器、笔记本个人计算机、柜员机或售货机。A terminal device of the present invention has a display device. The terminal device is, for example, a mobile phone, a personal information terminal, a personal television, a game device, a digital camera, a video recorder, a video player, a notebook personal computer, a teller machine, or a vending machine.
本发明的显示面板是一种显示面板,其中,按矩阵排列至少包括用于显示用于第一视点的图像的像素和用于显示用于第二视点的图像的像素的多个显示单元,其中,显示面板中的出射光的散射赋予各向异性,以及沿在显示单元中排列用于显示用于第一视点的图像的像素和用于显示用于视点的图像的像素的第一方向,将从像素发出的光分配到不同方向。The display panel of the present invention is a display panel in which a plurality of display units including at least pixels for displaying an image for a first viewpoint and pixels for displaying an image for a second viewpoint are arranged in a matrix, wherein , the scattering of the outgoing light in the display panel imparts anisotropy, and along the first direction in which the pixels for displaying the image for the first viewpoint and the pixels for displaying the image for the viewpoint are arranged in the display unit, the The light emitted from the pixels is distributed in different directions.
本发明的光学构件是用在显示面板中的光学构件,其中,按矩阵排列至少包括用于显示用于第一视点的图像的像素和用于显示用于第二视点的图像的像素的多个显示单元,其中,光学构件包括用于将入射光分配到不同方向的平面图像分配部,以及用于将各向异性赋予图像分配部的平面中的散射的各向异性散射部。根据本发明,光学构件能与显示面板结合以便产生具有高图像质量的显示设备。The optical member of the present invention is an optical member used in a display panel, wherein a plurality of pixels including at least pixels for displaying an image for a first viewpoint and pixels for displaying an image for a second viewpoint are arranged in a matrix A display unit, wherein the optical member includes a planar image distribution portion for distributing incident light into different directions, and an anisotropic scattering portion for imparting anisotropy to scattering in a plane of the image distribution portion. According to the present invention, an optical member can be combined with a display panel in order to produce a display device with high image quality.
在这种情况下,通过各向异性散射部的最大散射方向可以是与图像分配部的图像分配方向垂直的方向。In this case, the maximum scattering direction by the anisotropic scattering part may be a direction perpendicular to the image distribution direction of the image distribution part.
此外,光学构件可以具有衬底,以及可以在面对该衬底的表面上形成图像分配部和各向异性散射部。Furthermore, the optical member may have a substrate, and the image distribution portion and the anisotropic scattering portion may be formed on a surface facing the substrate.
此外,光学构件可以具有衬底,以及各向异性散射部可以形成在衬底内。Furthermore, the optical member may have a substrate, and the anisotropic scattering portion may be formed within the substrate.
此外,光学构件可以具有粘合层,以及粘合层可以是各向异性散射部。In addition, the optical member may have an adhesive layer, and the adhesive layer may be an anisotropic scattering portion.
接着,将参考附图,在下文中,具体地描述根据本发明的实施例的显示设备、终端设备、显示面板和光学构件。将首先描述根据本发明的实施例1的显示设备、终端设备、显示面板和光学构件。图1是表示根据本实施例的显示设备的截面图;图2是表示图1中所示的各向异性散射板的俯视图;图3是表示图像分配部的图像分配方向和图1中所示的显示设备中的各向异性散射板的散射方向间的关系的俯视图;以及图4是表示本实施例的终端设备的透视图。Next, with reference to the drawings, hereinafter, a display device, a terminal device, a display panel, and an optical member according to embodiments of the present invention will be specifically described. A display device, a terminal device, a display panel, and an optical member according to
如图1所示,根据实施例1的显示设备将反射液晶显示面板2用作显示面板,以及反射液晶显示设备1具有荚状透镜3。荚状透镜3位于反射液晶显示面板2的显示面的侧面上,即,在面向用户的侧面上。在荚状透镜3和反射液晶显示面板2间提供作为各向异性散射元件的各向异性散射板6。具体地,在反射液晶显示设备1中,按用户的方向,顺序地层压反射液晶显示面板2、各向异性散射板6以及荚状透镜3。As shown in FIG. 1 , the display device according to
反射液晶显示面板2是用于三维显示的液晶面板,其中,按矩阵提供由一个左眼像素4L和一个右眼像素4R组成的作为显示单元的像素对。荚状透镜3是为分离来自左右像素的光而提供的、用于图像分离的光学构件,以及荚状透镜3是一维排列多个柱面透镜3a的透镜阵列。将柱面透镜3a的排列方向设置成以重复方式排列左眼像素4L和右眼像素4R的方向。柱面透镜3a的延伸方向,即纵向,是垂直于显示面中的排列方向的方向。柱面透镜3a是具有半柱面凸面部的一维透镜,仅在垂直于其纵向的方向中具有透镜效应。将柱面透镜3a的焦距设置成柱面透镜3a的主点,即透镜顶点,和像素(左眼像素4L或右眼像素4R)间的距离。The reflective liquid
在本说明书中,为方便起见,如下文所述,设置XYZ直角坐标系统。以重复方式,排列左眼像素4L和右眼像素4R的方向中,从右眼像素4R到左眼像素4L的方向是+X方向,以及相反方向是-X方向。+X方向和-X方向统称为X轴方向。柱面透镜3a的纵向是Y轴方向。此外,与X轴方向和Y轴方向垂直的方向是Z轴方向。在Z轴方向内,从左眼像素4L或右眼像素4R到荚状透镜3的方向是+Z方向,以及相反方向是-Z方向。+Z轴方向是正向,即,向着用户的方向,以及用户看见反射液晶显示面板2的+Z侧面上的表面。+Y方向是建立右手坐标系统的方向。具体地,当人的右拇指在+X方向,以及食指在+Y方向时,中指为+Z方向。In this specification, for convenience, an XYZ rectangular coordinate system is set as described below. In a repeated manner, among the directions in which the left-
当如上所述建立XYZ直角坐标系统时,柱面透镜3a的排列方向是X轴方向,以及在Y轴方向中,按行分别排列左眼像素4L和右眼像素4R。X轴方向中的像素对的排列周期基本上等于柱面透镜的排列周期。在X轴方向中,在Y轴方向中排列的像素对的行对应于单一柱面透镜3a。When the XYZ rectangular coordinate system is established as described above, the arrangement direction of the
在反射液晶显示面板2中,在微小间隙上提供的两个衬底2a、2b间形成液晶层5,以及在位于-Z侧面上的衬底2b的+Z侧面上的表面上形成反射面板4。在反射面板4的表面上提供多个凹凸结构41,以及凹凸结构41使反射面板4的表面成为漫反射面。具体地,通过在反射面板4的表面上的凹凸结构41,在各个方向中漫反射从特定方向入射在反射面板4上的外部光,以及还反射到观察者。由于由此能降低正反射分量,能在光源图案不可见的角度产生亮反射显示。当光源发出漫射光时,由于相对于仅镜面反射,能增加在正向中反射的光量,从而能产生亮反射显示。In the reflective liquid
如图2所示,在各向异性散射板6的+Z方向的表面上形成各向异性散射结构61。具体地,各向异性散射板6具有透明衬底和形成在透明衬底的表面上,作为各向异性散射部(即各向异性散射装置)的各向异性散射结构61。各向异性散射结构61是在XY平面中的X轴方向中延伸的带状凸面部,以及在各向异性散射板6的表面上形成多个各向异性散射结构61。根据该结构,通过沿各向异性散射板6的+Z侧面的表面上的Y轴方向行进,横过多个各向异性散射结构61。具体地,该表面在Y轴方向中具有多个凹凸结构。相反,通过沿表面的X轴方向行进,横过很少或没有各向异性散射结构61。因此,该表面在X轴方向中具有少量凹凸结构。As shown in FIG. 2 , an
更概括地说,各向异性散射板6的表面在特定方向中具有多个凹凸结构,以及在与该特定方向垂直的方向中具有少量凹凸结构。在本实施例中,将存在多个凹凸结构的特定方向设置成Y轴方向。根据该结构,各向异性散射板6在Y轴方向中产生最大散射,以及在X轴方向中产生最小散射。如图3所示,XY平面中的在Y轴方向和X轴方向之间的角度的散射性能由各向异性散射结构61的形状而定,但在本实施例中,散射性能随从Y轴方向旋转到X轴方向而快速恶化。More generally, the surface of the
通常,荚状透镜3或其他图像分配部(即图像分配装置或图像分离装置)的图像分配效果当安装散射装置时倾向于减小。在本实施例中,原因在于例如当通过散射装置显著地散射由左眼像素4L的反射面板4反射的光,以与在右眼像素4R中反射的光相同的方式,该光也进入用户的右眼。如上所述,在本实施例中,将构成荚状透镜3的柱面透镜3a的纵向设置成Y轴,以及将柱面透镜3a的排列方向设置成X轴方向。因此,荚状透镜3在X轴方向中具有图像分配效果。相反,设置各向异性散射板以便在Y轴方向中最大化其散射,以及在X轴方向中最小化。具体地,在本实施例的反射液晶显示设备1中,将各向异性散射板6放置成最小化对荚状透镜3的图像分配效果的散射性能的影响。在本发明中,将荚状透镜描述为图像分配装置。严格意义上讲,构成荚状透镜的柱面透镜充当用于将左眼像素光和右眼像素光分离到不同方向中的装置。因此,荚状透镜能将用于左眼的图像和用于右眼的图像分配到不同方向。这种现象视为能在本发明中展现,利用具有图像分配效果的荚状透镜。In general, the image distribution effect of the
此外,在本实施例的反射液晶显示设备1中,未密封各向异性散射板6和荚状透镜3,以及也未密封各向异性散射板6和反射液晶显示面板2。具体地,在各向异性散射板6、荚状透镜3和反射液晶显示面板2间的空间中提供空气层。Furthermore, in the reflective liquid
如图4所示,根据本实施例的终端设备是移动电话9。反射液晶显示设备1安装在移动电话9中。反射液晶显示设备1的X轴方向是移动电话9的屏幕的横向,以及反射液晶显示设备1的Y轴方向是移动电话9的屏幕的纵向。As shown in FIG. 4 , the terminal device according to the present embodiment is a mobile phone 9 . The reflective liquid
下文描述如上所述构造的本发明的显示设备的操作。图5是表示由与图1中所示的反射液晶显示设备中的X轴方向平行的线段产生的反射液晶显示设备的截面中的光学模型的图。如图5所示,由于本实施例的显示设备是反射式的,外部光用于显示。首先,下述操作描述将集中在入射在反射液晶显示设备1上的外部光中的平行光分量光89上。由荚状透镜3聚焦入射在荚状透镜3上的光89。如前所述,设置荚状透镜3的焦距以便焦点出现在反射面4上。The operation of the display device of the present invention constructed as described above is described below. 5 is a diagram showing an optical model in a cross section of the reflective liquid crystal display device generated by a line segment parallel to the X-axis direction in the reflective liquid crystal display device shown in FIG. 1 . As shown in FIG. 5, since the display device of this embodiment is reflective, external light is used for display. First, the following description of operations will focus on the parallel
在消除各向异性散射板6的影响的情况下,由荚状透镜聚焦的光在反射面板的表面上具有焦点。当焦点在凹凸结构的倾斜面上时,通过倾斜面,以一定角度反射光。因此,在除用户的方向中传播反射光,以及光基本上对显示没有作用。相反地,当在凹凸结构的平面部分出现焦点时,在正向中反射光,以及反射光在用户的方向中前进,因此,对显示有作用。由此,根据外部光的角度和用户的位置,亮区和暗区出现在显示中。因此,在显示图像叠加亮度差,以及观察到质量降低。With the influence of the
然而,在本发明中,在荚状透镜3和反射面板4间提供各向异性散射板6。各向异性散射板6在Y轴方向中产生最大散射,以及在X轴方向中产生最小散射,如前所述。因此,连同X轴方向中的轻微散射,在反射面板4的表面上,聚焦由荚状透镜3聚焦的光。由此使得被照射的反射面板的表面区变得大于不提供各向异性散射板6的情形。散射在Y轴方向中大于X轴方向中,使得可以增加被照射的反射面板的表面面积。因此,将由荚状透镜3聚焦的光照射到各个位置,包括反射面板4上的凹凸结构41的倾斜部和平面部。具体地,通过荚状透镜3,在X轴方向中聚焦进入显示设备的平行光,但各向异性散射板6在X轴方向中散射一些光以及在Y轴方向中散射更多。换句话说,即使当平行光进入时,也可以其量与当Y轴方向中,具有更大散射特性的各向异性散射光进入时相同。因此,能降低由凹凸结构引起的显示图像的恶化。接着,以不同角度传播反射光。该光的一部分再次通过荚状透镜3,以及在用户的方向中,分离和传播左右图像以便产生三维显示。该光在通过荚状透镜3前,再次通过各向异性散射板6,但由出现各向异性散射的效应而定,能降低由于凹凸结构而引起的图像质量的任何恶化。However, in the present invention, the
接着,将描述本实施例的效果。如上所述,在本实施例中,在荚状透镜和反射面板间提供各向异性散射板,以及由各向异性散射板引起的最小散射的方向处于示范荚状透镜的图像分配效果的方向。最大散射的方向相对于示范荚状透镜的图像分配效果的方向垂直地排列。根据该结构,能防止由于荚状透镜和反射面板的凹凸结构而引起的图像质量的下降,而不显著地降低荚状透镜的图像分配效果。如果使用各向同性散射(散射器),将出现有关有关实现荚状透镜的图像分配效果也实现最小化由凹凸结构引起的图像质量的恶化的效果的困难。使用各向异性散射使这两项均能实现。即使当平行光进入时,各向异性散射板和其他各向异性散射装置允许其数量与当各向异性散射光进入时相同。换句话说,各向异性散射装置将入射光的平行光分量转换成各向异性散射光。设置各向异性散射光以便不折衷荚状透镜的图像分配效果。因此,不仅可以当平行光入射时,而且当聚光灯或具有相对高的方向性的其他光进入时,均能提高图像质量。具体地,与照明条件无关,能实现良好显示质量。当反射面板的凹凸结构大时,不仅通过暗线图案,而且通过由凹凸结构的间距引起的颗粒度,降低图像质量。然而,由于本实施例设计成在不示范荚状透镜的图像分配效果的方向中散射相当大,因此,能防止由于颗粒度而引起的图像质量下降,以及能提高显示质量。此外,本实施例中的各向异性散射板还具有在从XY平面中的Y轴方向中稍微倾斜的方向中的散射性能,因此,该倾斜方向中的散射能用来降低暗线图案,以及提高显示质量。此外,不需要修改荚状透镜或反射面板的凹凸结构,在例如透射显示设备和反射显示设备中,均能使用相同的荚状透镜。因此,能降低制造所需的构件的类型的数量,并能降低成本。在本实施例中,由于使用各向异性散射板,因此,能仅通过在XY面中改变板的角度,易于调整X轴方向和Y方向中的散射性能。当散射性能在例如X轴方向中不足时,可以仅定位各向异性散射板,以便增加X轴方向中的散射性能,以及能防止构件等等的相当大的改进。因此能降低成本。Next, effects of the present embodiment will be described. As described above, in the present embodiment, an anisotropic scattering plate is provided between the lenticular lens and the reflective panel, and the direction of minimum scattering by the anisotropic scattering plate is in a direction to demonstrate the image distribution effect of the lenticular lens. The direction of maximum scattering is aligned perpendicular to the direction demonstrating the image distribution effect of the lenticular lens. According to this structure, it is possible to prevent a decrease in image quality due to the concave-convex structure of the lenticular lens and the reflective panel without significantly reducing the image distribution effect of the lenticular lens. If isotropic scattering (scatterer) is used, difficulties arise regarding realizing the image distribution effect of the lenticular lens but also the effect of minimizing deterioration of image quality caused by the concave-convex structure. Using anisotropic scattering enables both of these. Even when parallel light enters, anisotropic scattering plates and other anisotropic scattering devices allow the same amount as when anisotropically scattered light enters. In other words, the anisotropic scattering device converts the parallel light component of the incident light into anisotropically scattered light. Sets the anisotropic scattered light so that the image distribution effect of the lenticular lens is not compromised. Therefore, it is possible to improve image quality not only when parallel light is incident but also when a spotlight or other light having relatively high directivity enters. In particular, good display quality can be achieved regardless of lighting conditions. When the concavo-convex structure of the reflective panel is large, image quality is degraded not only by the dark line pattern but also by graininess caused by the pitch of the concavo-convex structure. However, since the present embodiment is designed to scatter considerably in a direction in which the image distribution effect of the lenticular lens is not demonstrated, image quality degradation due to graininess can be prevented and display quality can be improved. In addition, the anisotropic scattering plate in this embodiment also has scattering properties in a direction slightly inclined from the Y-axis direction in the XY plane, and therefore, scattering in this inclined direction can be used to reduce dark line patterns, and to improve Display quality. In addition, there is no need to modify the lenticular lens or the concave-convex structure of the reflective panel, and the same lenticular lens can be used in both a transmissive display device and a reflective display device, for example. Therefore, the number of types of components required for manufacture can be reduced, and costs can be reduced. In this embodiment, since the anisotropic scattering plate is used, the scattering performance in the X-axis direction and the Y direction can be easily adjusted only by changing the angle of the plate in the XY plane. When the scattering performance is insufficient in, for example, the X-axis direction, it is possible to position only the anisotropic scattering plate so as to increase the scattering performance in the X-axis direction, and considerable improvement of members and the like can be prevented. Therefore, the cost can be reduced.
将本实施例中的各向异性散射板描述为排列成最小化散射的方向为示范荚状透镜的图像分配效果的方向,但本发明不受该结构限制,以及只要能显示出分配效果,能以任何角度放置各向异性散射板。根据该结构,仅通过调整XY平面中的板的角度,能易于调整X轴方向和Y轴方向中的散射性能,以及能在不大规模地修改构件的情况下调整散射性能。因此能降低成本。The anisotropic scattering plate in this embodiment is described as being arranged so that the direction minimizing scattering is the direction demonstrating the image distribution effect of the lenticular lens, but the present invention is not limited by this structure, and as long as the distribution effect can be exhibited, it can be Place anisotropic scattering plates at any angle. According to this structure, only by adjusting the angle of the plate in the XY plane, the scattering performance in the X-axis direction and the Y-axis direction can be easily adjusted, and the scattering performance can be adjusted without modifying the members on a large scale. Therefore, the cost can be reduced.
在本实施例中还描述了一个例子,其中,各向异性散射结构61是形成在各向异性散射板6的+Z侧面的表面上的凸面部,但各向异性散射结构61可以形成在各向异性散射板6的-Z侧面的表面上。然而,当各向异性散射结构61位于荚状透镜3的焦点附近时,产生该结构本身将降低图像质量的相当大的风险。因此,优选各向异性散射结构61形成在各向异性散射板6的+Z侧面的表面上,远离焦点。换句话说,使其上形成有各向异性散射结构的表面朝着荚状透镜,能够使得图像质量的恶化被最小化。代替凸面部,各向异性散射结构也可以是凹面部。可以使用任何各向异性散射板,只要由该板产生的散射是各向异性的。例如,可以使用通过定制机械加工各向异性散射图案的母模,以及使用热模压方法或2P方法,传送模具图案获得的薄膜、形成一维全息图案的全息漫射器,或通过延伸普通各向同性散射板(膜)来使该板具有各向异性获得的板。当使用通过延伸普通各向同性散射板以便使该板具有各向异性而获得的板时,用作起始板的各向同性散射板可以是由于表面凹凸结构而具有散射,以及由于延伸而引起的表面凹凸结构中的各向异性的各向异性散射板。作为起始板的各向同性散射板也可以是在板中包括具有不同折射率的材料,以及所述延伸在具有不同折射率的材料的分布中产生各向异性的各向异性散射板,由此产生各向异性散射。An example is also described in this embodiment in which the
此外,各向异性散射图案可以是排列多个一维棱镜的一维棱镜阵列,或排列作为一维透镜的多个柱面透镜的一维透镜阵列。用作图像分配部的荚状透镜设置成以预定角度分离由左眼像素和右眼像素显示的图像,但作为各向异性散射部的一维透镜阵列放置成不具有这种图像分离效应。例如,以与像素相比极其小的间距排列透镜。焦距设置成透镜和像素间的距离的几倍,或该距离的若干分之一,以便透镜焦点不位于像素上。当使用这种一维光学元件时,在作为显示平面的XY平面中的旋转排列是有效的。具体地,通过各向异性散射部(散射器)的最大散射的方向优选地是从第二方向旋转到第一方向的方向。In addition, the anisotropic scattering pattern may be a one-dimensional prism array in which a plurality of one-dimensional prisms are arranged, or a one-dimensional lens array in which a plurality of cylindrical lenses are arranged as one-dimensional lenses. A lenticular lens serving as an image distribution section is arranged to separate images displayed by left-eye pixels and right-eye pixels at a predetermined angle, but a one-dimensional lens array as an anisotropic scattering section is placed without such image separation effect. For example, lenses are arranged at an extremely small pitch compared to pixels. The focal length is set to a multiple of the distance between the lens and the pixel, or a fraction of that distance, so that the lens focus is not on the pixel. When such a one-dimensional optical element is used, rotational arrangement in the XY plane which is a display plane is effective. Specifically, the direction of maximum scattering by the anisotropic scattering part (scatterer) is preferably a direction rotated from the second direction to the first direction.
本实施例中的各向异性散射板6描述为具有在各向异性散射板6和荚状透镜3间的间隙中,以及在各向异性散射板6和反射液晶显示面板2间的间隙中存在空气层的结构。然而,本发明不受该结构限制,以及可以通过具有预定折射率的粘合构件、粘合剂等等填充间隙。因此,能防止荚状透镜和反射液晶显示面板的定位中的波动,以及能减小界面的反射。因此,能进一步增加显示质量。如在本实施例中所述,当在表面上形成凹凸结构的各向异性散射板用作各向异性散射部时,由于当由具有与凹凸结构相同折射率的材料固定该板,丧失散射效果,因此,可以适当地使用具有不同折射率的材料。以本实施例的方式,将单独的各向异性散射板用作各向异性散射部的优点是能使用普通的各向异性散射板,以及即使当需要修改各向异性散射效果时,也能最小化对其他构件的影响。The
此外,在本实施例的描述中,将反射液晶显示面板用作显示面板,但本发明不受该结构限制,以及能将本发明有效地应用到使用具有凹凸结构的反射面板的显示面板。例如,在能反射显示和透射显示的半透射液晶显示面板的情况下,以及在除液晶显示面板外的反射显示面板的情况下,能应用本发明。在半透射液晶显示面板中,在具有大比率透射区的微反射液晶显示面板中,以及在具有大比率的反射区的微透射液晶显示面板中,能以与本实施例相同的方式应用本发明。液晶显示面板的驱动方法可以是TFT(薄膜晶体管)方案、TFD(薄膜二极管)方案或其他有源矩阵方案,或STN(超扭曲向列液晶)方案或其他无源矩阵方案。Also, in the description of this embodiment, a reflective liquid crystal display panel is used as the display panel, but the present invention is not limited by this structure, and the present invention can be effectively applied to a display panel using a reflective panel having a concavo-convex structure. For example, the present invention can be applied in the case of a transflective liquid crystal display panel capable of reflective display and transmissive display, and in the case of a reflective display panel other than a liquid crystal display panel. In a semi-transmissive liquid crystal display panel, in a slightly reflective liquid crystal display panel having a large-ratio transmissive area, and in a micro-transmissive liquid crystal display panel having a large-ratio reflective area, the present invention can be applied in the same manner as the present embodiment . The driving method of the liquid crystal display panel may be a TFT (thin film transistor) scheme, a TFD (thin film diode) scheme or other active matrix schemes, or an STN (super twisted nematic liquid crystal) scheme or other passive matrix schemes.
在本实施例中,描述了提供仅左眼像素和右眼像素的双眼三维显示设备的情形,但在N眼设备(其中,N为大于2的整数)的情况下,也能应用本发明。In this embodiment, the case of a binocular 3D display device providing only left-eye pixels and right-eye pixels is described, but the present invention can also be applied in the case of an N-eye device (where N is an integer greater than 2).
此外,在本实施例中,除使用滤色器的彩色显示外,结合根据时分使多个颜色的光源发亮的系统,也可以显示彩色图像。Furthermore, in this embodiment, in addition to the color display using color filters, a color image can also be displayed in combination with a system of lighting a plurality of color light sources according to time division.
同时,可以在X方向中的间距与Y方向中的间距相同的正方形中形成显示单元。换句话说,显示单元的所有间距相同。Meanwhile, the display units may be formed in a square whose pitch in the X direction is the same as that in the Y direction. In other words, all pitches of the display cells are the same.
本实施例中的荚状透镜描述为具有透镜表面处于朝向用户的+Z方向的结构,但本发明不受该结构限制,以及透射表面处于朝向显示面板的-Z方向中。在这种情况下,由于能减小透镜和像素间的距离,因此,获得增加分辩率的适用性的优点。另外,能使形成各向异性散射结构的表面的位置远离荚状透镜的焦点。因此,能提高图像质量。The lenticular lens in this embodiment is described as having a structure in which the lens surface is in the +Z direction toward the user, but the present invention is not limited by this structure, and the transmissive surface is in the -Z direction toward the display panel. In this case, since the distance between the lens and the pixels can be reduced, an advantage of increased applicability to resolution is obtained. In addition, the position of the surface on which the anisotropic scattering structure is formed can be moved away from the focal point of the lenticular lens. Therefore, image quality can be improved.
已经提供了本实施例的描述,其中,在X轴方向中排列构成荚状透镜的柱面透镜,以及各向异性散射装置的各向异性特性在Y轴方向中大于X轴方向。在图4中,显示设备的显示表面描述为从平行于X轴方向的边缘到平行于Y轴方向的边缘组成。然而,在本发明中,该结构不通过限定的方式提供;可以相对于旋转排列,在显示屏中排列柱面透镜。在这种情况下,图4中的设备可以视为在XY平面中旋转。换句话说,重要的是排列柱面凸面的方向和各向异性散射装置的散射特性满足本实施例的构成。The description of the present embodiment has been provided in which cylindrical lenses constituting lenticular lenses are arranged in the X-axis direction, and the anisotropic characteristic of the anisotropic scattering device is larger in the Y-axis direction than in the X-axis direction. In FIG. 4 , the display surface of the display device is described as being composed from an edge parallel to the X-axis direction to an edge parallel to the Y-axis direction. However, in the present invention, this structure is not provided by way of limitation; cylindrical lenses may be arranged in the display screen relative to the rotational arrangement. In this case, the device in Figure 4 can be viewed as rotating in the XY plane. In other words, it is important that the direction in which the cylindrical convex surfaces are aligned and the scattering characteristics of the anisotropic scattering device satisfy the constitution of this embodiment.
本实施例中的图像分配部描述为荚状透镜,但本发明不受该结构限制,以及本发明也能适用于将狭缝阵列用作图像分配部的视差栅栏系统。荚状透镜是具有垂直结构的三维形状,而视差栅栏具有平面二维形状以及能易于使用光刻技术制作。从而可降低成本。然而,如上所述,当使用荚状透镜时,没有由图像分离装置引起的光损失。因此,就获得明亮的反射显示而言,荚状透镜系统是有利的。The image distribution section in this embodiment is described as a lenticular lens, but the present invention is not limited to this structure, and the present invention can also be applied to a parallax barrier system using a slit array as the image distribution section. Lenticular lenses are three-dimensional shapes with vertical structures, while parallax barriers have planar two-dimensional shapes and can be easily fabricated using photolithographic techniques. Costs can thereby be reduced. However, as described above, when a lenticular lens is used, there is no loss of light caused by the image separation means. Therefore, lenticular lens systems are advantageous in terms of obtaining bright reflective displays.
现在,将就将荚状透镜启动为图像分配装置的条件,提供详细描述。在本实施例中,图像分配装置必须沿排列像素的第一方向,即沿X轴,在相互不同的方向中,分配由左眼和右眼像素发出的光。因此,对以最大限度示范图像分配效果的情形,将参考图6进行下述描述。Now, a detailed description will be given regarding the conditions for activating the lenticular lens as an image distribution device. In this embodiment, the image distribution means must distribute the light emitted from the left-eye and right-eye pixels in directions different from each other along the first direction in which the pixels are arranged, ie, along the X-axis. Therefore, the following description will be made with reference to FIG. 6 for the case where the image distribution effect is demonstrated at the maximum.
H是指荚状透镜3的主点(即顶点)和像素间的距离,n是指荚状透镜3的折射率,以及L是指透镜间距。P是指每一左眼像素4L或右眼像素4R的间距。因此,2P是指显示像素排列间距,由一个左眼像素4L和一个右眼像素4R组成。H refers to the distance between the principal point (ie, apex) of the
最佳观察距离OD是指荚状透镜3和观察者间的距离。e是指在该距离的像素的放大投影图像的周期,即,在平行于该透镜并远离此距离OD的理论平面中,左眼像素4L和右眼像素4R的投影图像的宽度的周期。WL是指从位于荚状透镜3的中心的柱面透镜3a的中心到在X轴方向中,位于荚状透镜3的末端的柱面透镜3a的中心的距离。WP是指如位于反射液晶显示2的中心中,由左眼像素4L和右眼像素4R组成的显示像素的中心和在X轴方向中,位于反射液晶显示2的末端上的显示像素的中心间的距离。α和β分别是指相对于位于荚状透镜3的中心中的荚状透镜3a中的光,入射和出射的角度。γ和δ分别是指相对于X轴方向中,位于荚状透镜3的边缘上的柱面透镜3a的光,入射和出射的角度。C是指距离WL和距离WP间的差值。2m是指距离WP的区域中的像素数量。The optimal viewing distance OD refers to the distance between the
排列柱面透镜3a的间距L和排列像素的间距P彼此关联,因此,彼此关联地确定间距值的每一个。然而,通常与显示面板关联地设计荚状透镜,为此,将像素排列间距P视为常量。选择荚状透镜3的材料将确定折射率n。相反地,使用所需值,设定透镜和观察者间的观察距离OD和在该观察距离OD的像素放大投影图像的周期e。这些值用来确定透镜和像素间的距离H和透镜间距L。由斯涅耳定律和几何关系导出下文的公式1至6。也导出下文的公式7至9。The pitch L at which the
[公式1][Formula 1]
n×sinα=sinβn×sinα=sinβ
[公式2][Formula 2]
OD×tanβ=eOD×tanβ=e
[公式3][Formula 3]
H×tanα=PH×tanα=P
[公式4][Formula 4]
n×sinγ=sinδn×sinγ=sinδ
[公式5][Formula 5]
H×tanγ=CH×tanγ=C
[公式6][Formula 6]
OD×tanδ=WLOD×tanδ=WL
[公式7][Formula 7]
WP-WL=CWP-WL=C
[公式8][Formula 8]
WP=2×m×pWP=2×m×p
[公式9][Formula 9]
WL=m×LWL=m×L
如上所述,描述了当最大地示范图像分配效果时的情形,以及这与将设置成与荚状透镜的焦距f相等的像素和荚状透镜的顶点间的距离H有关。因此公式10成立。如果r用作透镜的曲率半径,那么使用下述公式11确定r。As described above, the case when the image distribution effect is maximally demonstrated, and this is related to the distance H between the pixel to be set equal to the focal length f of the lenticular lens and the apex of the lenticular lens. So
[公式10][Formula 10]
f=Hf=H
[公式11][Formula 11]
r=H×(n-1)/nr=H×(n-1)/n
如果使用上述参数进行全部计算,像素排列间距P是根据显示面板确定的值,而由像素投影的放大图像的周期e和观察距离OD是根据显示设备的结构而确定的值。由这些值导出的透镜和像素间的距离H和透镜排列间距L是用来确定将来自像素的光投影到观察面上的位置的参数。用于改变图像分配效果的参数是透射曲率半径r。具体地,在固定透镜和像素间的距离H的情况下,那么当透镜曲率半径从理想状态改变时,左右像素图像将变模糊,防碍明显分离。换句话说,期望确定能有效地分离图像的曲率半径的范围。If all calculations are performed using the above parameters, the pixel arrangement pitch P is a value determined according to the display panel, and the period e of the enlarged image projected by the pixels and the viewing distance OD are values determined according to the structure of the display device. The distance H between the lens and the pixel and the lens arrangement pitch L derived from these values are parameters used to determine the position where the light from the pixel is projected onto the viewing surface. The parameter used to change the image distribution effect is the transmission curvature radius r. Specifically, in the case of fixing the distance H between the lens and the pixel, then when the radius of curvature of the lens is changed from the ideal state, the left and right pixel images will become blurred, preventing clear separation. In other words, it is desirable to determine the range of curvature radius that can effectively separate images.
首先,计算用于透镜分离作用有效的曲率半径范围的最小值。为了透镜分离作用有效,在其底边为透镜间距L和高度为焦距f的三角形和其底边为像素间距P和其高度为H-f的三角形间,如图7所示,建立相似关系。由此导出公式12,以及能确定最小焦距值fmin。First, the minimum value for the radius of curvature range in which the lens separation action is effective is calculated. In order for the lens separation to be effective, a similarity relationship is established between the triangle whose base is the lens pitch L and the height of the focal length f and the triangle whose base is the pixel pitch P and whose height is H-f, as shown in FIG. 7 .
[公式12][Formula 12]
fmin=H×L/(L+P)fmin=H×L/(L+P)
于是由焦距计算曲率半径。使用公式11,能如图公式所示,确定最小曲率半径rmin。The radius of curvature is then calculated from the focal length. Using
[公式13][Formula 13]
rmin=H×L×(n-1)/(L+P)/nrmin=H×L×(n-1)/(L+P)/n
于是计算最大值。为了透镜分离作用有效,在其底边为透镜间距L和其高度为焦距f的三角形和其底边为像素间距P以及其高度为f-H的三角形间,如图8所示,建立相似关系。由此导出公式14,以及能确定其最大焦距值。Then calculate the maximum value. In order for the lens separation effect to be effective, a similarity relationship is established between the triangle whose base is the lens pitch L and the height of which is the focal length f and the triangle whose base is the pixel pitch P and whose height is f-H, as shown in FIG. 8 .
[公式14][Formula 14]
fmax=H × L/(L-P)fmax=H × L/(L-P)
于是由焦距计算曲率半径。使用公式11,能如图15所示,确定最大曲率半径rmax。The radius of curvature is then calculated from the focal length. Using
[公式15][Formula 15]
rmax=H×L×(n-1)/(L-P)/nrmax=H×L×(n-1)/(L-P)/n
当如上所述,执行整个计算时,那么为透镜示范图像分配效果,透镜的曲率半径必须落在下述公式16的范围内,其使用公式13和15表示。When the entire calculation is performed as described above, then for the lens to demonstrate image distribution effects, the radius of curvature of the lens must fall within the range of Equation 16 below, which is expressed using
[公式16][Formula 16]
H×L×(n-1)/(L+P)/n ≤r≤H×L×(n-1)/(L-P)/nH×L×(n-1)/(L+P)/n ≤r≤H×L×(n-1)/(L-P)/n
上面已经描述了具有左眼像素和右眼像素的二视点三维图象显示设备,然而,在本发明中,不通过限制方式来提供该排列。例如,本发明可以类似地用于其格式包含N个视点的显示设备。在这些情况下,在上文所示的距离WP的定义中,可以将包含在与距离WP有关的区域中的像素的数量从2m改变成N×m。The two-viewpoint three-dimensional image display device having left-eye pixels and right-eye pixels has been described above, however, in the present invention, the arrangement is not provided by way of limitation. For example, the present invention can be similarly applied to a display device whose format contains N viewpoints. In these cases, in the definition of the distance WP shown above, the number of pixels contained in the area related to the distance WP can be changed from 2m to N×m.
现在将要描述沿Z轴方向,各向异性散射结构的所需位置。在各向异性散射结构不具有X轴方向中的散射分量的情况下,如果它们位于沿Z轴方向的预定位置,将不产生主要问题。然而,典型地,一些散射分量也将沿X轴方向出现。只要产生X轴方向中的散射的结构均匀地出现,将不出现主要问题。然而,在沿X轴方向中的一些区域出现X轴方向中的散射结构,而在其他区域中未出现的情况下,那么Z轴方向中的它们的位置变为影响图像质量的极其重要的参数。The desired position of the anisotropic scattering structure along the Z-axis direction will now be described. In the case where the anisotropic scattering structures have no scattering component in the X-axis direction, no major problem will arise if they are located at predetermined positions along the Z-axis direction. Typically, however, some scatter component will also occur along the x-axis direction. As long as the structure generating the scattering in the X-axis direction appears uniformly, no major problem will arise. However, in the case where scattering structures in the X-axis direction appear in some areas along the X-axis direction, but not in other areas, their positions in the Z-axis direction become extremely important parameters affecting image quality .
参考图9至11,描述这一现象。图9是表示在柱面透镜的焦点的附近存在各向异性散射结构,并具有特别显著影响的情形的截面图。图10表示各向异性散射结构的影响比较小的情形,图11是表示在充分远离柱面透镜的焦点的位置中存在各向异性散射结构的情形的截面图。各向异性散射结构的散射性能最大的方向为Y轴方向,然而,也在X轴方向中出现一些散射。各向异性散射区的仅一些也导致X轴方向中的散射。由于特别关注X轴方向散射,在图9至11中。仅将具有X轴方向中的散射区的那些部分画出,作为各向异性散射结构61。Referring to Figs. 9 to 11, this phenomenon will be described. Fig. 9 is a cross-sectional view showing a case where an anisotropic scattering structure exists near the focal point of a cylindrical lens and has a particularly significant influence. FIG. 10 shows a case where the influence of the anisotropic scattering structure is relatively small, and FIG. 11 is a cross-sectional view showing a case where the anisotropic scattering structure exists at a position sufficiently far from the focal point of the cylindrical lens. The direction in which the scattering performance of the anisotropic scattering structure is greatest is the Y-axis direction, however, some scattering also occurs in the X-axis direction. Only some of the anisotropic scattering regions also cause scattering in the X-axis direction. Since special attention is paid to scattering in the X-axis direction, in Figures 9 to 11. Only those portions having scattering regions in the X-axis direction are drawn as
如图9所示,在X轴方向中散射的各向异性散射结构61存在于柱面透镜3a的焦点的附近的情形中,从柱面透镜3a发出的大部分光将受各向异性散射结构61影响。然而,如图10所示,在对从柱面透镜3a发出的光的角度做稍微改变,即,从稍微倾斜的方向进行由观察者所执行的观察的情况下,各向异性散射结构61的效果将下降。由此,各向异性散射结构的效果增加或减小,取决于观察者观察显示设备的角度。在各向异性散射结构具有主要影响的情况下,X轴方向散射显著,而当该影响较小时,散射也最小。因此,观察者将感知图像质量的下降。As shown in FIG. 9, in the case where an
与之对比,当各向异性散射结构61存在于充分远离柱面透镜3a的焦点的位置中时,如图11所示,由各向异性散射结构61产生的影响将始终如一,为此,观察者将不会感知图像质量的下降。由此,优选各向异性散射结构远离透镜的焦点。In contrast, when the
接着,将就各向异性散射结构应当远离焦点的程度进行描述。如在上文中所述,在X轴方向中散射的各向异性散射结构优选均匀地位于X轴方向中,在这一情况下,将不出现显著的问题。具体地,优选密集地排列各向异性散射结构,因为如果稀疏地排列,将放大问题。例如,在X轴方向中的各向异性散射结构间的间隔大于透镜排列间距L的情况下,各向异性散射结构将存在于一些柱面透镜上,而不存在于其他柱面透镜上。在这些情况下,观察者将感知下降的图像质量;因此,在存在X轴方向中散射的多个各向异性散射结构的情况下,优选使其间的间隔等于或小于透镜排列间距L。因此,应当考虑各向异性散射结构间距为L,以及单一各向异性散射结构对应于单一柱面透镜。另外,当各向异性散射结构在X轴方向中为大的宽度时,将更容易实现均匀性,并且优选如此,为此,作为边界条件,也将考虑X轴方向宽度为零的情形。此外,当透镜焦点距离短时,不太容易使各向异性散射结构远离透镜焦点;因此,应当考虑有关由公式12和13表示的最小焦距条件。Next, description will be given as to how far the anisotropic scattering structure should be away from the focal point. As described above, the anisotropic scattering structures that scatter in the X-axis direction are preferably uniformly located in the X-axis direction, and in this case, no significant problem will arise. In particular, it is preferable to arrange the anisotropic scattering structures densely because if they are sparsely arranged, the problem will be amplified. For example, in the case where the interval between the anisotropic scattering structures in the X-axis direction is greater than the lens arrangement pitch L, the anisotropic scattering structures will exist on some cylindrical lenses but not on other cylindrical lenses. In these cases, the observer will perceive reduced image quality; therefore, in the case where there are a plurality of anisotropic scattering structures scattered in the X-axis direction, it is preferable to make the interval therebetween equal to or smaller than the lens arrangement pitch L. Therefore, it should be considered that the distance between the anisotropic scattering structures is L, and a single anisotropic scattering structure corresponds to a single cylindrical lens. In addition, when the anisotropic scattering structure has a large width in the X-axis direction, it will be easier to achieve uniformity, and it is preferable to do so. For this reason, as a boundary condition, the case where the X-axis direction width is zero will also be considered. In addition, when the lens focal length is short, it is less easy to make the anisotropic scattering structure away from the lens focal point; therefore, consideration should be given to the minimum focal length conditions expressed by
作为前提,还应当考虑各向异性散射结构功能不仅仅在主瓣中,而且在主侧瓣中的情形。如在上文已经描述过,在本实施例中,与透镜一一对应地放置由左右像素组成的显示单元。通常,“主瓣”是指从指定显示单元发出并通过相应透镜的光。“主侧瓣”是指从指定像素对发出并通过对应于相对于发射像素对相邻放置的另一像素对的透镜的光。主瓣存在于显示设备的正向中,以及主侧瓣存在于相对于透镜排列方向倾斜的方向中。As a prerequisite, the case where the anisotropic scattering structure functions not only in the main lobe, but also in the main side lobes should also be considered. As has been described above, in this embodiment, the display units composed of left and right pixels are placed in one-to-one correspondence with the lenses. In general, "main lobe" refers to the light emitted from a given display unit and passed through the corresponding lens. "Primary side lobe" refers to light emanating from a given pair of pixels and passing through a lens corresponding to another pair of pixels adjacently positioned relative to the emitting pair of pixels. The main lobe exists in the front direction of the display device, and the main side lobe exists in the direction inclined with respect to the lens arrangement direction.
如图12所示,在各向异性散射结构存在于透镜的光轴的附近中的情况下,那么当从透镜的焦点,距离一定程度时,能在主侧瓣和主瓣中启动各向异性散射结构。将H1用作从主点,即透镜的顶点到各向异性散射结构的距离,那么从各向异性散射结构到像素面的距离为H-H1。因此,如果考虑从相邻像素对发出的光通过各向异性散射结构61并进入柱面透镜3a的末端的情形,那么将在其底边为L/2(透镜排列间距的一半)和其高度为H1的三角形和其底边为1.5N×P的距离(对应于1.5N像素(相对于左右像素,N=2)),以及其高度为H-H1的三角形间,产生相似关系。也能产生公式17。As shown in Figure 12, in the case where the anisotropic scattering structure exists in the vicinity of the optical axis of the lens, then when the distance from the focal point of the lens is certain, anisotropy can be activated in the main side lobe and the main lobe Scattering structure. Using H1 as the distance from the principal point, ie, the vertex of the lens, to the anisotropic scattering structure, then the distance from the anisotropic scattering structure to the pixel plane is H-H1. Therefore, if considering the situation that the light emitted from the adjacent pixel pair passes through the
[公式17][Formula 17]
L/2∶H1=1.5N×P∶H-H1L/2:H1=1.5N×P:H-H1
如果相对于H1重新排列公式17,那么,将获得公式18。If Equation 17 is rearranged with respect to H1, then
[公式18][Formula 18]
H1=L×H/(L+3N×P)H1=L×H/(L+3N×P)
由公式18计算的值是边界条件;因此,如由公式19所示,在小于该值的范围将不出现问题。H1的下限为零,以及这一情形与当在透镜表面上形成各向异性散射结构时有关。The value calculated by
[公式19][Formula 19]
H1≤L×H/(L+3N×P)H1≤L×H/(L+3N×P)
作为前提,假定各向异性散射结构存在于透镜的光轴上,然而,如上所述,考虑扩展到主瓣和相邻主侧瓣。因此,即使当在除沿光轴的位置中存在结构时,这一条件将是适当的。As a premise, it is assumed that an anisotropic scattering structure exists on the optical axis of the lens, however, as described above, extensions to the main lobe and adjacent main side lobes are considered. Therefore, this condition will be appropriate even when there are structures in positions other than along the optical axis.
即使不以足够紧密排列的方式排列沿X轴方向具有散射特性的各向异性散射结构的情况下,一旦执行了所有上述计算,提供透镜的顶点和各向异性散射结构间的距离将等于或小于L×H/(L+3N×P)的排列允许使用本发明并提高图像质量。Even without arranging the anisotropic scattering structures with scattering properties along the X-axis in a sufficiently closely packed manner, once all the above calculations are performed, the distance between the apex of the provided lens and the anisotropic scattering structures will be equal to or less than The arrangement of LxH/(L+3NxP) allows the use of the invention and improves the image quality.
现在,将描述当将视差栅栏用作图像分配装置时,允许视差栅栏以有效方式示范图像分配动作的条件。首先,将参考图13,描述视差栅栏系统。Now, conditions that allow the parallax barrier to demonstrate image distribution actions in an efficient manner when the parallax barrier is used as the image distribution device will be described. First, the parallax barrier system will be described with reference to FIG. 13 .
视差栅栏7是在其上形成多个小的、垂直条纹状开口,即狭缝7a的阻光板。换句话说,视差栅栏是在其上形成在垂直于第一方向(分配方向)的第二方向中延伸的狭缝的光学构件,将狭缝形成为沿第一方向排列多个。从左眼像素4L向视差栅栏7发出的光通过狭缝7a,然后,形成传播到区域EL的光束。类似地,从右眼像素4R向视差栅栏7发出的光通过狭缝7a,然后,形成传播到区域ER的光束。只要使他们的左眼552位于区域EL和右眼551位于区域ER,观察者能感知三维图像。The
接着,将提供三维图像显示设备中的部件的大小的详细描述,其中,使具有狭缝状开口的视差栅栏位于显示面板的正面上。如图13所示,L是指排列视差栅栏7的狭缝7a的间距,以及H是指像素和视差栅栏7间的距离。光学观察距离OD是指观察者和视差栅栏7间的距离。WL是指从位于视差栅栏7的中心中的狭缝7a的中心到在X轴方向中,位于视差栅栏7的末端的狭缝7a的中心的距离。视差栅栏7是阻光板,因此,防止除经狭缝7a外的地方进入的光通过。然而,视差栅栏7具有用于支撑栅栏层的衬底,以及衬底的折射率定义为n。假设不存在支撑衬底,可以将折射率n设置成1,其是周围空气的折射率。为在这种情况下提供清晰度,当从支撑栅栏层的衬底发出经狭缝7a发出的光时,根据斯涅耳定律,产生折射。因此,α和β分别是指相对于位于视差栅栏7的中心中的狭缝7a中的光,入射和出射的角度。γ和δ分别是指相对于位于X轴方向中,视差栅栏7的边缘上的狭缝7a中的光的入射和出射的角度。S1是指狭缝7a的开口的宽度。排列狭缝7a的间距L和排列像素的间距P彼此相关,使得每个间距值都能与另一个关联地确定。然而,通常,结合显示面板设计视差栅栏,为此,将像素排列间距P视为常数。通过选择用于支撑栅栏层的衬底的材料,确定折射率n。相反地,使用所需值设置视差栅栏和观察者间的观察距离OD和观察距离OD的像素放大投影图像的周期e。这些值用来确定栅栏和像素间的距离H和像素间距L。从斯涅耳定律和几何关系,导出下文的公式20至25。也导出下文的公式26至28。Next, a detailed description will be given of the sizes of components in a three-dimensional image display device in which a parallax barrier having a slit-like opening is positioned on the front surface of a display panel. As shown in FIG. 13 , L refers to the pitch of the slits 7 a in which the
[公式20][Formula 20]
n×sinα=sinβn×sinα=sinβ
[公式21][Formula 21]
OD×tanβ=eOD×tanβ=e
[公式22][Formula 22]
H×tanα=PH×tanα=P
[公式23][Formula 23]
n×sinγ=sinδn×sinγ=sinδ
[公式24][Formula 24]
H×tanγ=CH×tanγ=C
[公式25][Formula 25]
OD×tanδ=WLOD×tanδ=WL
[公式26][Formula 26]
WP-WL=CWP-WL=C
[公式27][Formula 27]
WP=2×m×pWP=2×m×p
[公式28][Formula 28]
WL=m×LWL=m×L
上文描述了具有左眼像素和右眼像素的二视点三维图像显示设备,然而,在本发明中,不通过限制方式来提供该排列。例如,本发明可以类似地用于其格式包含N个视点的显示设备。在这些情况下,在上文所示的距离WP的定义中,可以将包含在与距离WP有关的区域中的像素的数量从2m改变成N×m。The two-viewpoint three-dimensional image display device having left-eye pixels and right-eye pixels has been described above, however, in the present invention, this arrangement is not provided by way of limitation. For example, the present invention can be similarly applied to a display device whose format contains N viewpoints. In these cases, in the definition of the distance WP shown above, the number of pixels contained in the area related to the distance WP can be changed from 2m to N×m.
如果使用上述参数进行全部计算,像素排列间距P是根据显示面板确定的值,而从像素投影的放大图像的周期e和观察距离OD是根据显示设备的结构而确定的值。根据用于支撑衬底的材料等等,确定折射率n。由这些值导出的狭缝排列间距L和视差栅栏和像素间的距离H是用来确定将来自像素的光投影在观察面上的位置的参数。用于改变图像分配效果的参数是狭缝开口宽度S1。具体地,在固定栅栏和像素间的距离H的情况下,那么越小的狭缝开口宽度将使得更清楚地分离左右像素图像。原理与用于针孔照相机的原理相同。当开口宽度S1越大时,左右像素图像将变得模糊,防碍清楚分离。If all calculations are performed using the above parameters, the pixel arrangement pitch P is a value determined according to the display panel, and the period e of the enlarged image projected from the pixels and the viewing distance OD are values determined according to the structure of the display device. The refractive index n is determined depending on the material used for the supporting substrate and the like. The slit arrangement pitch L and the distance H between the parallax barrier and the pixel derived from these values are parameters used to determine the position where light from the pixel is projected on the viewing plane. A parameter for changing the image distribution effect is the slit opening width S1. Specifically, in the case of a fixed barrier and the distance H between pixels, then a smaller slit opening width will result in a clearer separation of the left and right pixel images. The principle is the same as that used for pinhole cameras. When the opening width S1 is larger, the left and right pixel images will become blurred, preventing clear separation.
产生分离的视差栅栏狭缝的宽度范围能比当使用透镜系统时更直观地计算。如图14所示,当从左眼像素4L和右眼像素R间的边界发出的光通过狭缝7a时,光的宽度被降低到宽度S1,所述宽度S1是狭缝开口宽度。光在到达观察面前在距离OD上传播,但在观察面处的宽度必须等于或小于e,以便产生分离。在光超出该宽度的情况下,将超出左/右像素投影周期,因此,将不产生分离。狭缝开口的宽度S1是狭缝间距L的一半。具体地,将产生分离的视差栅栏狭缝的宽度范围等于或小于狭缝间距的一半。The range of widths of the parallax barrier slits that create the separation can be calculated more intuitively than when using a lens system. As shown in FIG. 14, when the light emitted from the boundary between the left-
接着,将使用视差栅栏系统,描述在Z轴方向中的各向异性散射结构的优选位置。如图15所示,将透镜系统视作与视差栅栏系统类似。因此,将透镜排列间距L用作狭缝7a的开口的宽度S1,以及使用上述公式19中的S1允许获得下述公式29。Next, the preferred position of the anisotropic scattering structure in the Z-axis direction will be described using a parallax barrier system. As shown in Figure 15, the lens system is considered similar to the parallax barrier system. Therefore, using the lens arrangement pitch L as the width S1 of the opening of the slit 7a, and using S1 in the above-mentioned
[公式29][Formula 29]
H≤S1×H/(S1+3N×P)H≤S1×H/(S1+3N×P)
即使不以足够紧密的排列放置沿X轴方向具有散射特性的各向异性散射结构的情况下,当已经执行上述计算时,提供视差栅栏和各向异性散射结构间的距离将等于或小于S1×H/(S1+3N×P)的排列允许使用本发明以及提高图像质量。Even if the anisotropic scattering structure having scattering properties along the X-axis direction is not placed in a sufficiently close arrangement, when the above calculation has been performed, the distance between the parallax barrier and the anisotropic scattering structure will be equal to or less than S1× The arrangement of H/(S1+3NxP) allows the use of the invention and improves the image quality.
此外,将移动电话描述为本实施例中的终端设备的例子,但本发明不受该结构限制,以及可以应用于PDA、个人TV、游戏设备、数码相机、数字摄像机、笔记本个人计算机和各种其他类型的移动终端设备。本发明不仅可适用于移动终端设备,而且可以适用于柜员机、自动售货机、监视器、电视接收器和各种其他类型的固定终端设备。接着,将描述本发明的实施例2。图6是表示根据本实施例的终端设备的截面图。在本发明的实施例1中,在反射液晶显示面板和作为图像分配部的荚状透镜间放置作为各向异性散射部的各向异性散射板。实施例2不同于实施例1之处在于在与形成作为图像分配部的荚状透镜的透镜面的表面相对的表面上提供各向异性散射结构,以及各向异性散射结构与荚状透镜整体形成。In addition, a mobile phone is described as an example of a terminal device in this embodiment, but the present invention is not limited to this structure, and can be applied to PDAs, personal TVs, game devices, digital cameras, digital video cameras, notebook personal computers and various Other types of mobile terminal equipment. The present invention is applicable not only to mobile terminal devices but also to teller machines, vending machines, monitors, television receivers, and various other types of stationary terminal devices. Next,
具体地,如图16所示,在本实施例的反射液晶显示设备11中,将作为图像分配部的荚状透镜31提供给作为反射液晶显示设备11的最外面的+Z侧面,以及在面向用户的荚状透镜31的+Z表面上形成多个柱面透镜31a。在荚状透镜31的-Z侧面上形成作为各向异性散射部的各向异性散射结构62,所述荚状透镜31的-Z侧面是面向反射液晶显示面板2的表面。例如,使用热模压方法,当形成荚状透镜31的透镜表面时,通过将用于各向异性散射结构的模具安放在荚状透镜31的背面上并按压,能在形成透镜表面的同时形成各向异性散射结构62。除该方法外的技术优选地包括使用各向异性爆破器,诸如对角爆破器,以便施加上在一个方向中延伸的图案,以及摩擦技术,由此在单一方向中执行摩擦。通过粘合材料51,将荚状透镜31和反射液晶显示面板2固定在一起,以及具有与荚状透镜31不同的折射率的材料用作粘合材料51。除上述外的本实施例的方面与实施例1中相同。Specifically, as shown in FIG. 16, in the reflective liquid
在本实施例中,以与实施例1相同的方式,使用各向异性散射部使得可以防止由于荚状透镜和反射面板的凹凸结构而引起的显示质量下降,而不显著地折衷荚状透镜的图像分配效果。相对于上述实施例1,由于与荚状透镜整体形成各向异性散射部,不需要用于支撑各向异性散射部的各向异性散射结构的部件,因此能减少设备的轮廓。由于能整体形成各向异性散射部和图像分配部,而不是单独地形成并结合,从而能减少构件的数量,以及能减少组装步骤的数量。因此,能降低成本。由于也可以消除组装期间各向异性散射部和图像分配部的相对定位中的波动,从而能减少不均匀性。在本实施例中,需要定制一种特定的荚状透镜,其中,整体地形成各向异性散射部和图像分配部,但不需要改变透镜的间距或曲率,以及可以使用传统的模具。因此,能降低成本。此外,能使形成各向异性散射结构的表面远离荚状透镜的焦点,以及能获得良好的图像质量。除上述外,本实施例的效果与实施例1相同。In this embodiment, in the same manner as in
接着,将描述本发明的实施例3。图17是表示根据本实施例的显示设备的截面图。在本发明的实施例2中,在与形成作为图像分配部的荚状透镜的透镜表面的表面相对的表面上,形成作为各向异性散射部的各向异性散射结构。实施例3不同于实施例2之处在于使用具有各向异性散射性能的各向异性散射胶63,使反射液晶显示面板和作为图像分配部的荚状透镜彼此粘接。Next,
具体地,如图17所示,在本实施例的反射液晶显示设备12中,将各向异性散射胶63应用于与形成荚状透镜3的柱面透镜3a的表面相对的表面上,以及通过各向异性散射胶63,使荚状透镜3和反射液晶显示面板2粘接在一起。各向异性散射胶63是定向和分散加工成纤维或棒状的材料的胶,以及每一材料具有不同折射率。除上述外,本实施例的方面与实施例2相同。Specifically, as shown in FIG. 17, in the reflective liquid
在本实施例中,以与实施例2相同的方式,使用各向异性散射部使得可以防止由于荚状透镜和反射面板的凹凸结构而引起的显示质量下降,而不显著地折衷荚状透镜的图像分配效果。相对于实施例2,由于不需要用于模塑各向异性散射结构的模具,或用于传送各向异性散射结构的过程,从而能降低成本。此外,存在于各向异性散射胶中的纤维或棒状材料具有极其细的结构,导致平面内的非常均匀的散射。因此,能显著地提高图像质量。除上述外的本实施例的方面与实施例2中相同。In this embodiment, in the same manner as in
接着,将描述本发明的实施例4。图18是表示根据本实施例的显示设备的截面图。在实施例3中,使用具有各向异性散射性能的各向异性散射胶63,使反射液晶显示面板和作为图像分配部的荚状透镜彼此粘接。实施例4不同于实施例3之处在于在作为图像分配部的荚状透镜本身内,形成各向异性散射结构。Next,
具体地,如图18所示,在本实施例的反射液晶显示设备13中,荚状透镜32的基础材料具有各向异性散射,由此,荚状透镜32本身具有各向异性散射性能。能用来制作具有各向异性散射性能的基础材料的适当方法包括当制作基础材料时,用于定向和分散具有不同折射率的纤维或棒状材料的方法、用于延伸具有各向同性散射的基础材料以便产生散射各向异性的方法以及其他方法。可以使用例如热模压方法来将透镜形状转移到根据上述方法制作的具有各向异性散射性能的基础材料,以便制作具有各向异性散射的荚状透镜32。将荚状透镜32通过粘合材料52固定到反射液晶显示面板2。除上述外,本实施例的方面与实施例3相同。Specifically, as shown in FIG. 18 , in the reflective liquid
在本实施例中,以与实施例3相同的方式,使用各向异性散射部使得可以防止由于荚状透镜和反射面板的凹凸结构而引起的显示质量降低,而不显著地折衷荚状透镜的图像分配效果。与实施例2相比,不需要使用其折射率不同于荚状透镜的折射率的粘合材料。此外,与实施例3相比,不需要使用各向异性散射胶。具体地,与实施例2和3相比,由于能从显著更宽的范围选择能使用的粘合材料和胶,除实施例2和3的特性外,能甚至能进一步获得成本降低。此外,能使形成各向异性散射结构的表面远离荚状透镜的焦点,以及能获得良好的图像质量。In this embodiment, in the same manner as in
在本实施例中,将作为图像分配部的荚状透镜描述为在其内部具有各向异性散射结构,但本发明不受该结构限制,以及另一组成构件可以在其内部具有各向异性散射性能。例如,可以在显示面板中使用塑料基板,以及塑料基板可以具有各向异性散射性能。用在液晶显示面板中的极化板或相差板也可以具有各向异性散射。此外,用于将提供给显示面板的光学薄膜固定到显示面板的基板的粘合层可以是各向异性散射粘合层。除上述外,本实施例的效果与实施例3相同。In this embodiment, the lenticular lens as the image distribution part is described as having an anisotropic scattering structure inside, but the present invention is not limited by this structure, and another constituent member may have anisotropic scattering inside performance. For example, plastic substrates can be used in display panels, and plastic substrates can have anisotropic scattering properties. Polarization plates or phase difference plates used in liquid crystal display panels may also have anisotropic scattering. In addition, the adhesive layer for fixing the optical film provided to the display panel to the substrate of the display panel may be an anisotropic scattering adhesive layer. Except for the above, the effect of this embodiment is the same as that of
接着,将描述本发明的实施例5。图19是表示根据本实施例的显示设备的截面图;图20是表示图19中所示的导光面板和LED的俯视图;以及图21是表示图19中所示的导光面板和LED的截面图。Next,
如图1 9所示,在本实施例的透射液晶显示设备14中,从用户的方向,按顺序提供荚状透镜3、透射液晶显示面板21、各向异性散射板64和背光单元8。在透射液晶显示面板21中,以与本发明的实施例1中的反射液晶显示面板2相同的方式,显示面板的显示像素由彼此相邻的左眼像素41L和右眼像素41R组成。也沿柱面透镜3a的纵向排列显示像素,以及将荚状透镜3放置成单一柱面透镜3a对应于所排列的显示像素行,与实施例1相同。具体地,在本实施例的透射液晶显示设备14中,作为图像分配部的荚状透镜和显示面板的基本结构与本发明的实施例1相同,但本实施例不同于实施例1之处在于显示面板是要求背光平面光源的透射显示面板。将构成荚状透镜3的柱面透镜3a的焦距设置成柱面透镜3a的主点,即透镜的顶点与左眼像素4L或右眼像素4R间的距离。背光单元8由作为光源的LEDs 81,以及用于传播从光源发出的光以便产生平面光源的导光面板82组成。如图20所示,在导光面板82的-Y侧面上提供LEDs 81。从LEDs 81发出的光从导光面板82的-Y侧面进入导光面板82,并通过导光面板传播同时经历全反射。As shown in FIG. 19, in the transmissive liquid
如图20所示,将多个点83(凹凸结构)提供给导光面板82的+Z侧面上的表面。通过例如印,在导光面板82上形成点83,以及具有干扰在导光面板中传播的光的全反射条件和将光重新定向到+Z方向的功能。如图2 1所示,当从位于导光面板82的-Y侧面上的LED81发出的光进入导光面板时,光在导光面板中传播并如前所述,经历全反射,但该过程发生在当光进入不形成点83的部分时,。当经历全反射时传播的光进入存在点83的部分时,全反射条件受点的形状干扰。因此,将在导光面板中传播的光重新定向到导光面板的外部,以及导光面板充当平面光源。由此,将光从形成点的导光面板中的点部分重新定向。换句话说,当用显微镜观看其中形成有点的平面光源时,点部分亮于其他部分。这种亮度的微观差别不仅仅通过其中形成有点的导光面板产生,而是对下述情况的普通现象,所述情况是指通过将微小槽或其他结构提供给导光面板来干扰全反射条件,以及从导光面板重新定向光。具体地,在具有微小凹凸形状的导光面板中,由于凹凸结构,发出光具有微观面内分布。As shown in FIG. 20 , a plurality of dots 83 (concave-convex structure) are provided to the surface on the +Z side of the
本实施例中的各向异性散射板64具有与本发明的实施例1中的各向异性散射板6相同的基本结构,但不同于实施例1之处在于将最大散射的方向设置成X轴方向,以及最小散射方向设置成Y轴方向。此外,各向异性散射结构641形成在各向异性散射板64的-Z侧面上。除上述外的本实施例的方面与实施例1相同。The
下文描述如上所述构造的本实施例的透射液晶显示设备的操作。图22是表示在图19中所示的透射液晶显示设备中,由平行于X轴方向的线段产生的透射液晶显示设备的截面中的光学模式的图。如图22所示,由于本实施例中的显示设备是透射式的,使用从导光面板82发射到显示面板21中的光产生显示。在通过透射液晶显示面板21的显示像素的点并进入对应于该像素的柱面透镜的光的情况下,进入柱面透镜3a的光线组形成底边为透镜间距,以及焦距为高度的三角形。柱面透镜的焦距设置成像素和透镜的顶点间的距离,如上所述。因此,从柱面透镜发出的光是准直光。The operation of the transmissive liquid crystal display device of this embodiment configured as described above is described below. Fig. 22 is a diagram showing an optical mode in a cross section of the transmissive liquid crystal display device generated by a line segment parallel to the X-axis direction in the transmissive liquid crystal display device shown in Fig. 19 . As shown in FIG. 22 , since the display device in this embodiment is a transmissive type, display is produced using light emitted from
在不存在各向异性散射板64的情况下,从导光面板82向上述显示像素的某一点发出的光线组形成三角形。如前所述,主要从点83发出从导光面板82发出的光。因此,当点不包括在由从导光面板向上述显示像素的某一点发出的光线组形成的三角形的底边中时,不存在通过显示像素的某一点的光。当包括点时,存在通过显示像素的某一点的光。显示像素上的点根据用户观看显示面板的角度改变,以及结合该视角,由对准该点的光线组形成的三角形的底边的位置也改变。因此,当不存在各向异性散射板时,根据用户的位置,亮区和暗区出现在显示中。因此,在显示图像中,重叠亮度差,以及观察到图像质量下降。In the absence of the
然而,由于在本实施例中存在各向异性散射板64,从比在不存在各向异性散射板64的情形中更宽的范围发出对准显示像素的某一点的上述光线组。该结构能降低没形成点83的部分将对应于显示像素的某一点的概率。具体地,能防止由于作为图像分配单元的荚状透镜、背光单元和平面光源的其他结构元件而引起的图像质量下降。However, due to the presence of the
接着,将描述本实施例的效果。在上述实施例中,在荚状透镜和背光单元间提供各向异性散射板,以及将通过各向异性散射板的最大散射方向设置成荚状透镜的图像分配方向。各向异性散射板还位于显示面板和背光单元间。根据该结构,能防止由于背光单元的凹凸结构和荚状透镜引起的显示质量下降,而不折衷荚状透镜的图像分配效果。当使用各向同性散射板代替各向异性散射板作为散射板时,由于在各个方向中散射从背光单元8发出的光,因此,产生降低正面亮度的问题。然而,由于根据本实施例,通过使用各向异性散射板能限制散射方向,因此,能防止正面亮度的降低。Next, effects of the present embodiment will be described. In the above-described embodiments, the anisotropic diffusion plate is provided between the lenticular lens and the backlight unit, and the maximum scattering direction through the anisotropic diffusion plate is set as the image distribution direction of the lenticular lens. The anisotropic scattering plate is also located between the display panel and the backlight unit. According to this structure, it is possible to prevent degradation of display quality due to the concave-convex structure of the backlight unit and the lenticular lenses without compromising the image distribution effect of the lenticular lenses. When an isotropic diffusion plate is used as the diffusion plate instead of an anisotropic diffusion plate, since the light emitted from the
在本实施例中,朝背光单元8放置形成各向异性散射板的各向异性散射结构的表面,但本本发明不受该结构限制,以及可以朝显示面板21放置形成各向异性散射结构的表面。然而,由于当在荚状透镜3的焦点附近放置各向异性散射结构时各向异性散射结构具有影响,优选地使各向异性散射结构远离焦点。具体地,通过使形成各向异性散射结构的表面面向背光单元8,能进一步降低图像质量的下降。In this embodiment, the surface of the anisotropic scattering structure forming the anisotropic scattering plate is placed towards the
在本实施例中,描述了在表面上形成点83的的导光面板82的例子,但本发明不受该结构限制,以及在使用具有微小结构的光学元件的情况下,能以如上所述的相同的方式应用本发明。在上述例子中,在导光面板82的面向荚状透镜3的表面上形成点图案,但在相对的表面,即导光面板的-Z表面上形成微小结构的情况下,能以相同的方式应用本发明。具体地,只要形成微小结构,就能应用本发明,以及这些结构使得所发出的光具有微观面内分布。这种结构的具体例子可以包括用于在导光面板中提供微小槽以便将光重定向到外部的系统、用于提供微小结构以便控制发出光的方向的全息系统,以及其他系统。具有微小结构的光学元件不限于导光面板,以及能以相同的方式,应用用于控制从导光面板发出的光的光学板。这样的光学板的例子包括在+Z表面上形成多个棱镜的向上棱镜板,以及通过该棱镜结构的折射用来增加发出光的方向性,以及在-Z侧面上形成多个棱镜的向下棱镜板,以及使用通过棱镜结构的全反射和折射来增加发出光的方向性。在本实施例中,能增加用于选择这些棱镜板的选择的范围,以及能降低成本。在经多个微小点粘合导光面板和光学板的系统中,能以相同的方式应用本发明,以及使用粘合点结构来重定向来自导光面板的光。In this embodiment, an example of the
在本实施例中,平行于作为图像分配部的荚状透镜的图像分配方向,放置通过各向异性散射板的最大散射方向,但本发明不受该结构限制,以及可以按预定角度放置通过各向异性散射板的最大散射方向。In this embodiment, the maximum scattering direction through the anisotropic scattering plate is placed parallel to the image distribution direction of the lenticular lens as the image distribution part, but the present invention is not limited by this structure, and may be placed at a predetermined angle through each The maximum scattering direction of the anisotropic scattering plate.
此外,在本实施例中,将各向异性散射板用作各向异性散射部,但本发明不受该结构限制,以及也可以适当地使用本发明的另一实施例的各向异性散射部。除上述外,本实施例的效果与实施例1相同。In addition, in this embodiment, an anisotropic scattering plate is used as the anisotropic scattering part, but the present invention is not limited to this structure, and an anisotropic scattering part of another embodiment of the present invention can also be suitably used . Except for the above, the effect of this embodiment is the same as that of
还将透射液晶显示面板用作在本实施例中的显示面板,但本发明不受该结构限制,以及可以有效地应用于使用背光的显示面板。例如,当使用除液晶显示面板外的透射显示面板时,能以相同的方式应用本发明。A transmissive liquid crystal display panel is also used as the display panel in this embodiment, but the present invention is not limited to this structure, and can be effectively applied to a display panel using a backlight. For example, when a transmissive display panel other than a liquid crystal display panel is used, the present invention can be applied in the same manner.
此外,不仅在使用荚状透镜的情况下,而且在使用视差栅栏的情况下,能以相同的方式使用本发明。Furthermore, not only in the case of using a lenticular lens but also in the case of using a parallax barrier, the present invention can be used in the same manner.
在表面内的发出光的均匀性以及导光面板、光学板或为用作照明装置的背光的结构元件的其他光学构件中的光学特性方面,存在局限。因此,还在间距和其他结构方面存在局限。因此,即使当也使用图像分配装置时优选紧密排列,在执行这种紧密排列时也面临复杂性。相反,各向异性散射结构能与背光结构无关地以紧密结构排列,允许放在图像分配装置附近,以及允许获得良好的图像质量。There are limitations in the uniformity of emitted light within the surface and in the optical properties in light guide panels, optical plates or other optical components that are structural elements used as backlights for lighting devices. Therefore, there are also limitations in pitch and other structures. Therefore, even when a close arrangement is preferred when an image distribution device is also used, complications are faced in performing such a close arrangement. In contrast, the anisotropic scattering structures can be arranged in a compact structure independently of the backlight structure, allowing placement in the vicinity of the image distribution device and allowing good image quality to be obtained.
现在,将详细地描述将视差栅栏用作图像分配装置,以及视差栅栏位于显示面板的光源侧上的特定情形。首先,将描述将视差栅栏放在显示面板的后面的情形,如图23所示。如该图所示,L是指排列视差栅栏7的狭缝7a的间距,以及H是指视差栅栏7和像素间的距离。Ht是指显示面板的厚度,包括了视差栅栏7,以及最佳观察距离OD是指显示面板和观察者的距离。WL是指从位于视差栅栏7的中心中的狭缝7a的中心到位于X轴方向中,视差栅栏7的末端的狭缝7a的中心的距离。视差栅栏7是阻光板,因此,防止光进入除狭缝7a外的任何地方。然而,视差栅栏7具有用于支撑栅栏层的衬底,以及衬底的折射率定义为n。假设不存在支撑衬底,可以将折射率n设置成1,其是周围空气的折射率。为在这种情况下提供清晰度,当从显示面板发出经狭缝7a发出并通过像素的光时,根据斯涅尔定律,出现折射。因此,关注集中在从位于视差栅栏7的中心中的狭缝7a发出的光上,以及α和β分别是指观察者的侧面上的显示面板的端面上的入射和出射的角度。类似地,γ和δ分别是指相对于X轴方向中位于视差栅栏7的边缘上的狭缝7a中的光的入射和出射的角度。S1是指狭缝7a的开口的宽度。排列狭缝7a的间距L和排列像素的间距P相互关联,因此,彼此关联地确定每一间距值。然而,通常,结合显示面板设计视差栅栏,为此,将像素排列间距P视为常数。通过选择将用于支撑栅栏层的衬底的材料,确定折射率n。相反地,使用所需值,设定视差栅栏和观察者间的观察距离OD和观察距离OD的像素放大投影图像的周期e。这些值用来确定栅栏和像素间的距离H和透镜间距L。使用斯涅尔定律和几何关系,建立下述公式30至35。也建立下述公式36至38。Now, a specific case where the parallax barrier is used as the image distribution device and the parallax barrier is located on the light source side of the display panel will be described in detail. First, a case where a parallax barrier is placed behind a display panel as shown in FIG. 23 will be described. As shown in the figure, L refers to the pitch of the slits 7a in which the
[公式30][Formula 30]
n×sinα=sinβn×sinα=sinβ
[公式31][Formula 31]
OD×tan β=e+P×Ht/HOD×tan β=e+P×Ht/H
[公式32][Formula 32]
H×tanα=PH×tanα=P
[公式33][Formula 33]
n×sinγ=sinδn×sinγ=sinδ
[公式34][Formula 34]
H×tanγ=C×Ht/ HH×tanγ=C×Ht/H
[公式35][Formula 35]
OD×tanδ=WP-(Ht/H-1)×COD×tanδ=WP-(Ht/H-1)×C
[公式36][Formula 36]
WP-WL=CWP-WL=C
[公式37][Formula 37]
WP=2×m×pWP=2×m×p
[公式38][Formula 38]
WL=m×LWL=m×L
上文描述了具有左眼像素和右眼像素的二视点三维图像显示设备;然而,在本发明中,不将该排列提供为限制。例如,可以将本发明类似地用于其格式包含N个视点的显示设备。在这些情况下,在上文所述的距离WP的定义中,包含在与距离WP有关的区域中的像素的数量可以从2m改变成N×m。The two-viewpoint three-dimensional image display device having left-eye pixels and right-eye pixels has been described above; however, in the present invention, this arrangement is not provided as a limitation. For example, the present invention can be similarly applied to a display device whose format contains N viewpoints. In these cases, in the definition of the distance WP described above, the number of pixels included in the area related to the distance WP can be changed from 2m to N×m.
在后-类型的视差栅栏中出现图像分离的狭缝宽度的范围也是狭缝间距L的一半,与前-类型格式相同。The range of the slit width in which image separation occurs in the rear-type parallax barrier is also half the slit pitch L, which is the same as in the front-type format.
接着,将描述本发明的实施例6。图24是表示根据本实施例的显示设备的截面图。在本发明的实施例5中,在透射液晶显示面板和背光单元间放置作为各向异性散射部的各向异性散射板,平行于作为图像分配部的荚状透镜的图像分配方向放置通过各向异性散射板的最大散射方向,以及在面向背光单元的各向异性散射板的侧面上,形成各向异性散射板的各向异性散射结构。实施例6不同于实施例5之处在于将在每一像素中都具有用于透射的显示区和用于反射的显示区的半透射液晶面板用作显示面板,将各向异性散射板放置在荚状透镜和半透射液晶显示面板间,以及通过各向异性散射板的最大散射方向为垂直于荚状透镜的图像分配方向的方向。还在面向荚状透镜的各向异性散射板的表面上,形成各向异性散射板的各向异性散射结构。Next,
具体地,如图24所示,在本实施例的半透射图像显示设备15中,在远离用户的方向中,按顺序提供荚状透镜3、各向异性散射板65、半透射液晶显示面板22和背光单元8。此外,将通过各向异性散射板65的最大散射方向设置成Y轴方向,其垂直于作为荚状透镜的图像分配方向的X轴方向。还在各向异性散射板65的+Z表面上形成各向异性散射板65的各向异性散射结构651。除上述外,本实施例的方面与实施例5相同。Specifically, as shown in FIG. 24, in the transflective
在本实施例中,能防止由于荚状透镜和背光单元的凹凸结构引起的显示质量的下降,而不显著地折衷荚状透镜的图像分配效果,以及由于能通过使用各向异性散射板限制散射方向,以与实施例5相同的方式,能防止正面亮度的降低。与实施例5相反,将各向异性散射部放置在荚状透镜和半透射液晶显示面板间,由此能防止在反射显示期间,由于荚状透镜和反射面板的凹凸结构而引起的显示质量的下降。具体地,可以同时防止由于背光单元的凹凸结构引起的显示质量下降和由于反射面板的凹凸结构引起的显示质量下降。In this embodiment, it is possible to prevent deterioration of display quality due to the lenticular lens and the concave-convex structure of the backlight unit without significantly compromising the image distribution effect of the lenticular lens, and since scattering can be limited by using an anisotropic scattering plate direction, in the same manner as in
在本实施例中,将形成各向异性散射板的各向异性散射结构的表面描述为朝荚状透镜放置。然而,与朝显示面板放置该表面的情形相比,能使各向异性散射结构远离荚状透镜的焦点,从而能进一步减小图像质量的下降。除上述外,本实施例的效果与实施例5相同。In this embodiment, the surface of the anisotropic scattering structure forming the anisotropic scattering plate is described as being placed toward the lenticular lens. However, compared to the case of placing the surface toward the display panel, the anisotropic scattering structure can be moved away from the focal point of the lenticular lens, so that degradation in image quality can be further reduced. Except for the above, the effects of this embodiment are the same as those of
在描述另外的实施例前,将首先描述由本发明人新发现的、对本发明的实施例7至10共同的问题。这一问题具体是在透镜或狭缝的排列方向中,将具有荚状透镜或其他图像分配部的显示设备中,对显示不起作用的相邻像素或其他区间的边界区的图案观察为平行线,以及降低图像质量。本发明人针对提高具有图像分配部的显示设备的图像质量进行了集中的研究。结果,本发明人发现在显示图像上的图像分配方向中延伸的条纹图案比在不具有图像分配部的传统显示设备中更显著,以及获得下述发现。因此,使用图来描述这些发现。图25是表示根据本发明的比较例子1的显示设备的截面图;图26是表示图25中所示的显示面板中的像素的俯视图;以及图27是表示当由观察者观察图25中所示的显示设备时,显示屏的可视图像的图。Before describing other embodiments, problems newly discovered by the present inventors and common to
如图25所示,在比较例子1的透射液晶显示设备116中,从用户的方向,按顺序提供荚状透镜103和透射液晶显示面板123。在透射液晶显示面板123中,显示面板的显示像素由相邻左眼像素142L和右眼像素1 42R组成,与本发明的实施例5中的透射液晶显示面板21相同。以与实施例5相同的方式,将荚状透镜103排列成使得单一柱面透镜103a对应于显示像素的行。As shown in FIG. 25 , in the transmissive liquid
如图26所示,比较例子1的透射液晶显示面板1 23中的左眼像素142L和右眼像素142R具有透射光的像素区的外围上的阻光区140。为消除相邻像素的影响和保护提供布线的区域的目的,形成阻光区140。在比较例子1中,由于在X轴方向和Y轴方向中排列显示像素,阻光区140具有将在X轴方向中延伸的多条线与在Y轴方向中延伸的多条线结合的形状。在普通液晶显示面板中经常找到用于阻光区的这种形状。As shown in FIG. 26 , the left-
当将作为图像分配部的荚状透镜提供给由此成形阻光区的显示面板时,正向中的观察者分别看到左眼像素142L和右眼像素142R中的A-A线和B-B线。因此,观察者不能看到在Y轴方向中延伸的线,以及仅看到在X轴方向中延伸的线,作为光在其中被阻的区域,如图27所示。具体地,仅在图像分配方向中延伸的阻光区可见,以及在垂直于图像分配方向的方向中的阻光区不可见。当提供荚状透镜时,纵向和横向中的网格图案对用户是可见的,但提供荚状透镜仅使得图像分配方向中的阻光区对观察者可见,以及观察到在图像分配方向中延伸的条纹图案。在比较例子1的情况下,例如,由于图像分配方向对应于左右方向,在显示图像上,重叠地观察到横向中的条纹图案。通过条纹图案,降低显示图像的质量。When the lenticular lens as the image distribution part is provided to the display panel thus forming the light blocking area, the observer in the front direction sees the A-A line and the B-B line in the left-
本发明人进一步研究条纹图案并了解到当显示面板具有低分辩率时,这一问题更显著。认为原因在于当分辩率降低时,条纹的宽度和条纹间的间隔的大小增加,以及用户更容易看到条纹。本发明人发现当在三维图像显示设备中,显示图像的垂直和水平分辩率相同时,这一问题特别显著。认为原因在于尽管当垂直和水平分辩率不同时,由于水平方向中的重叠条纹图案,观察者可见垂直和水平分辩率间的差异,但垂直和水平分辩率的差异是比水平定向条纹图案更显著的问题,因此,条纹图案的问题相对不显著。本发明人还发现当使用荚状透镜时,这一问题比当使用视差栅栏作为图像分配部时更显著。认为原因在于由于当使用视差栅栏时,在垂直于图像分配方向的方向中延伸的条纹图案由狭缝和除狭缝外的区域形成,条纹图案是更显著的问题。通常,在视差栅栏的情况下出现的图案当使用荚状透镜时不出现,以及在平行于图像分配方向的方向中的条纹图案成问题。The present inventors further studied the stripe pattern and learned that this problem is more significant when the display panel has a low resolution. The reason is considered to be that when the resolution decreases, the width of the stripes and the size of the space between the stripes increase, and the stripes are more easily seen by the user. The present inventors found that this problem is particularly conspicuous when the vertical and horizontal resolutions of a displayed image are the same in a three-dimensional image display device. The reason is believed to be that although the difference between the vertical and horizontal resolutions is visible to the observer due to the overlapping fringe pattern in the horizontal direction when the vertical and horizontal resolutions are different, the difference in the vertical and horizontal resolution is more pronounced than the horizontally oriented fringe pattern The problem, therefore, the problem of the stripe pattern is relatively insignificant. The present inventors also found that this problem is more pronounced when a lenticular lens is used than when a parallax barrier is used as the image distribution section. The reason is considered to be that since a stripe pattern extending in a direction perpendicular to the image distribution direction is formed by slits and regions other than the slits when a parallax barrier is used, the stripe pattern is a more conspicuous problem. In general, patterns that appear in the case of a parallax barrier do not appear when a lenticular lens is used, and stripe patterns in a direction parallel to the image distribution direction are problematic.
本发明的实施例7能克服上述问题。图28是表示根据本实施例的显示设备的截面图,以及图29是表示图28中所示的显示面板的像素的俯视图。
如图28所示,在实施例7的透射液晶显示设备16中,从用户的方向,按顺序提供荚状透镜3、各向异性散射板66和透射液晶显示面板23。透射液晶显示面板23与图25和26中所示的透射液晶显示面板123相同。具体地,该显示面板的显示像素由相邻的左眼像素42L和右眼像素42R组成。以与实施例5相同的方式,排列荚状透镜3以便单一柱面透镜3a对应于显示像素行。以与本发明的实施例1相同的方式,放置本实施例中的各向异性散射板66,以便最大散射方向为垂直于荚状透镜3的图像分配方向的方向,以及最小散射方向平行于图像分配方向。在各向异性散射板66的+Z侧面,即面向荚状透镜的侧面上形成各向异性散射板66的各向异性散射结构661。As shown in FIG. 28, in the transmissive liquid crystal display device 16 of
如图29所示,实施例7的透射液晶显示面板23中的左眼像素42L和右眼像素42R在透射光的像素区的外围上具有阻光区40。以与本发明的比较例子1相同的方式,由于在X轴方向和Y轴方向中排列显示像素,阻光区40具有在X轴方向中延伸的多条线与在Y轴方向中延伸的多条线结合的形状。除上述外的本实施例的方面与实施例1相同。As shown in FIG. 29 , the left-eye pixel 42L and the right-eye pixel 42R in the transmissive liquid crystal display panel 23 of
接着,将描述根据如上所述构造的本实施例的透射液晶显示设备的操作和效果。在具有荚状透镜的上述透射液晶显示设备中,在平行于荚状透镜的图像分配方向的方向中延伸的阻光区作为条纹图案是可见的。然而,由于在本实施例中提供在垂直于荚状透镜的图像分配方向的方向中具有显著散射的各向异性散射板,通过各向异性散射板,减少平行于图像分配方向的方向中的条纹图案。由于平行于图像分配方向放置通过各向异性散射板的最小散射方向,对图像分配效果的不利影响能保持到最小。Next, the operation and effects of the transmissive liquid crystal display device according to the present embodiment configured as described above will be described. In the above-mentioned transmissive liquid crystal display device having the lenticular lenses, the light blocking regions extending in a direction parallel to the image distribution direction of the lenticular lenses are visible as a stripe pattern. However, since the anisotropic scattering plate having significant scattering in the direction perpendicular to the image distribution direction of the lenticular lens is provided in the present embodiment, the streaks in the direction parallel to the image distribution direction are reduced by the anisotropic scattering plate pattern. Due to the placement of the minimum scattering direction through the anisotropic scattering plate parallel to the image distribution direction, adverse effects on the image distribution effect can be kept to a minimum.
在本实施例中,对相对于所应用的像素间距,图像分配部的图像分配方向中延伸的阻光区的宽度大的显示面板来说,能更显著地示范效果。这种显示面板的一个例子是水平条纹显示面板,其中,红、绿和蓝滤色器在平行于图像分配方向中延伸以便产生彩色显示。这是因为在这种水平条纹显示面板中,其中,排列条纹的方向垂直于图像分配方向,在垂直于图像分配方向的方向中放置不同颜色的边界,导致更大比例的图像分配方向中延伸的阻光区。能适当地使用本发明,以及能降低在图像分配方向中延伸的阻光区的影响,从而允许获得良好图像质量。很显然,具有大的像素间距的显示面板允许更有效的应用。原因在于在具有大的像素间距的显示面板中,条纹图案具有大的间距,以及对用户而言易于可见。In this embodiment, the effect can be demonstrated more remarkably for a display panel in which the width of the light-blocking region extending in the image distribution direction of the image distribution portion is large with respect to the applied pixel pitch. An example of such a display panel is a horizontally striped display panel in which red, green and blue color filters extend in parallel to the image distribution direction to produce a color display. This is because in such a horizontal stripe display panel, in which the direction in which the stripes are arranged is perpendicular to the image distribution direction, the borders of different colors are placed in the direction perpendicular to the image distribution direction, resulting in a larger proportion of the light blocking area. The present invention can be used properly, and the influence of the light blocking area extending in the image distribution direction can be reduced, allowing good image quality to be obtained. Clearly, a display panel with a large pixel pitch allows more efficient applications. The reason is that in a display panel having a large pixel pitch, the stripe pattern has a large pitch and is easily visible to a user.
在具有荚状透镜、视差栅栏和其他图像分配部的显示设备中,本实施例特别适于左眼图像、右眼图像和其他显示图像的垂直和水平分辩率相同的情形的应用,以及能示范显著的效果。这是因为在水平和垂直分辩率不同的情况下,由于分辩率间的差异,条纹图案变模糊,以及变得相对难以注意。具体地,通过匹配显示图像的垂直和水平分辩率,能使平行于图像分配方向的方向中的条纹图案相对更易注意,以及通过本发明能有效地减少条纹图案。此外,使用荚状透镜时能比使用视差栅栏作图像分配部时更显著地示范效果。原因在于当使用荚状透镜时,能产生无栅栏图案的高质量显示,因此,容易注意到平行于图像分配方向的方向中的条纹图案,以及能有效地减少条纹图案。除上述外,本实施例的效果与实施例1或实施例5相同。In a display device having a lenticular lens, a parallax barrier, and other image distribution parts, this embodiment is particularly suitable for applications where the vertical and horizontal resolutions of the left-eye image, right-eye image, and other display images are the same, and can demonstrate significant effect. This is because in cases where the horizontal and vertical resolutions are different, the stripe pattern becomes blurred and becomes relatively difficult to notice due to the difference between the resolutions. Specifically, by matching the vertical and horizontal resolutions of the displayed image, the stripe pattern in the direction parallel to the image distribution direction can be made relatively more noticeable, and the stripe pattern can be effectively reduced by the present invention. In addition, the demonstration effect can be more prominent when using a lenticular lens than when using a parallax barrier as the image distribution section. The reason is that when a lenticular lens is used, a high-quality display without a barrier pattern can be produced, and therefore, a striped pattern in a direction parallel to the image distribution direction is easily noticed, and the striped pattern can be effectively reduced. Except for the above, the effect of this embodiment is the same as that of
现在,将就条纹图案的可见度,即在平行于荚状透镜的图像分配方向的方向中延伸的阻光板提供详细描述。可见度由人的视力和观察距离而定。三维显示具有三维观看区,因此,观察距离假定在那一观看区内使用。因此,将首先描述三维观看区。Now, a detailed description will be given regarding the visibility of the stripe pattern, that is, the light blocking plate extending in a direction parallel to the image distribution direction of the lenticular lens. Visibility is determined by human eyesight and viewing distance. A three-dimensional display has a three-dimensional viewing zone, therefore, the viewing distance is assumed to be used within that viewing zone. Therefore, the three-dimensional viewing zone will be described first.
图30是表示用来计算具有荚状透镜系统的显示设备中的最大观察距离的光学模型的截面图。通过荚状透镜,使从显示面板的所需左眼像素发出的光集中偏向预定区。这一区域称为左眼区71L。类似地,使从右眼像素发出的光集中偏向右眼区71R。观看者将他们的左眼551放在左眼区71L上,以及将他们的右眼放在右眼区71R上,由此,能使不同图像对准他们的左右眼。如果这些图像是视差图像,那么观看者将能观看三维图像。30 is a cross-sectional view showing an optical model used to calculate the maximum viewing distance in a display device having a lenticular lens system. Through the lenticular lens, the light emitted from the desired left-eye pixel of the display panel is concentrated and deflected to a predetermined area. This area is called the
然而,观看者不能将的眼睛放在左眼区71L和右眼区71R中的任一位置。这是因为由瞳间距强加的限制。根据该文献,人的瞳间距通常是固定值。例如,成年男性的平均瞳间距为65mm,以及标准偏差为±3.7mm。成年女性的平均瞳间距为62mm,标准偏差为±3.6m(Neil A.Dodgson,“Variation and Extrema of Human Interpupillary Distance”,Proc.SPIE vol.5291)。因此,当设计三维显示设备时,用于瞳间距的值适当地设置在62至65mm的范围内,采用约63mm的值。必须通过施加于左右眼区的大小的该瞳间距限制,计算三维观看区。However, the viewer cannot place his/her eyes at any one of the left-
接着,将描述左右眼区的宽度。如在上述中所描述的,e是指从最佳观察距离OD上的像素投影的放大图像的周期,然而,该值优选地设置成等于瞳间距。如果该周期e小于瞳间距,那么三维观看区的宽度将受周期e限制,并将减小。如果周期e大于瞳间距,那么三维观看区的宽度将不受周期e的限制,但将受瞳间距的限制。将变得更难使用在倾斜方向中产生的侧瓣观看。因此,即使增加周期e,三维区的宽度也不增加。为此,使周期e等于瞳间距。Next, the widths of the left and right eye regions will be described. As described above, e refers to the period of the magnified image projected from the pixel at the optimum viewing distance OD, however, this value is preferably set equal to the interpupillary distance. If the period e is smaller than the interpupillary distance, then the width of the three-dimensional viewing zone will be limited by the period e and will decrease. If the period e is greater than the interpupillary distance, then the width of the three-dimensional viewing area will not be limited by the period e, but will be limited by the interpupillary distance. It will become more difficult to view with side lobes created in oblique orientations. Therefore, even if the period e is increased, the width of the three-dimensional area does not increase. To do this, make the period e equal to the interpupillary distance.
因此,三维观看区中的最大观察距离是从X轴方向中,位于显示面板的末端上的显示单元发出的光的迹线和X轴方向中,左或右眼区的中心线间的交叉。因此,关注从X轴方向中,从位于显示面板的末端上的显示单元的中心发出的光束。因此,在其底为WL以及高为最佳观察距离OD的三角形,以及其底为e/2和高为FD-OD的三角形间,建立相似关系。根据结果,建立公式39,以及重新整理公式允许获得最大观察距离FD,如公式40中所示。Therefore, the maximum viewing distance in the three-dimensional viewing area is the intersection between the trace of light emitted from the display unit at the end of the display panel in the X-axis direction and the center line of the left or right eye area in the X-axis direction. Therefore, attention is paid to the light beam emitted from the center of the display unit located on the end of the display panel from the X-axis direction. Therefore, a similarity relation is established between the triangle whose base is WL and whose height is the optimum viewing distance OD, and the triangle whose base is e/2 and whose height is FD-OD. From the results, Equation 39 was established, and rearranged to allow obtaining the maximum viewing distance FD, as shown in Equation 40.
[公式39][Formula 39]
WL∶OD=e/2∶FD-ODWL:OD=e/2:FD-OD
[公式40][Formula 40]
FD=OD×(WL+e/2)/WLFD=OD×(WL+e/2)/WL
接着将计算最小观察距离。图31是表示用来在具有荚状透镜系统的显示设备中,计算最小观察距离的光学模型的截面图。三维观看区中的最小观察距离是从X轴方向中的显示面板的末端发出的光的迹线与X轴方向中左或右眼区的中心线间的交叉。因此,关注从X轴方向中,从位于显示面板的末端上的显示单元的末端(该图的右边)发出的光束。因此,在其底为WL+e/2和高为最小观察距离ND的三角形以及底为e/2和高为OD-ND的三角形间,建立相似关系。因此,公式41成立,以及重新整理公式使得获得最小观察距离ND,如公式42所示。Next the minimum viewing distance will be calculated. 31 is a cross-sectional view showing an optical model used to calculate the minimum viewing distance in a display device having a lenticular lens system. The minimum viewing distance in the three-dimensional viewing area is the intersection between the trace of light emitted from the end of the display panel in the X-axis direction and the centerline of the left or right eye area in the X-axis direction. Therefore, attention is paid to the light beam emitted from the end (right side of the figure) of the display unit located on the end of the display panel from the X-axis direction. Therefore, a similarity relation is established between the triangle whose base is WL+e/2 and the height is the minimum viewing distance ND and the triangle whose base is e/2 and the height is OD-ND. Therefore,
[公式41][Formula 41]
e/2∶OD-ND=WL+e/2∶NDe/2:OD-ND=WL+e/2:ND
[公式42][Formula 42]
ND=OD×(WL+e/2)/(WL+e)ND=OD×(WL+e/2)/(WL+e)
使用上述公式,计算三维可见区71。该区域采用钻石形的四角形的形式,如图30和31所示。X轴方向中该区域的宽度是像素放大投影图像的周期e的一半。Y轴方向中的宽度是最大观察距离FD和最小观察距离ND间的差值。Using the above formula, the three-dimensional
当位于三维观看区中时,观看者优选不知道阻光区。例如,当在三维观看区中时,观看者必须不能从作为离显示面板最远的末端的最大观察距离FD看到[阻光区],以及优选不能从最佳观察距离OD看到[阻光区]。在最佳排列中,观看者将不能从最小观察距离ND看到[阻光区]。When located in the three-dimensional viewing zone, the viewer is preferably unaware of the light blocking zone. For example, when in the three-dimensional viewing zone, the viewer must not be able to see the [light-blocking zone] from the maximum viewing distance FD which is the end furthest from the display panel, and preferably not from the optimal viewing distance OD [light-blocking district]. In an optimal arrangement, the viewer will not be able to see the [blocking zone] from the minimum viewing distance ND.
现在详细地描述就阻光区的可见度,即观看距离和阻光区的宽度间的关系。为阻止观看者看到阻光区,必须将阻光区的宽度设置成等于或小于根据观看者的视力而确定的分辩率。如图32所示,观看者视力和能识别的最小视角间的关系根据公式43确定。Now, the relationship between the visibility of the light blocking area, that is, the viewing distance and the width of the light blocking area will be described in detail. In order to prevent the viewer from seeing the light-blocking area, the width of the light-blocking area must be set to be equal to or smaller than the resolution determined according to the viewer's eyesight. As shown in FIG. 32, the relationship between the viewer's visual acuity and the minimum recognizable viewing angle is determined according to
[公式43][Formula 43]
视力=1/视角(最小)Eyesight = 1/view angle (minimum)
视力值通常为1.0,以及根据公式43将具有1.0的视力的观察者的最小视角计算为1min,即1/60°。因此,观察距离D(mm)的观察者的眼睛的分辩率将为D×tan(1/60)(mm)。角度用作tan角单位,以及tan(1/60)的具体值为0.00029。因此,如果使阻光区,即对显示不起作用的宽度,小于D×tan(1/60)(mm),就能使阻光区的宽度小于眼睛的分辩率,以及能防止观看者看到阻光区。The visual acuity value is generally 1.0, and the minimum viewing angle of an observer with a visual acuity of 1.0 is calculated as 1 min, ie, 1/60°, according to
当考虑上文时,必须使阻光区的宽度小于FD×tan(1/60),优选小于OD×tan(1/60)。如果阻光区的宽度小于ND×tan(1/60),那么在整个三维观看区中,能防止观看者看到阻光区。When the above is considered, it is necessary to make the width of the light blocking region smaller than FD×tan(1/60), preferably smaller than OD×tan(1/60). If the width of the light-blocking area is smaller than ND×tan(1/60), the viewer can be prevented from seeing the light-blocking area in the entire three-dimensional viewing area.
特别是根据本实施例,即使在放开上述限制和放大阻光区的宽度的情况下,将减小观看者看到阻光区的能力,以及能提高显示质量。具体地,在平行于图像分配装置的图像分配方向的方向中延伸的阻光区的宽度为ND×tan(1/60)的情况下,能有效地使用本发明。Especially according to the present embodiment, even if the above-mentioned restriction is released and the width of the light-blocking area is enlarged, the viewer's ability to see the light-blocking area will be reduced, and the display quality can be improved. Specifically, in the case where the width of the light blocking region extending in a direction parallel to the image distribution direction of the image distribution device is ND×tan(1/60), the present invention can be effectively used.
上述描述属于包含使用最大化分离用于左右眼像素图像分离的能力的透镜的情形。然而,在包含使用最大化图像分离性能的针孔形栅栏的情况下,也能使用相同的描述。当使用透镜时,当设置散焦,即透镜焦平面偏离像素平面时,将使三维观看区比上述小。当使栅栏开口更大时,导致相同的结果。然而,当减小三维观看区时,最佳观察距离OD将保持不变,最大观察距离FD将减小到近似最佳观察距离OD,以及最小观察距离ND将增加到近似最佳观察距离OD。因此,当为最大化分离性能而执行计算时在上文中使用的条件也能用在降低分离性能的情形中。The above description pertains to the case of lenses that incorporate the ability to use maximized separation for left and right eye pixel image separation. However, the same description can also be used in cases involving the use of pinhole-shaped barriers to maximize image separation performance. When using a lens, when setting defocus, that is, when the focal plane of the lens is offset from the pixel plane, it will make the 3D viewing area smaller than above. The same result results when the fence opening is made larger. However, when reducing the three-dimensional viewing area, the optimal viewing distance OD will remain unchanged, the maximum viewing distance FD will decrease to approximately the optimal viewing distance OD, and the minimum viewing distance ND will increase to approximately the optimal viewing distance OD. Therefore, the conditions used above when performing calculations for maximizing the separation performance can also be used in the case of reducing the separation performance.
本实施例的结构使得减小在垂直于图像分配装置的图像分配方向的方向中延伸的阻光区的影响成为可能。在三维显示设备中,在垂直方向,即Y轴方向中延伸的非显示区,通过透镜或其他图像分配装置被放大并投影在观察面上。在本实施例中,光在X轴方向(图像分配方向)中被散射到不会显著地折衷分离性能的程度上,因此能最小化影响。The structure of the present embodiment makes it possible to reduce the influence of the light blocking area extending in the direction perpendicular to the image distribution direction of the image distribution device. In a three-dimensional display device, the non-display area extending in the vertical direction, ie, the direction of the Y axis, is magnified by a lens or other image distribution means and projected on the viewing surface. In the present embodiment, light is scattered in the X-axis direction (image distribution direction) to such an extent that the separation performance is not significantly compromised, so the influence can be minimized.
接着,将描述本发明的实施例8。图33是表示根据本实施例的显示设备的截面图,以及图34是表示图33中所示的显示面板的像素的俯视图。在实施例7中,透射液晶显示面板的阻光区具有将在X轴方向中延伸的多条线与在Y轴方向中延伸的多条线结合的形状。实施例8与实施例7不同之处在于透射液晶显示面板的阻光区不同形状。具体地,在X轴方向中延伸的线为线形,但在Y轴方向中延伸的线相对于Y轴倾斜。Next,
具体地,如图33所示,本实施例中的透射液晶显示设备17不同于本发明的实施例7的透射液晶显示设备16之处在于使用透射液晶显示面板24。作为其他组成元件的荚状透镜3和各向异性散射板66与实施例7相同。Specifically, as shown in FIG. 33 , the transmissive liquid crystal display device 17 in this embodiment differs from the transmissive liquid crystal display device 16 of
如图34所示,实施例8的透射液晶显示面板24中的左眼像素43L和右眼像素43R在透射光的像素区的外围上具有阻光区42。在其中阻光区42相对于X轴方向延伸的线的方向,即左眼像素43L和右眼像素43R相邻的方向,平行于X轴方向。相反,在Y轴方向中延伸的阻光区42的线为相对于Y轴方向倾斜的线的集合。因此,用于透射光的像素区具有基本上平行四边形形状。在Y轴方向中彼此相邻的像素的透光区具有绕X轴,线性对称的基本上平行四边形形状。因此,在Y轴方向中延伸的阻光区42的线中,从Y轴方向到+X方向倾斜的线,以及从Y轴方向到-X轴方向倾斜的线形成在Y轴方向中,对每一像素重复的交替Z字形图案。除上述外,本实施例的方面与实施例7相同。As shown in FIG. 34 , the left-eye pixel 43L and the right-eye pixel 43R in the transmissive liquid crystal display panel 24 of
在本实施例中,以与实施例7相同的方式,各向异性散射板的各向异性散射结果使得减小在平行于荚状透镜的图像分配方向的方向中的条纹图案,以及增加图像质量,而不折衷作为图像分配部的荚状透镜的图像分配效果。特别是在本实施例中,由于在Y轴方向中延伸的阻光区的线形成Z字形图案,通过荚状透镜的图像分配效果,向用户放大在Y轴方向中延伸的阻光区,以及能防止左眼像素和右眼像素间的边界处的降低亮度的区域的出现。在这种情况下,由于在作为图像分配方向的X轴方向中,在比实施例7中更宽的范围中可见图像,当不能减小X轴方向中的条纹图案时,出现更重大的问题,但由于在本实施例中,使用各向异性散射部能减少条纹图案,因此,能示范比实施例7更显著的效果。In this embodiment, in the same manner as in
在本实施例中,将在Y轴方向中延伸的阻光区的线描述为形成相对于Y轴方向,对每一像素重复的Z字形图案,但本发明不受该结构限制。例如,可以在单一像素内形成多个Z字形,或可以通过多个像素的周期形成Z字形图。将Z字形图案描述为由从Y轴方向到+X轴方向或-X方向倾斜的线形成,但不限制该结构,以及可以由曲线形成该图案。此外,用于透射光的像素区描述为具有基本上平行四边形形状,但不限制该结构。每一像素可以具有例如基本上梯形形状,以及基本上梯形的开口可以排列成具有相邻像素间的旋转对称。In this embodiment, the lines of the light-blocking regions extending in the Y-axis direction are described as forming a zigzag pattern repeated for each pixel with respect to the Y-axis direction, but the present invention is not limited by this structure. For example, a plurality of zigzags may be formed within a single pixel, or a zigzag pattern may be formed by a period of a plurality of pixels. The zigzag pattern is described as being formed of lines inclined from the Y-axis direction to the +X-axis direction or the −X direction, but the structure is not limited, and the pattern may be formed of a curved line. Also, the pixel region for transmitting light is described as having a substantially parallelogram shape, but the structure is not limited. Each pixel may have, for example, a substantially trapezoidal shape, and the substantially trapezoidal openings may be arranged to have rotational symmetry between adjacent pixels.
图35是表示能在本实施例中应用的显示面板的像素的另一例子的俯视图。如图35所示,在透射液晶显示面板24a中,左眼像素43La和右眼像素43Ra在用于透光的像素区的周围上具有阻光区42a,以及由阻光区42a环绕的透光区具有基本上梯形的形状。还以旋转对称关系,排列左眼像素43La和右眼像素43Ra。还以旋转对称关系,排列Y轴方向中的相邻像素的透光区。因此,在Y轴方向中延伸的阻光区42a的单一线的情况下,从Y轴方向向+X方向倾斜的线,以及从Y轴方向到-X方向倾斜的线形成对Y轴方向中的每一像素重复的Z字形图案,以及对在X轴方向中相邻的Y轴方向中延伸的阻光区42a的其他线,该Z字形图案绕Y轴对称。在本实施例中,除上述效果外,能将该结构适当地应用于特别是使用薄膜晶体管的有源矩阵显示面板,以及能获得增加的开口面积比。除上述外,本实施例的效果与实施例1或实施例5相同。FIG. 35 is a plan view showing another example of a pixel of a display panel applicable to this embodiment. As shown in FIG. 35, in the transmissive liquid
接着,将描述本发明的实施例9。图36是表示根据本实施例的显示设备的截面图;以及图37是表示图36中所示的显示面板的像素的俯视图。实施例9不同于实施例8之处在于使用水平场模式透射液晶显示面板。Next, Embodiment 9 of the present invention will be described. 36 is a sectional view showing a display device according to the present embodiment; and FIG. 37 is a plan view showing pixels of the display panel shown in FIG. 36 . Embodiment 9 is different from
如图36所示,本实施例的透射液晶显示设备18不同于本发明的实施例8的透射液晶显示设备17之处在于使用水平场模式透射液晶显示面板25。作为其他组成元件的荚状透镜3和各向异性散射板66与实施例8相同。As shown in FIG. 36 , the transmissive liquid
如图37所示,实施例9的透射液晶显示面板25是水平场模式液晶显示面板,以及在左眼像素44L和右眼像素44R中形成用于在XY平面中生成水平电场的梳状电极48。左眼像素44L和右眼像素R也在透射光的像素区的周边上,具有阻光区43。阻光区43的基本形状与图34中所示的实施例8相同。然而,本实施例不同于实施例8之处在于本实施例的显示面板是水平场模式显示面板,以及阻光区具有更大宽度以便减小来自相邻像素的水平场的影响,以及便于放置梳状电极48。具体地,阻光区43延伸的线的方向平行于X轴方向,即左眼像素44L和右眼像素44R相邻的方向。相反,在Y轴方向中延伸的阻光区43的线为相对于Y轴方向倾斜的线的集合。因此,用于透光的像素区具有基本上平行四边形形状。在Y轴方向中彼此相邻的像素的透光区具有绕X轴线性对称的基本上平行四边形形状。因此,在Y轴方向中延伸的阻光区43的线中,从Y轴方向到+X方向倾斜的线,以及从Y轴方向向-X方向倾斜的线形成在Y轴方向中,对每一像素重复的交替Z字形图案。梳状电极48与阻光区43的Z字形图案平行地形成,以及在Y轴方向中具有预定角度。由于在Z字形图案中形成的阻光区43的宽度减小相邻像素的水平场的影响,该宽度大于实施例8。通过比实施例8更大的宽度,形成在X轴方向中延伸的阻光区43的线,原因在于在梳状电极的根部出现由于水平场模式中的梳状电极的梳状部的布线而不能生成水平场的区域,以及在这些区域中必须阻止光。除上述外,本实施例的方面与实施例8相同。As shown in FIG. 37, the transmissive liquid
在本实施例中,以与实施例8相同的方式,各向异性散射板的各向异性散射效果使得减小与荚状透镜的图像分配方向平行的方向中的条纹图案,以及提高图像质量而不折衷作为图像分配部的荚状透镜的图像分配效果成为可能。本实施例特别适合用在面内切换模式中,驱动液晶显示面板中,以及能有效地减少由于在梳状电极的根部形成的阻光区而导致的条纹图案。在梳状电极上,水平场弱,以及液晶分子的不充分驱动导致降低的透射比,以及由于不均匀透射比,降低显示质量,但本实施例中的各向异性散射板的各向异性散射效果使得防止降低显示质量,而不折衷荚状透镜的图像分配效果成为可能。In this embodiment, in the same manner as in
本实施例能适合用在驱动处于面内切换模式中的液晶显示面板中,以及能实现宽视角显示,无需在宽角度范围上对比度反转。这种液晶模式的其他例子包括边缘场切换模式和作为与面内切换模式相同的水平场模式的超级边缘场切换模式,以及能以相同的方式应用这些模式。梳状电极可以是由铝或另一金属材料形成的非透明电极,或可以是由ITO(铟锡氧化物)等等形成的透明电极,但在任一情况下,能获得相同的效果。This embodiment can be suitably used in driving a liquid crystal display panel in an in-plane switching mode, and can realize wide viewing angle display without contrast inversion over a wide range of angles. Other examples of such liquid crystal modes include a fringe field switching mode and a super fringe field switching mode which is the same horizontal field mode as the in-plane switching mode, and these modes can be applied in the same manner. The comb electrodes may be non-transparent electrodes formed of aluminum or another metal material, or may be transparent electrodes formed of ITO (Indium Tin Oxide) or the like, but in either case, the same effect can be obtained.
此外,在本实施例中,液晶显示面板不限于水平场模式,以及可以适当地用在液晶模式中,其中,由于显示像素的电极结构、凹凸结构或其他结构,在单一像素内生成透射分布。除上述模式外,这种液晶模式的例子包括作为多域的垂直对齐模式的多域垂直对齐模式、图形垂直对齐模式、先进超V模式等等。原因在于在多域垂直对齐模式的情况下,不透射光的区域出现在域间的边界上。除上述外,本实施例的效果与实施例8相同。Furthermore, in this embodiment, the liquid crystal display panel is not limited to the horizontal field mode, and may be suitably used in a liquid crystal mode in which a transmission distribution is generated within a single pixel due to an electrode structure, a concave-convex structure, or other structures of display pixels. Examples of such liquid crystal modes include a multi-domain vertical alignment mode, a pattern vertical alignment mode, an advanced hyper-V mode, and the like as a vertical alignment mode of multi-domains, in addition to the above-mentioned modes. The reason is that in the case of the multi-domain vertical alignment mode, regions that do not transmit light appear on the boundaries between domains. Except for the above, the effects of this embodiment are the same as those of
显示面板的显示单元具有条纹状彩色像素对齐以便产生彩色显示,但彩色条纹的排列方向可以是本发明中的上述第二方向。可以以正方形形成显示单元。The display unit of the display panel has stripe-shaped color pixels aligned to produce a color display, but the arrangement direction of the color stripes can be the above-mentioned second direction in the present invention. The display unit may be formed in a square shape.
接着,将描述本发明的实施例10。图38是表示根据本实施例的显示设备的截面图,以及图39是表示图38中所示的显示面板的像素的俯视图。实施例10不同于实施例7之处在于使用半透射液晶显示面板,其中,在每一像素的显示区中,提供用于透射显示的区域和用于反射显示的区域。Next,
具体地,如图38所示,本实施例中的透射液晶显示设备19不同于本发明的实施例7中的透射液晶显示设备16之处在于使用半透射液晶显示面板26。作为其他组成元件的荚状透镜3和各向异性散射板66与实施例7相同。Specifically, as shown in FIG. 38 , the transmissive liquid
如图39所示,实施例10的半透射液晶显示面板26中的左眼像素45L和右眼像素45R在每一像素的显示区的周围上具有阻光区44。阻光区44具有将X轴方向中延伸的多条线与在Y轴方向中延伸的多条线结合的形状。在由阻光区44围绕的每一像素的显示区中形成透射显示区和反射显示区。具体地,在每一左眼像素45L中形成透射显示区45Lt和反射显示区45Lr,以及排列显示区使得将每一像素划分成在Y轴方向中排列的两个部分。以相同的方式,在每一右眼像素45R中形成透射显示区45Rt和反射显示区45Rr。具体地,当同时观看多个像素时,透射显示区和反射显示区在X轴方向中的水平线中延伸。除上述外,本实施例的方面与实施例7相同。As shown in FIG. 39 , the left-
在本实施例中,以与实施例7相同的方式,各向异性散射板的各向异性散射效果使得减少与荚状透镜的图像分配方向平行的方向中的条纹图案和提高图像质量,而不折衷作为图像分配部的荚状透镜的图像分配效果成为可能。特别是在本实施例中,能减少在透射显示和反射显示期间出现的图像分配方向中的条纹图案。例如,在透射显示的情况下,特别是当周围区暗时,反射显示区看起来与阻光区相同,以及外部光对显示不起作用。因此,当不存在各向异性散射部时,不仅阻光区产生条纹图案,而且反射显示区看起来就象条纹图案,显著地降低显示质量。在本实施例的透射显示期间,各向异性散射部减少由阻光区引起的条纹图案,以及由反射显示区引起的条纹图案,因此,能提高透射显示的质量。用相同的方式,在反射显示的情况下,特别是当周围区亮时,透射显示区看起来与阻光区相同,以及反射显示占优势以致使透射显示不可见。因此,当不存在各向异性散射部时,不仅阻光区产生条纹图案,而且透射显示区看起来就象条纹图案,显著地降低显示质量。在本实施例的反射显示期间,各向异性散射部能减少由阻光区引起的条纹图案,以及由透射显示区引起的条纹图案,因此能提高反射显示的质量。具体地,能提高半透射液晶显示设备中的透射显示和反射显示的质量。除上述外,本实施例的效果与实施例7相同。In this embodiment, in the same manner as in
接着,将描述本发明的实施例11。图40是表示根据本实施例的终端设备的透视图,以及图41是表示根据本实施例的显示设备的截面图。Next,
如图40和41所示,本实施例的反射图像显示设备10包含在作为终端设备的移动电话91中。本实施例不同于实施例1之处在于构成荚状透镜3的柱面透镜3a的纵向,即Y轴方向,是图像显示设备的横向,即图像的水平方向,以及柱面透镜3a的排列方向,即X轴方向,是纵向,即图像的垂直方向。As shown in FIGS. 40 and 41, the reflective
如图40所示,在反射液晶显示面板27中,按矩阵排列多个像素对,其中每个像素对都由第一视点像素4F和第二视点像素4S组成。在单一像素对中的第一视点像素4F和第二视点像素4S的排列方向为作为柱面透镜3a的排列方向的X轴方向,以及为屏幕的纵向(垂直方向)。像素4F和4S具有与实施例1所述相同的结构。此外,将通过各向异性散射板67的最大散射方向设置成X轴方向,以及将最小散射方向设置成Y轴方向。除上述外,本实施例的方面与实施例1相同。As shown in FIG. 40, in the reflective liquid
接着,将描述本实施例的图像显示设备的操作,尽管基本操作与实施例1相同,但所显示的图像不同。反射液晶显示面板27的第一视点像素4F显示用于第一视点的图像,以及第二视点像素4S显示用于第二视点的图像。用于第一视点的图像和用于第二视点的图像是具有不同显示内容的平面图像,以及不是具有视差的三维图像。图像也可以彼此无关,或可以表示相关信息。Next, the operation of the image display device of this embodiment will be described, although the basic operation is the same as that of
本实施例的优点是不仅能防止由荚状透镜和反射面板的凹凸结构引起的图像质量下降,而不显著地折衷荚状透镜的图像分配效果,而且观察者能仅通过改变移动电话91的角度,有选择地观看第一视点图像或第二视点图像。特别是当第一视点图像和第二视点图像相关时,能提高便利性,因为可以通过改变视角的简单方法,在图像间切换。当在横向中排列第一视点图像和第二视点图像时,根据观看位置,能由右眼和左眼观察不同的图像。在这种情况下,观察者变糊涂,以及不能识别每一视点的图像。然而,如本实施例中所示,当在纵向中排列用于多个视点的图像时,观察者总是能用双眼查看用于每一视点的图像,因此,易于识别图像。除上述外,本实施例的效果与实施例1相同。本实施例也可以与实施例2至10的任何一个结合。The advantage of this embodiment is that it can not only prevent the degradation of image quality caused by the lenticular lens and the concave-convex structure of the reflective panel without significantly compromising the image distribution effect of the lenticular lens, but also the observer can , to selectively view images from the first viewpoint or images from the second viewpoint. Especially when the first-viewpoint image and the second-viewpoint image are related, convenience can be improved because it is possible to switch between the images by a simple method of changing the viewing angle. When the first viewpoint image and the second viewpoint image are arranged in the landscape direction, different images can be observed by the right eye and the left eye according to the viewing position. In this case, the observer becomes confused and cannot recognize the image of each viewpoint. However, as shown in the present embodiment, when the images for a plurality of viewpoints are arranged in the longitudinal direction, the observer can always view the images for each viewpoint with both eyes, and therefore, it is easy to recognize the images. Except for the above, the effect of this embodiment is the same as that of
在实施例1至11中,描述了安装在移动电话等等中的图像显示设备,通过提供具有相对于单一观察者的左右眼的视差的图像,显示三维图像或向单一观察者同时提供多种图像。然而,本发明不受该结构限制,以及可以提供大型显示面板,用于向多个观察者提供多个不同图像。如下所述,这对从实施例12向前的剩余实施例也成立。In
现在,将描述本发明的实施例12。图42是根据实施例12的显示设备的截面图。实施例12显著地不同于本发明的实施例1之处在于在衬底2a内提供各向异性散射层681,而不提供各向异性散射板。具体地,实施例12是“单元内”型显示面板,其中,将各向异性散射层嵌入面板中。Now,
如图42所示,在根据本实施例的反射液晶显示设备111中,使用反射液晶显示面板28。在构成反射液晶显示面板28的衬底中,不形成反射面板4,以及各向异性散射层681位于为观察者端的+Z方向侧面上的衬底2a的液晶层5上,除上述外,本实施例的结构与实施例1相同。As shown in FIG. 42, in the reflective liquid
与实施例1一样,在本实施例中使用各向异性散射层,由此使得最小化由结合使用荚状透镜和反射面板的凹凸结构而引起的显示质量的任何恶化,而不显著地折衷荚状透镜的图像分配效果。也可以使用与传统使用的类似的玻璃衬底或荚状透镜,而不要求各向异性散射胶或各向异性散射板。因此,可使用更少构件、降低成本和提供更薄外形。也可以将各向异性散射层放在反射面板附近,从而能够提高在显示表面内和厚度方向中的定位精度,降低误差和提高图像质量。As in
使用光刻技术和2P方法,能形成本实施例的各向异性散射层。代替各向异性散射层,也可以将各向异性散射结构提供给液晶层上的衬底2a的表面。可以将外涂层提供到各向异性散射结构的液晶侧。这将抹平由各向异性散射结构引起的任何不规则性,以及提高液晶分子的可定向性。可以在用来提供彩色显示的滤色器的层中包括各向异性散射层。除上述外,本实施例的结构与实施例1相同。Using a photolithography technique and a 2P method, the anisotropic scattering layer of this embodiment can be formed. Instead of an anisotropic scattering layer, an anisotropic scattering structure can also be provided to the surface of the
现在将描述本发明的实施例13。图43是表示根据实施例13的显示设备的截面图。实施例13不同于实施例12之处在于将图案提供给各向异性散射层681。
具体地,如图43所示,将反射液晶显示面板29用在根据本实施例的反射液晶显示设备112中。各向异性散射层681位于衬底2a的液晶层5侧面上。采用所谓“单元内”结构。各向异性散射层681位于部分而不是整个显示表面内。相对于反射面板的凹凸结构的位置,相应地放置各向异性散射层681。例如,显示表面中的凹凸结构的位置与显示表面中的各向异性散射层681的位置相同。除上述外,本实施例的结构与实施例12相同。Specifically, as shown in FIG. 43, a reflective liquid
在本实施例中,相对于反射板的凹凸结构,相应地放置各向异性散射层,由此最小化由于结合使用荚状透镜和反射板的凹凸结构而引起的显示质量的任何恶化。由于能将各向异性散射层仅放在可能出现问题的区域中,能最小化对其他区域的影响。例如,该实施例能适当地结合半透射液晶显示面板使用,以及可以将各向异性散射层仅放在反射显示区中,以便将不会不利地影响透射显示区。In this embodiment, the anisotropic scattering layer is placed accordingly with respect to the concave-convex structure of the reflective plate, thereby minimizing any deterioration in display quality due to the combined use of lenticular lenses and the concave-convex structure of the reflective plate. Since the anisotropic scattering layer can be placed only in areas where problems may occur, the influence on other areas can be minimized. For example, this embodiment can be suitably used in conjunction with a semi-transmissive liquid crystal display panel, and the anisotropic scattering layer can be placed only in the reflective display area so that it will not adversely affect the transmissive display area.
各向异性散射效果具有显示面内的分布的事实在本实施例中很重要。因此,各向异性散射层的各向异性散射效果在表面内具有分布,而没有施加的图案,以及可以仅出现在所需区域中。具体地,通过面内分布赋予使散射层的散射效果,以及该层仅在反射面板的凹凸结构附近对提高各向异性散射效果有效。除上述外,本实施例的结构与实施例12相同。The fact that the anisotropic scattering effect has an in-plane distribution is important in this embodiment. Thus, the anisotropic scattering effect of the anisotropic scattering layer has a distribution within the surface without an applied pattern, and can appear only in desired areas. Specifically, the scattering effect of the scattering layer is imparted by the in-plane distribution, and this layer is effective in enhancing the anisotropic scattering effect only in the vicinity of the concave-convex structure of the reflective panel. Except for the above, the structure of this embodiment is the same as that of
现在,将描述本发明的实施例14。图44是表示根据实施例14的显示面板的截面图。实施例14显著地不同于本发明的实施例1之处在于代替各向异性散射板,将各向异性散射结构提供给透镜的曲面部。Now,
具体地,如图44所示,具有多个柱面透镜33a的荚状透镜33用在根据本实施例的反射液晶显示面板113中。在相邻柱面透镜33a间的凹部区中,将各向异性散射结构691提供给荚状透镜33。除上述外,本实施例的结构与实施例1相同。Specifically, as shown in FIG. 44, a
将各向异性散射结构提供给本实施例中的透镜的曲面区,由此能够最小化由荚状透镜和反射面板的凹凸结构的结合使用而引起的显示质量的任何恶化。能使形成各向异性散射结构的表面远离荚状透镜的焦点,允许获得良好的图像质量。将各向异性散射结构提供给相邻柱面透镜间的凹部区,防止在光轴的附近中折衷图像分离性能,其中,像差最小以及获得杰出的图像分离性能。具体地,将获得杰出图像分离性能的区域用于分离图像,以及将降低图像分离性能的区域用于各向异性散射,由此在这两方面都实现性能。The anisotropic scattering structure is provided to the curved area of the lens in this embodiment, thereby making it possible to minimize any deterioration in display quality caused by the combined use of the lenticular lens and the concavo-convex structure of the reflective panel. Being able to place the surface forming the anisotropically scattering structure away from the focal point of the lenticular lens allows good image quality to be obtained. Providing the anisotropic scattering structure to the concave region between adjacent cylindrical lenses prevents compromising image separation performance in the vicinity of the optical axis, wherein aberrations are minimized and excellent image separation performance is obtained. Specifically, a region where excellent image separation performance is obtained is used for separating images, and a region where image separation performance is degraded is used for anisotropic scattering, thereby achieving performance in both.
尽管在本实施例中必须改变荚状透镜本身,但这能通过执行现有模塑的辅助加工实现。因此,荚状透镜的结构,即将用作透镜的区域的结构不必改变。在模具中增加各向异性散射结构的情况下,相邻透镜间的凹部区将是模具中的凸面区。因此,可以加工其最上区域。加工最上区域比加工模具中的凹部区更容易执行。具体地,模具可以是排列透镜的方向中并有意提供切块的地面。除上述外,本实施例的结构与实施例1相同。Although in this embodiment the lenticular lens itself must be changed, this can be accomplished by performing secondary processing to the existing molding. Therefore, the structure of the lenticular lens, that is, the structure of the region to be used as the lens does not have to be changed. With the addition of anisotropic scattering structures in the mold, the concave regions between adjacent lenses will be the convex regions in the mold. Therefore, its uppermost region can be machined. Machining the uppermost area is easier to perform than machining the recessed areas in the mould. Specifically, the mold may be in the direction in which the lenses are aligned and intentionally provided with a cut-out ground. The structure of this embodiment is the same as that of
现在将描述本发明的实施例15。图45是表示根据实施例45的显示设备的截面图。实施例45不同于实施例1之处在于不使用各向异性散射板,将保护板提供给荚状透镜的观察者端,以及保护板具有各向异性散射性能。
具体地,如图45所示,保护板79位于根据本实施例的反射液晶显示设备114中的荚状透镜3的+Z方向侧(观察者侧)上。保护板79从外部保护显示面板2和荚状透镜3。保护板79具有各向异性散射性能。光被各向异性地散射的方向,以及基本各向异性散射性能的其他方面与实施例1相同。除上述外,本实施例的结构与实施例1相同。Specifically, as shown in FIG. 45 , the protective plate 79 is located on the +Z direction side (observer side) of the
本实施例不要求改变显示面板或荚状透镜,允许使用本发明,以及可以最小化由荚状透镜和反射面板的凹凸结构的结合使用而引起的显示质量的任何恶化。This embodiment does not require changes to the display panel or the lenticular lens, allows the present invention to be used, and can minimize any deterioration in display quality caused by the combined use of the lenticular lens and the concavo-convex structure of the reflective panel.
在本实施例中,各向异性散射结构可以形成在-Z表面上,即保护板在荚状透镜侧上的侧表面。也可以配置触控板,代替保护板。如果示范各向异性散射效果的区域远离荚状透镜,显示将变得模糊,因此,只要可能,优选将该区域放在透镜附近的区域中。除上述外,本实施例的结构与实施例1相同。In this embodiment, the anisotropic scattering structure may be formed on the -Z surface, that is, the side surface of the protective plate on the lenticular lens side. It is also possible to configure a touch panel instead of the protective panel. If the region demonstrating the effect of anisotropic scattering is far from the lenticular lens, the display will be blurred, so it is preferable to place this region in the vicinity of the lens whenever possible. The structure of this embodiment is the same as that of
现在,将提供有关本发明的实施例16的描述。图46是表示根据实施例46的显示设备的截面图;图47是表示为根据本实施例的显示设备的结构元件复眼透镜的透视图;图48是表示复眼透镜的俯视图;以及图49表示与各向异性散射板有关的图,其中,图49A表示本发明的实施例1的散射特性,以及图49B表示实施例16的散射特性。实施例16不同于实施例1之处在于代替荚状透镜,使用复眼透镜。另外,各向异性散射板具有双轴散射特性,在X形结构中产生强的散射。具体地,本实施例能在显示表面的多个方向中产生图像分配效果。因此,本实施例可以适当地用在即使旋转屏幕也提供三维视图的显示设备中,以及用在立体照相格式的显示设备中,其中,即使在垂直方向和水平方向中移动视点的情况下,也能看到不同的视差图像。Now, a description will be provided regarding Embodiment 16 of the present invention. 46 is a sectional view showing a display device according to Embodiment 46; FIG. 47 is a perspective view showing a fly-eye lens as a structural element of the display device according to this embodiment; FIG. 48 is a top view showing a fly-eye lens; 49A shows the scattering characteristics of Example 1 of the present invention, and FIG. 49B shows the scattering characteristics of Example 16 of the present invention. Embodiment 16 is different from
如图46所示,不同的结构元件用在根据本实施例的反射液晶显示设备115中,但Z轴方向中的基本结构与实施例1中相同。具体地,将复眼透镜34放在反射显示面板2的显示表面侧。将各向异性散射板601放在复眼透镜34和反射显示面板2间。As shown in FIG. 46, different structural elements are used in the reflective liquid
如图47和48所示,复眼透镜34是为将反射显示面板2上的像素发出的光分离到不同方向而提供的图像分离光学构件。复眼透镜34是按二维阵列排列多个微透镜34a的透镜阵列。特别地,本实施例中的微透镜34a具有二维球形结构,以便复眼透镜34将示范Y轴方向和X轴方向中的分离动作。将微透镜34a构造成排列在X轴方向和Y轴方向中。因此,将复眼透镜34与显示面板结合,其中,按矩阵的形式排列至少包括左眼像素4L和右眼像素4R的显示单元,由此能在X轴方向和Y轴方向中显示不同的图像。在Y轴方向中彼此相邻放置的那些显示单元将用来显示用于垂直方向中的视点的图像。As shown in FIGS. 47 and 48 , the fly-
特别地,认为本实施例中的X轴方向中的微透镜34a的间距与Y轴方向中相同。特别地,如果将X轴方向中的微透镜34a的间距定义为a,那么,Y轴方向中的间距也将为a。因此,在使用具有两个方向中相同间距的微透镜的情况下,优选在显示面板中,也使用具有两个方向中相同间距的像素。In particular, it is considered that the pitch of the
在图49所示的图中,以离原点的距离的形式,表示XY平面中的散射强度。使用该图,在实施例1的各向异性散射板6和实施例16的各向异性散射板601的散射特性间进行比较。如图49A所示,实施例1的各向异性散射板6的散射特性在Y轴方向中最大,以及在X轴方向中最小。相反地,如图49B所示,实施例16中的各向异性散射板601的散射特性在±45°方向中最大,以及在0和90°方向,即X-和Y-轴方向中最小。具体地,散射最大的方向处于分配方向的中间。换句话说,在划分形成分配方向的角度的方向中,散射最大。可以使用记录二维全息图案的全息漫散器,示范这种类型的X形双轴散射特性。In the graph shown in FIG. 49 , the scattering intensity in the XY plane is represented in the form of the distance from the origin. Using this figure, a comparison was made between the scattering properties of the
现在,将描述各向异性散射板601的散射特性和复眼透镜34的分配方向间的关系。复眼透镜34在X和Y轴方向中具有分配效果,因此,在分配方向和与其垂直的方向中散射最小,并且基本上相同。出现最大散射的方向不同于分配方向。这表示分配方向中的散射特性不同于其他方向中的。除上述外,本实施例的结构与实施例1相同。Now, the relationship between the scattering characteristics of the
本实施例中的各向异性散射板的散射性能在为复眼透镜的图像分配方向的0和90°方向中最小。因此,各向异性散射板不折衷复眼透镜的图像分配效果。散射性能在对角方向,即±45°中强,在所述方向上图像分配效果不重要。因此,最小化通过结合使用荚状透镜和反射面板的凹凸结构引起的显示质量的任何恶化,以及能提高显示质量,而不折衷图像分配效果。另外,本发明能有效地用于在显示表面内的多个方向中具有图像分配效果的显示设备中。The scattering performance of the anisotropic scattering plate in this embodiment is the smallest in the 0 and 90° directions that assign directions to the image of the fly-eye lens. Therefore, the anisotropic scattering plate does not compromise the image distribution effect of the fly-eye lens. The scattering properties are strong in the diagonal directions, ie ±45°, where image distribution effects are not important. Therefore, any deterioration in display quality caused by the combined use of the lenticular lens and the concave-convex structure of the reflective panel is minimized, and the display quality can be improved without compromising the image distribution effect. In addition, the present invention can be effectively used in a display device having image distribution effects in multiple directions within the display surface.
在本实施例中,描述了在将形成分配方向的角度一分为二的方向中出现最大散射。然而,如果出现最大散射的方向仅近似为二等分方向,这将是足够的,以及不必须是严格的二等分方向。In this embodiment, it is described that the maximum scattering occurs in the direction that divides the angle forming the distribution direction into two. However, it would be sufficient if the direction in which maximum scattering occurs is only approximately a bisecting direction, and does not have to be a strictly bisecting direction.
在本实施例中,已经描述了将复眼透镜用作用于图像分配目的的光学装置,然而,就本发明来说,本实施例不提供为限制。可以以彼此成直角放置两个荚状透镜。可选地,可以以不包含直角结构的角度放置多个荚状透镜。也可以使用其内在二维结构中放置针孔的视差栅栏。In this embodiment, it has been described that a fly-eye lens is used as an optical device for image distribution purposes, however, this embodiment is not provided as a limitation as far as the present invention is concerned. Two lenticular lenses may be placed at right angles to each other. Alternatively, multiple lenticular lenses may be placed at angles that do not include right angle structures. It is also possible to use parallax barriers, which inherently place pinholes in two-dimensional structures.
已经将各向异性散射板描述为在显示面中的二个方向(±45°)中具有最大散射,但该板可以示范多轴各向异性散射性能,其中,在几个方向中出现强散射。两个强散射方向中的散射强度的值对每一方向可以不同。除上述外,本实施例的结构与实施例1相同。Anisotropic scattering panels have been described as having maximum scattering in two directions (±45°) in the display surface, but this panel can demonstrate multi-axis anisotropic scattering behavior, where strong scattering occurs in several directions . The value of the scattering intensity in the two strong scattering directions may be different for each direction. The structure of this embodiment is the same as that of
现在提供有关本发明的实施例17的描述。图50是表示根据实施例17的显示设备的截面图。图51是表示根据实施例17的显示设备的结构元件复眼透镜的俯视图。图52是表示根据实施例17的各向异性散射部的散射特性的图。图53是表示根据本实施例的各向异性散射板的散射特性的图,其中,x轴表示显示面内的角度,以及y轴表示散射性能。就排列构成复眼透镜的微透镜的间距来说,实施例17不同于实施例1。改变该间距与实施例17中的各向异性散射性能的优化有关。A description is now provided regarding Embodiment 17 of the present invention. FIG. 50 is a sectional view showing a display device according to Embodiment 17. FIG. FIG. 51 is a plan view showing a fly-eye lens which is a structural element of a display device according to Embodiment 17. FIG. FIG. 52 is a graph showing scattering characteristics of an anisotropic scattering portion according to Example 17. FIG. FIG. 53 is a graph showing the scattering characteristics of the anisotropic scattering plate according to the present embodiment, where the x-axis represents the angle in the display plane and the y-axis represents the scattering performance. Embodiment 17 differs from
如图50所示,在根据本实施例的反射液晶显示设备117中,使用反射液晶显示面板29、各向异性散射板602和复眼透镜35。As shown in FIG. 50, in the reflective liquid
如图51所示,在X轴方向中的,按间距a,以及在Y轴方向中,按间距b排列构成复眼透镜35的微透镜35a。具体地,微透镜35a在X和Y轴方向中具有不同间距值。与复眼透镜35关联,反射液晶显示面板29的X和Y轴方向间距也是不同值。因此,在构成显示单元的单元像素的X轴方向间距为Y轴方向中的值的1/3的情况下,能引用X和Y轴方向中的像素间距为不同值的具体例子。典型的彩色显示面板具有三种原色(红、绿和蓝)的像素,因此,指定方向中的像素间距将是与之垂直的方向中的像素间距的1/3。当使用这种显示面板时,X轴方向中的微透镜的间距将是不同于Y轴方向中的间距的值的值。在间距值不同的另一例子中,可以引用下述情形,即其视点的数目在X和Y轴方向上不同,但X和Y轴方向中的像素间距相同。例如,在X轴方向中存在二个视点以及Y轴方向中存在四个视点的情况下,Y轴方向中的微透镜的间距为X轴方向中的间距的约4倍。因此,取决于将采用的显示面板的结构和将示范的显示特性,微透镜的间距将由此不同。As shown in FIG. 51, the
如图52所示,以与实施例16类似的方式,各向异性散射板602具有X形双轴散射特性,然而,出现最大散射的方向不同。具体地,出现最大散射的方向是相对于X轴方向,旋转+θ/2和-θ/2的方向。角度θ是由二个最大散射方向形成的夹角。两个夹角存在:θ和180°-θ,然而,在本实施例中,θ定义为0°≤θ≤90°,即,以较小的角定义为夹角。如果使用该夹角θ,那么于最大散射方向的方位角可表示为在两个方向:±θ/2。As shown in FIG. 52, in a similar manner to Embodiment 16, the
如图53所示,各向异性散射性能为最小值的方向处于0和90°。As shown in FIG. 53 , the directions in which the anisotropic scattering performance is the minimum are between 0 and 90°.
现在,将详细地描述本实施例的复眼透镜的X轴方向间距a和Y轴方向间距b,以及夹角θ和最大散射方向的方位角±θ/2间的关系。在本实施例中,使用这三个参数a,b和θ,建立公式44中所示的关系。Now, the relationship between the pitch a in the X-axis direction and the pitch b in the Y-axis direction of the fly-eye lens of this embodiment, and the included angle θ and the azimuth angle ±θ/2 of the maximum scattering direction will be described in detail. In this embodiment, using these three parameters a, b, and θ, the relationship shown in
[公式44][Formula 44]
tan(θ/2)=b/αtan(θ/2)=b/α
具体地,在该关系中,仅仅各向异性散射装置产生最大散射的方向位于构成复眼透镜的微透镜的对角方向中。因此,也会降低复眼透镜的图像分配方向中的散射性能。除上述外,本实施例的结构与实施例16相同。Specifically, in this relationship, only the direction in which the anisotropic scattering means produces the maximum scattering is located in the diagonal direction of the microlenses constituting the fly's eye lens. Therefore, the scattering performance in the image distribution direction of the fly-eye lens is also reduced. Except for the above, the structure of this embodiment is the same as that of Embodiment 16.
在本实施例中,各向异性散射板的散射性能在为复眼透镜的图像分配方向的0°和90°方向中最小。因此,各向异性散射板将不折衷复眼透镜的图像分配效果。在对角方向中,散射性能强,其中,图像分配效果不重要。这防止由于结合使用荚状透镜和反射面板的凹凸结构引起的显示质量的任何恶化,以及使得显示质量提高,而不折衷图像分配效果。本发明优选与在X和Y轴方向中,像素间距值和视点数量不同的显示设备一起使用。In the present embodiment, the scattering performance of the anisotropic scattering plate is the smallest in the 0° and 90° directions that assign directions to the images of the fly-eye lens. Therefore, the anisotropic scattering plate will not compromise the image distribution effect of the fly-eye lens. In the diagonal direction, the scattering performance is strong, where image distribution effects are not important. This prevents any deterioration in display quality due to the combined use of lenticular lenses and the concavo-convex structure of the reflective panel, and allows display quality to be improved without compromising the image distribution effect. The invention is preferably used with display devices having different pixel pitch values and number of viewpoints in the X and Y axis directions.
公式44规定能示范本发明的最大效果的条件,然而,就本发明来说,使用该公式确定的值不提供为限制。例如,在实施例16中,各向异性散射方向可以保持相同,而仅改变复眼透镜的透镜间距;相反地,间距可以保持相同,而能改变各向异性散射方位角和夹角。
在实施例16中,采用在实施例17中将复眼透镜中的Y轴方向透镜间距b用作X轴方向透镜间距a的概念。因此,根据公式44,tan(θ/2)=α/α=1, 以及θ/2=45°。除上述外,本实施例的结构与实施例16相同。In Embodiment 16, the concept of using the Y-axis direction lens pitch b in the fly-eye lens as the X-axis direction lens pitch a in Embodiment 17 is adopted. Therefore, according to
可以单独或适当地组合实现上述实施例。The above-described embodiments can be implemented alone or in combination as appropriate.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110228882.3A CN102269893B (en) | 2006-10-23 | 2007-10-23 | Display device, terminal device, display panel and optical member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006288066 | 2006-10-23 | ||
JP2006288066 | 2006-10-23 | ||
JP2007265912 | 2007-10-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110228882.3A Division CN102269893B (en) | 2006-10-23 | 2007-10-23 | Display device, terminal device, display panel and optical member |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101201498A true CN101201498A (en) | 2008-06-18 |
Family
ID=39516744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101668636A Pending CN101201498A (en) | 2006-10-23 | 2007-10-23 | Display device, terminal device, display panel and optical member |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5544646B2 (en) |
CN (1) | CN101201498A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604080B (en) * | 2009-07-10 | 2011-05-04 | 友达光电股份有限公司 | Inspection method of lens substrate and its application to manufacturing method of display device |
CN102323687A (en) * | 2011-09-14 | 2012-01-18 | 吉林省联信光学技术有限责任公司 | Naked eye 3D liquid crystal display and manufacturing method thereof |
CN102681185A (en) * | 2012-05-30 | 2012-09-19 | 深圳超多维光电子有限公司 | Three-dimensional display device and adjusting method thereof |
CN102866528A (en) * | 2012-09-07 | 2013-01-09 | 深圳超多维光电子有限公司 | Display device |
CN104254802A (en) * | 2012-04-20 | 2014-12-31 | 默克专利股份有限公司 | Electro-optical switching element and electro-optical display |
CN105229529A (en) * | 2013-06-25 | 2016-01-06 | 大日本印刷株式会社 | Grenade instrumentation and projection type image display apparatus |
WO2017000433A1 (en) * | 2015-06-30 | 2017-01-05 | 京东方科技集团股份有限公司 | Stereoscopic display substrate, manufacturing method therefor, and stereoscopic display device |
CN107735698A (en) * | 2015-07-10 | 2018-02-23 | 日本瑞翁株式会社 | Visual angle expands film, polarizer and liquid crystal display device |
CN108627988A (en) * | 2017-03-24 | 2018-10-09 | 三星显示有限公司 | Display device |
CN111552093A (en) * | 2020-06-05 | 2020-08-18 | 京东方科技集团股份有限公司 | Display panel, display method thereof and display device |
CN111638600A (en) * | 2020-06-30 | 2020-09-08 | 京东方科技集团股份有限公司 | Near-to-eye display method and device and wearable device |
CN111837073A (en) * | 2018-03-20 | 2020-10-27 | 索尼公司 | Image display apparatus |
CN112805156A (en) * | 2018-10-05 | 2021-05-14 | 锡克拜控股有限公司 | Method of designing a light-redirecting surface of a caustic, optical security element comprising a light-redirecting surface of a caustic designed, marked article, use and method of authenticating such an article |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7527081B1 (en) * | 2022-11-01 | 2024-08-02 | 株式会社バーチャルウインドウ | Image Display System |
CN119165654A (en) * | 2024-11-20 | 2024-12-20 | 成都工业学院 | A display device with enlarged viewing area |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3925500B2 (en) * | 2003-02-28 | 2007-06-06 | 日本電気株式会社 | Image display device and portable terminal device using the same |
JP4669251B2 (en) * | 2003-09-03 | 2011-04-13 | キヤノン株式会社 | Stereoscopic image display device |
JP4402578B2 (en) * | 2004-03-31 | 2010-01-20 | 独立行政法人科学技術振興機構 | 3D display |
JP4572095B2 (en) * | 2004-07-15 | 2010-10-27 | Nec液晶テクノロジー株式会社 | Liquid crystal display device, portable device, and driving method of liquid crystal display device |
-
2007
- 2007-10-23 CN CNA2007101668636A patent/CN101201498A/en active Pending
-
2012
- 2012-07-23 JP JP2012163158A patent/JP5544646B2/en active Active
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604080B (en) * | 2009-07-10 | 2011-05-04 | 友达光电股份有限公司 | Inspection method of lens substrate and its application to manufacturing method of display device |
CN102323687A (en) * | 2011-09-14 | 2012-01-18 | 吉林省联信光学技术有限责任公司 | Naked eye 3D liquid crystal display and manufacturing method thereof |
CN102323687B (en) * | 2011-09-14 | 2013-09-11 | 吉林省联信光学技术有限责任公司 | Naked eye 3D liquid crystal display and manufacturing method thereof |
CN104254802A (en) * | 2012-04-20 | 2014-12-31 | 默克专利股份有限公司 | Electro-optical switching element and electro-optical display |
CN102681185A (en) * | 2012-05-30 | 2012-09-19 | 深圳超多维光电子有限公司 | Three-dimensional display device and adjusting method thereof |
CN102681185B (en) * | 2012-05-30 | 2014-07-30 | 深圳超多维光电子有限公司 | Three-dimensional display device and adjusting method thereof |
US9230465B2 (en) | 2012-05-30 | 2016-01-05 | Superd Co. Ltd. | Stereoscopic display apparatus and adjustment method |
CN102866528A (en) * | 2012-09-07 | 2013-01-09 | 深圳超多维光电子有限公司 | Display device |
CN102866528B (en) * | 2012-09-07 | 2016-03-16 | 深圳超多维光电子有限公司 | Display device |
CN105229529A (en) * | 2013-06-25 | 2016-01-06 | 大日本印刷株式会社 | Grenade instrumentation and projection type image display apparatus |
US10007122B2 (en) | 2015-06-30 | 2018-06-26 | Boe Technology Group Co., Ltd. | Three-dimensional display substrate, its Manufacturing method and three-dimensional display device |
WO2017000433A1 (en) * | 2015-06-30 | 2017-01-05 | 京东方科技集团股份有限公司 | Stereoscopic display substrate, manufacturing method therefor, and stereoscopic display device |
CN107735698A (en) * | 2015-07-10 | 2018-02-23 | 日本瑞翁株式会社 | Visual angle expands film, polarizer and liquid crystal display device |
CN108627988B (en) * | 2017-03-24 | 2022-06-07 | 三星显示有限公司 | display device |
CN108627988A (en) * | 2017-03-24 | 2018-10-09 | 三星显示有限公司 | Display device |
CN111837073B (en) * | 2018-03-20 | 2022-10-11 | 索尼公司 | Image display apparatus |
CN111837073A (en) * | 2018-03-20 | 2020-10-27 | 索尼公司 | Image display apparatus |
CN112805156A (en) * | 2018-10-05 | 2021-05-14 | 锡克拜控股有限公司 | Method of designing a light-redirecting surface of a caustic, optical security element comprising a light-redirecting surface of a caustic designed, marked article, use and method of authenticating such an article |
CN112805156B (en) * | 2018-10-05 | 2022-07-26 | 锡克拜控股有限公司 | Method of designing a light-redirecting surface of a caustic, optical security element comprising a light-redirecting surface of a caustic designed, marked article, use and method of authenticating such an article |
CN111552093A (en) * | 2020-06-05 | 2020-08-18 | 京东方科技集团股份有限公司 | Display panel, display method thereof and display device |
CN111552093B (en) * | 2020-06-05 | 2022-07-12 | 京东方科技集团股份有限公司 | Display panel, display method thereof and display device |
US11909949B2 (en) | 2020-06-05 | 2024-02-20 | Boe Technology Group Co., Ltd. | Display panel, display method thereof and display device |
CN111638600B (en) * | 2020-06-30 | 2022-04-12 | 京东方科技集团股份有限公司 | Near-to-eye display method and device and wearable device |
CN111638600A (en) * | 2020-06-30 | 2020-09-08 | 京东方科技集团股份有限公司 | Near-to-eye display method and device and wearable device |
Also Published As
Publication number | Publication date |
---|---|
JP2013008034A (en) | 2013-01-10 |
JP5544646B2 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102269893B (en) | Display device, terminal device, display panel and optical member | |
CN101201498A (en) | Display device, terminal device, display panel and optical member | |
US10317688B2 (en) | Display panel | |
JP4861180B2 (en) | Backlight for 3D display device | |
KR101611599B1 (en) | Autostereoscopic display device | |
US7965365B2 (en) | Image display device, portable terminal, display panel, and lens | |
CN104508546B (en) | Display device and lighting unit | |
JP4196889B2 (en) | Image display device and portable terminal device | |
WO2014196125A1 (en) | Image display device and liquid crystal lens | |
US8149359B2 (en) | Display panel, display device, and terminal device | |
KR20040035722A (en) | Optical switching apparatus | |
JP2010518429A (en) | Multi-view stereoscopic display | |
JP2015084079A (en) | Image display device | |
JP2019510996A (en) | Method and system for using a refractive beam mapper having a rectangular element profile to reduce Moire interference in a display system comprising a plurality of displays | |
JP5024800B2 (en) | Image display device | |
CN108770384A (en) | The method and system of the moire in the display system for including multiple displays is reduced with deflecting light beams mapper | |
JP3925500B2 (en) | Image display device and portable terminal device using the same | |
JP4698616B2 (en) | Image display device and portable terminal device using the same | |
EP3299883B1 (en) | Display device including lens panel | |
JP2009015337A (en) | Image display device and mobile terminal device | |
GB2428129A (en) | A multiple-view directional display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080618 |