[go: up one dir, main page]

CN101192517A - Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate - Google Patents

Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate Download PDF

Info

Publication number
CN101192517A
CN101192517A CNA2006101443040A CN200610144304A CN101192517A CN 101192517 A CN101192517 A CN 101192517A CN A2006101443040 A CNA2006101443040 A CN A2006101443040A CN 200610144304 A CN200610144304 A CN 200610144304A CN 101192517 A CN101192517 A CN 101192517A
Authority
CN
China
Prior art keywords
buffer layer
layer
gallium arsenide
indium
arsenide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101443040A
Other languages
Chinese (zh)
Inventor
高宏玲
曾一平
段瑞飞
王宝强
朱战平
崔利杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CNA2006101443040A priority Critical patent/CN101192517A/en
Publication of CN101192517A publication Critical patent/CN101192517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

The invention relates to a method for manufacturing multilayer buffer layers with deformation on a gallium arsenide substrate. The invention is characterized in that the method comprises the following steps: step 1, one gallium arsenide substrate is extracted; step 2, the gallium arsenide substrate is processed by deoxidation; step 3, the buffer layers of the gallium arsenide are generated on the gallium arsenide substrate so as to obtain a flat surface; step 4, a buffer layer of indium aluminum arsenic is generated in a range of relatively low temperature, and the buffer layer of the indium aluminum arsenic has a one-layer, two-layer or multi-layer structure so as to achieve the change of lattice constant in the process of epitaxial growth; and step 5, after the buffer layer of the indium aluminum arsenic is generated, the temperature of the gallium arsenide substrate is increased, and high temperature annealing is carried out so as to release the stress of an epitaxial layer.

Description

砷化镓衬底上的多层变形缓冲层的制作方法 Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate

技术领域 technical field

本发明涉及晶体外延生长领域,特别是一种砷化镓衬底上的多层变形缓冲层的制作方法。The invention relates to the field of crystal epitaxial growth, in particular to a method for manufacturing a multi-layer deformation buffer layer on a gallium arsenide substrate.

背景技术 Background technique

砷化镓(GaAs)衬底由于其与同类产品相比,价格低,机械性能好,有利于集成等优点,一直广泛的应用于微电子和光电子领域,用于生长发光二极管(LED)、激光二极管(LD)、光通讯有源器件、太阳能电池、微波器件等。近来,为了迅速处理每年以三倍速度增长的海量信息,全球高速发展的光纤通讯、国际互联网络、移动通讯要求所制备的材料向高频率、高带宽以及高传输速度方向发展。这就要求所生长的材料具有更高的迁移率,但通常这样所外延的材料(如高铟组分的铟镓砷(InGaAs)与砷化镓(GaAs)衬底之间都存在着较大的晶格失配,因此在衬底和有源区之间加入缓冲层的技术就成为制作砷化镓基半导体材料的关键技术。作为缓冲层主要有两个作用,一方面,补偿了衬底和有源区之间的晶格失配,另一方面可以过滤由于晶格失配所产生的位错。所以生长平整度度高、缺陷少、组分精确的缓冲层对于半导体光电材料的制作至关重要。另外,在微电子器件集成领域,对于半导体器件所用材料的绝缘性能有较高的要求。这就提出了生长高阻缓冲层的来避免由于缓冲层漏电给器件集成带来的困难。本发明正是为了满足以上的需求而提出的。Gallium arsenide (GaAs) substrate has been widely used in the fields of microelectronics and optoelectronics for growing light-emitting diodes (LEDs), lasers, etc. Diodes (LD), optical communication active devices, solar cells, microwave devices, etc. Recently, in order to quickly process massive amounts of information that triples every year, the world's rapid development of optical fiber communications, the Internet, and mobile communications requires the preparation of materials to develop in the direction of high frequency, high bandwidth, and high transmission speed. This requires the grown material to have higher mobility, but usually there is a large gap between the epitaxial material (such as high indium composition indium gallium arsenide (InGaAs) and the gallium arsenide (GaAs) substrate. The lattice mismatch, so the technology of adding a buffer layer between the substrate and the active region has become a key technology for making gallium arsenide-based semiconductor materials. As a buffer layer, there are two main functions. On the one hand, it compensates the substrate and the lattice mismatch between the active region, on the other hand, it can filter the dislocations caused by the lattice mismatch. Therefore, the growth of a buffer layer with high flatness, few defects, and precise composition is very important for the production of semiconductor optoelectronic materials It is very important. In addition, in the field of microelectronic device integration, there is a high requirement for the insulation performance of the materials used in semiconductor devices. This proposes the method of growing a high-resistance buffer layer to avoid the difficulties caused by the leakage of the buffer layer to device integration. The present invention is proposed in order to meet the above requirements.

发明内容 Contents of the invention

本发明的目的在于,提供一种砷化镓衬底上的多层变形缓冲层的制作方法,其可提供晶体的质量,有利于后续工艺步骤的制作。The object of the present invention is to provide a method for manufacturing a multi-layer deformation buffer layer on a gallium arsenide substrate, which can improve the quality of the crystal and facilitate the manufacturing of subsequent process steps.

本发明一种砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,包括如下步骤:A method for manufacturing a multi-layer deformation buffer layer on a gallium arsenide substrate of the present invention is characterized in that it comprises the following steps:

步骤1:取一砷化镓衬底;Step 1: Take a gallium arsenide substrate;

步骤2:将砷化镓衬底进行脱氧处理;Step 2: Deoxidize the gallium arsenide substrate;

步骤3:在砷化镓衬底上生长砷化镓缓冲层,以获得平整的表面;Step 3: growing a gallium arsenide buffer layer on the gallium arsenide substrate to obtain a flat surface;

步骤4:在低温范围内生长一铟铝砷缓冲层,该铟铝砷缓冲层为一层、两层或多层结构,以达到外延生长过程晶格常数的改变;Step 4: growing an InAlAs buffer layer in a low temperature range, the InAlAs buffer layer has a one-layer, two-layer or multi-layer structure, so as to achieve the change of the lattice constant during the epitaxial growth process;

步骤5:在生长完铟铝砷缓冲层后,升高砷化镓衬底温度,进行高温热退火,释放外延层的应力。Step 5: After growing the InAlAs buffer layer, increase the temperature of the GaAs substrate and perform high-temperature thermal annealing to release the stress of the epitaxial layer.

其中该铟铝砷缓冲层为一层时,该铟铝砷缓冲层为线性铟组分渐变增大的结构;该铟铝砷缓冲层为两层时,该铟铝砷缓冲层为线性铟组分渐变增大加反向的缓冲层结构;该铟铝砷缓冲层为多层时,该铟铝砷缓冲层为台阶式铟组分渐变结构。Wherein, when the indium aluminum arsenic buffer layer is one layer, the indium aluminum arsenic buffer layer is a structure in which the linear indium composition gradually increases; when the indium aluminum arsenic buffer layer is two layers, the indium aluminum arsenic buffer layer is a linear indium composition The structure of the buffer layer is gradually increased and reversed; when the indium-aluminum-arsenic buffer layer is multi-layered, the indium-aluminum-arsenic buffer layer has a stepped indium composition graded structure.

其中步骤2的脱氧处理是在500-650℃下进行。Wherein the deoxidation treatment in step 2 is carried out at 500-650°C.

其中砷化镓缓冲层的生长温度为550-700℃;生长厚度为10-1000纳米,以获得平整的表面。The growth temperature of the gallium arsenide buffer layer is 550-700° C.; the growth thickness is 10-1000 nanometers to obtain a flat surface.

其中铟铝砷缓冲层的生长温度为250-420℃,阻止了铟铝砷材料因生长温度过高而引起的三维生长。The growth temperature of the indium aluminum arsenic buffer layer is 250-420° C., which prevents the three-dimensional growth of the indium aluminum arsenic material caused by the growth temperature being too high.

其中铟铝砷缓冲层中铟组分x变化范围在1-30%至30-100%之间变化,来保证后续生长的外延材料的晶格匹配。The indium composition x in the IAlAs buffer layer varies from 1-30% to 30-100%, so as to ensure the lattice matching of the epitaxial material grown subsequently.

其中铟铝砷缓冲层的厚度为200纳米-5微米之间,以减小因晶格失配所产生的应力。The thickness of the InAlAs buffer layer is between 200 nanometers and 5 micrometers, so as to reduce the stress caused by lattice mismatch.

其中生长多层铟铝砷缓冲层时是采用停顿生长的方法,即在每一层铟铝砷缓冲层生长完成之后,停顿1-5分钟,然后生长下一层缓冲层。When growing multiple layers of InAlAs buffer layer, the method of pausing growth is adopted, that is, after the growth of each layer of InAlAs buffer layer is completed, stop for 1-5 minutes, and then grow the next layer of buffer layer.

其中所述的多层铟铝砷缓冲层的每一层之间的铟组分差值在1-30%之间,厚度在10-500纳米之间。The indium composition difference between each layer of the multi-layer InAlAs buffer layer is between 1-30%, and the thickness is between 10-500 nanometers.

其中所述的铟铝砷缓冲层为一层时,铟铝砷缓冲层的厚度为1-5微米。Wherein, when the indium aluminum arsenic buffer layer is one layer, the thickness of the indium aluminum arsenic buffer layer is 1-5 microns.

其中所述的铟铝砷缓冲层为两层时,铟铝砷缓冲层的两层铟组分差值为1-50%范围内。Wherein the InAlAs buffer layer has two layers, the difference in indium composition between the two layers of the InAlAs buffer layer is in the range of 1-50%.

其中所述的退火温度为470℃-520℃,退火时间为0-60分钟。The annealing temperature mentioned therein is 470° C.-520° C., and the annealing time is 0-60 minutes.

附图说明 Description of drawings

为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the specific technical content of the present invention, below in conjunction with embodiment and accompanying drawing detailed description as follows, wherein:

图1是本发明第一实施例,其显示多层铟铝砷缓冲层的结构示意图;FIG. 1 is a first embodiment of the present invention, which shows a schematic structural view of a multi-layer InAlAs buffer layer;

图2是本发明第二实施例,其显示一层铟铝砷缓冲层的结构示意图;Fig. 2 is a second embodiment of the present invention, which shows a schematic structural view of an indium aluminum arsenic buffer layer;

图3是本发明第三实施例,其显示两层铟铝砷缓冲层的结构示意图;3 is a third embodiment of the present invention, which shows a schematic structural view of two InAlAs buffer layers;

图4是采用本发明的第一实施例制作的变形高电子迁移率晶体管结构的示意图;Fig. 4 is a schematic diagram of a deformed high electron mobility transistor structure fabricated by the first embodiment of the present invention;

图5是本发明实施例一的铟铝砷缓冲层高分辨X射线三轴衍射曲线图。FIG. 5 is a high-resolution three-axis X-ray diffraction curve of an InAlAs buffer layer according to Embodiment 1 of the present invention.

具体实施方式 Detailed ways

首先请参阅图1、图2和图3所示,本发明一种砷化镓衬底上的多层变形缓冲层的制作方法其特征在于,包括如下步骤:First please refer to Fig. 1, Fig. 2 and Fig. 3, the method for manufacturing a multi-layer deformation buffer layer on a gallium arsenide substrate of the present invention is characterized in that it comprises the following steps:

首先,取一砷化镓衬底11,放入超高真空的分子束外延生长室内。升高沉底温度至500-650℃下将砷化镓衬底11进行脱氧处理,以得到平整的外延表面。然后在550-700℃的衬底温度下,生长10-1000纳米厚的砷化镓缓冲层12,以获得平整的表面,提供有利的外延层。然后在250-420℃的温度范围内完成铟铝砷缓冲层13的生长。在此温度范围内,即阻止了铟铝砷缓冲层材料在高温时的三维生长,即生长为量子点结构,又保证在所选择的温度范围内,铟铝砷原子有充分的表面迁移而形成平整的外延表面。在生长完铟铝砷缓冲层13后,升高衬底温度至470℃-520℃,进行炉内的高温热退火,退火时间为0-60分钟。退火的目的是为了释放所生长的外延层中由于与衬底晶格常数不同所引起的应力。Firstly, a gallium arsenide substrate 11 is taken and put into an ultra-high vacuum molecular beam epitaxy growth chamber. The gallium arsenide substrate 11 is deoxidized by increasing the sinking temperature to 500-650° C. to obtain a flat epitaxial surface. Then, at a substrate temperature of 550-700° C., a gallium arsenide buffer layer 12 with a thickness of 10-1000 nm is grown to obtain a flat surface and provide an advantageous epitaxial layer. Then the growth of the InAlAs buffer layer 13 is completed within the temperature range of 250-420°C. In this temperature range, the three-dimensional growth of the InAlAs buffer layer material at high temperature is prevented, that is, it grows into a quantum dot structure, and it is ensured that in the selected temperature range, the InAlAs atoms have sufficient surface migration to form Flat epitaxial surface. After growing the InAlAs buffer layer 13, raise the substrate temperature to 470°C-520°C, and perform high-temperature thermal annealing in the furnace, and the annealing time is 0-60 minutes. The purpose of annealing is to release the stress in the grown epitaxial layer due to the difference in lattice constant with the substrate.

所生长的铟铝砷缓冲层13为铟组分渐变的一层缓冲层13’(图2),两层缓冲层13”(图3)或多层缓冲层13(图1)结构。其中该铟铝砷缓冲层13’为一层时,该铟铝砷缓冲层13’为线性铟组分渐变增大的结构;该铟铝砷缓冲层13”为两层时,该铟铝砷缓冲层13”为线性铟组分渐变增大加反向的缓冲层结构;该铟铝砷缓冲层13为多层时,该铟铝砷缓冲层13为台阶式铟组分渐变结构,铟组分x变化范围在1-30%至30-100%之间变化,来保证后续生长的外延材料的晶格匹配。铟铝砷缓冲层13的总共厚度为200纳米-5微米之间,以减小因晶格失配所产生的应力,并过滤有于晶格失配外延生长材料所产生的位错。The grown indium-aluminum-arsenic buffer layer 13 is a buffer layer 13' (Fig. 2) with a graded indium composition, a two-layer buffer layer 13" (Fig. 3) or a multi-layer buffer layer 13 (Fig. 1) structure. Wherein the When the indium aluminum arsenic buffer layer 13' is one layer, the indium aluminum arsenic buffer layer 13' is a structure in which the indium composition increases gradually; when the indium aluminum arsenic buffer layer 13" is two layers, the indium aluminum arsenic buffer layer 13" is a buffer layer structure in which the linear indium composition gradually increases and reverses; when the indium-aluminum-arsenic buffer layer 13 is multi-layered, the indium-aluminum-arsenic buffer layer 13 has a stepped indium composition gradient structure, and the indium composition x Variation range changes between 1-30% to 30-100%, to guarantee the lattice matching of the epitaxial material of follow-up growth.The total thickness of indium aluminum arsenic buffer layer 13 is between 200 nanometers-5 microns, to reduce The stress generated by the lattice mismatch and filters the dislocations generated in the lattice mismatched epitaxially grown material.

在生长多层铟铝砷缓冲层13时是采用停顿生长的方法,即在每一层铟铝砷缓冲层13生长完成之后,停顿1-5分钟,同时保证分子束外延生长室通砷束流来保护已生长的铟铝砷缓冲层。然后生长下一层缓冲层,直至生长完所有的铟铝砷缓冲层13结构。When growing the multi-layer InAlAs buffer layer 13, the method of pausing growth is adopted, that is, after the growth of each layer of InAlAs buffer layer 13 is completed, pause for 1-5 minutes, and at the same time ensure that the molecular beam epitaxy growth chamber is connected to the arsenic beam. To protect the grown InAlAs buffer layer. Then grow the next buffer layer until all the InAlAs buffer layer 13 structures are grown.

当所生长的铟铝砷缓冲层13为多层结构时,每一层之间的铟组分差值在1-30%之间,每一层厚度在10-500纳米之间,总体厚度为1-5微米。保证所生长的铟铝砷缓冲层13有足够的厚度以缓解应力。当所生长的铟铝砷缓冲层13为两层时,其两层铟组分差值为1-50%范围内,用以改变外延层所受的应力情况。由于铟铝砷缓冲层13的晶格常数大于砷化镓衬底晶格常数,且随着缓冲层中铟组分的增加晶格常数不断变大,使所生长的外延层受到衬底的压应力,当生长第二层时铟组分下降,晶格常数减小则使第二层缓冲层受到第一层缓冲层张应力的作用。综合两种不同的应力就可以使整个缓冲层处于无应力或是应力较小的状态,以提高缓冲层13的晶体质量。When the grown indium aluminum arsenic buffer layer 13 is a multilayer structure, the difference in indium composition between each layer is between 1-30%, the thickness of each layer is between 10-500 nanometers, and the overall thickness is 1 -5 microns. Ensure that the grown InAlAs buffer layer 13 has sufficient thickness to relieve stress. When the grown InAlAs buffer layer 13 has two layers, the difference in indium composition between the two layers is in the range of 1-50%, which is used to change the stress on the epitaxial layer. Since the lattice constant of the InAlAs buffer layer 13 is greater than the lattice constant of the GaAs substrate, and the lattice constant becomes larger with the increase of the indium component in the buffer layer, the grown epitaxial layer is pressed by the substrate. Stress, when growing the second layer, the indium composition decreases, and the lattice constant decreases so that the second buffer layer is subjected to the tensile stress of the first buffer layer. Combining the two different stresses can make the entire buffer layer in a state of no stress or less stress, so as to improve the crystal quality of the buffer layer 13 .

下面举一例子加以说明,Here is an example to illustrate,

以砷化镓基变形的高电子迁移率晶体管(MMHEMT)材料为例,采用台阶式铟组分渐变的铟铝砷缓冲层结构,沟道层为铟镓砷(In0.52Ga0.48As)材料。Taking the gallium arsenide-based modified high electron mobility transistor (MMHEMT) material as an example, a stepped indium aluminum arsenic buffer layer structure with a gradient indium composition is adopted, and the channel layer is made of indium gallium arsenide (In0.52Ga0.48As) material.

如图4所示,在半绝缘GaAs衬底上利用分子束外延方法沉积一层GaAs缓冲层11,该缓冲层厚度约150纳米,生长温度为580℃。As shown in FIG. 4 , a GaAs buffer layer 11 is deposited on a semi-insulating GaAs substrate by molecular beam epitaxy. The thickness of the buffer layer is about 150 nanometers, and the growth temperature is 580° C.

如图4所示,接下来保持As源炉打开降低衬底温度至30℃,进行InxAl1-xAs缓冲层生长。As shown in FIG. 4 , keep the As source furnace open and lower the substrate temperature to 30° C. to grow the InxAl 1 -xAs buffer layer.

如图4所示,InxAl1-xAs缓冲层13由5层构成41-45。其中In组分变化范围为0.1-0.53,每层厚度为100纳米,在每一层生长完成之后保持As源炉打开,停留5分钟。As shown in FIG. 4, the InxAl 1 -xAs buffer layer 13 is composed of five layers 41-45. The variation range of the In composition is 0.1-0.53, and the thickness of each layer is 100 nanometers. After the growth of each layer is completed, the As source furnace is kept open for 5 minutes.

如图4所示,在InxAl1-xAs缓冲层上生长InGaAs量子阱HEMT结构51-55,生长温度为480℃。其中包括In0.52Ga0.48As沟道层51,In0.53Al0.47As隔离层52,Siδ掺杂层53,In0.52Al0.48As势垒层54,In0.52Ga0.48As帽层55。As shown in Fig. 4, InGaAs quantum well HEMT structures 51-55 are grown on the InxAl 1 -xAs buffer layer, and the growth temperature is 480°C. It includes an In 0.52 Ga 0.48 As channel layer 51 , an In 0.53 Al 0.47 As isolation layer 52 , a Siδ doped layer 53 , an In 0.52 Al 0.48 As barrier layer 54 , and an In 0.52 Ga 0.48 As cap layer 55 .

如图5所示为多层InxAl1-xAs缓冲层高分辨X射线三轴衍射曲线图,可以明显分辨出每一层缓冲层都具有各自的衍射峰,说明我们生长的多层缓冲层结构组分准确、质量较好。As shown in Figure 5, the high-resolution X-ray triaxial diffraction curve of the multi-layer InxAl 1 -xAs buffer layer can be clearly distinguished that each layer of buffer layer has its own diffraction peak, indicating that the multi-layer buffer layer structure we grew Accurate and good quality.

如表1所示,为多层InxAl1-xAs缓冲层的霍尔测试结果分析,电阻率在室温下为2.6×104(欧姆×厘米)。证明所生长的缓冲层材料具有较高电阻率,完全满足器件集成的需要。As shown in Table 1, the analysis of the Hall test results of the multi-layer InxAl 1 -xAs buffer layer shows that the resistivity is 2.6×104 (ohm×cm) at room temperature. It is proved that the grown buffer layer material has a high resistivity, which fully meets the needs of device integration.

表1Table 1

  生长温度(℃)Growth temperature (℃)   电阻率(Ω-cm)Resistivity (Ω-cm)   霍尔因子Hall factor   载流子浓度(cm-3)Carrier concentration (cm -3 )   迁移率(cm2/V.S)Mobility (cm 2 /VS)   340340   2.6×104 2.6×10 4   0.99460.9946   5.319×1010 5.319×10 10   45224522

Claims (12)

1.一种砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,包括如下步骤:1. a method for making a multilayer deformable buffer layer on a gallium arsenide substrate, characterized in that, comprising the steps: 步骤1:取一砷化镓衬底;Step 1: Take a gallium arsenide substrate; 步骤2:将砷化镓衬底进行脱氧处理;Step 2: Deoxidize the gallium arsenide substrate; 步骤3:在砷化镓衬底上生长砷化镓缓冲层,以获得平整的表面;Step 3: growing a gallium arsenide buffer layer on the gallium arsenide substrate to obtain a flat surface; 步骤4:在低温范围内生长一铟铝砷缓冲层,该铟铝砷缓冲层为一层、两层或多层结构,以达到外延生长过程晶格常数的改变;Step 4: growing an InAlAs buffer layer in a low temperature range, the InAlAs buffer layer has a one-layer, two-layer or multi-layer structure, so as to achieve the change of the lattice constant during the epitaxial growth process; 步骤5:在生长完铟铝砷缓冲层后,升高砷化镓衬底温度,进行高温热退火,释放外延层的应力。Step 5: After growing the InAlAs buffer layer, increase the temperature of the GaAs substrate and perform high-temperature thermal annealing to release the stress of the epitaxial layer. 2.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中该铟铝砷缓冲层为一层时,该铟铝砷缓冲层为线性铟组分渐变增大的结构;该铟铝砷缓冲层为两层时,该铟铝砷缓冲层为线性铟组分渐变增大加反向的缓冲层结构;该铟铝砷缓冲层为多层时,该铟铝砷缓冲层为台阶式铟组分渐变结构。2. The method for manufacturing a multilayer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein when the indium aluminum arsenide buffer layer is one layer, the indium aluminum arsenide buffer layer is a linear indium arsenide buffer layer The composition gradually increases; when the indium-aluminum-arsenic buffer layer is two layers, the indium-aluminum-arsenic buffer layer is a buffer layer structure in which the indium composition gradually increases and reverses; the indium-aluminum-arsenic buffer layer is a multilayer In this case, the InAlAs buffer layer has a stepped indium composition graded structure. 3.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中步骤2的脱氧处理是在500-650℃下进行。3. The method for fabricating a multi-layer deformation buffer layer on a gallium arsenide substrate according to claim 1, wherein the deoxidation treatment in step 2 is performed at 500-650°C. 4.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中砷化镓缓冲层的生长温度为550-700℃;生长厚度为10-1000纳米,以获得平整的表面。4. The method for manufacturing a multilayer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein the growth temperature of the gallium arsenide buffer layer is 550-700°C; the growth thickness is 10-1000 nano for a flat surface. 5.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中铟铝砷缓冲层的生长温度为250-420℃,阻止了铟铝砷材料因生长温度过高而引起的三维生长。5. The method for manufacturing a multi-layer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein the growth temperature of the indium aluminum arsenide buffer layer is 250-420°C, which prevents the indium aluminum arsenide material Three-dimensional growth caused by excessive growth temperature. 6.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中铟铝砷缓冲层中铟组分x变化范围在1-30%至30-100%之间变化,来保证后续生长的外延材料的晶格匹配。6. The method for fabricating a multilayer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein the indium composition x in the indium aluminum arsenide buffer layer varies from 1-30% to 30- 100% to ensure the lattice matching of the subsequently grown epitaxial material. 7.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中铟铝砷缓冲层的厚度为200纳米-5微米之间,以减小因晶格失配所产生的应力。7. The manufacturing method of the multilayer deformation buffer layer on the gallium arsenide substrate according to claim 1, wherein the thickness of the indium aluminum arsenide buffer layer is between 200 nanometers and 5 microns, so as to reduce the deformation caused by Stress due to lattice mismatch. 8.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中生长多层铟铝砷缓冲层时是采用停顿生长的方法,即在每一层铟铝砷缓冲层生长完成之后,停顿1-5分钟,然后生长下一层缓冲层。8. The manufacturing method of the multilayer deformation buffer layer on the gallium arsenide substrate according to claim 1, characterized in that, when growing the multilayer indium aluminum arsenide buffer layer, the method of pausing growth is adopted, that is, at each After the growth of the InAlAs buffer layer is completed, stop for 1-5 minutes, and then grow the next layer of buffer layer. 9.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中所述的多层铟铝砷缓冲层的每一层之间的铟组分差值在1-30%之间,厚度在10-500纳米之间。9. The method for manufacturing a multilayer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein the indium composition between each layer of the multilayer indium aluminum arsenide buffer layer The difference is between 1-30%, and the thickness is between 10-500 nanometers. 10.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中所述的铟铝砷缓冲层为一层时,铟铝砷缓冲层的厚度为1-5微米。10. The method for manufacturing a multilayer deformable buffer layer on a gallium arsenide substrate according to claim 1, wherein when the indium aluminum arsenide buffer layer is one layer, the thickness of the indium aluminum arsenide buffer layer is 1-5 microns. 11.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中所述的铟铝砷缓冲层为两层时,铟铝砷缓冲层的两层铟组分差值为1-50%范围内。11. The method for manufacturing a multi-layer deformable buffer layer on a gallium arsenide substrate according to claim 1, characterized in that, when the indium aluminum arsenide buffer layer has two layers, the two layers of the indium aluminum arsenide buffer layer The layer indium composition difference is in the range of 1-50%. 12.根据权利要求1所述的砷化镓衬底上的多层变形缓冲层的制作方法,其特征在于,其中所述的退火温度为470℃-520℃,退火时间为0-60分钟。12. The method for fabricating a multi-layer deformation buffer layer on a gallium arsenide substrate according to claim 1, wherein the annealing temperature is 470°C-520°C, and the annealing time is 0-60 minutes.
CNA2006101443040A 2006-12-01 2006-12-01 Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate Pending CN101192517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2006101443040A CN101192517A (en) 2006-12-01 2006-12-01 Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2006101443040A CN101192517A (en) 2006-12-01 2006-12-01 Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate

Publications (1)

Publication Number Publication Date
CN101192517A true CN101192517A (en) 2008-06-04

Family

ID=39487420

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101443040A Pending CN101192517A (en) 2006-12-01 2006-12-01 Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate

Country Status (1)

Country Link
CN (1) CN101192517A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194671A (en) * 2011-05-11 2011-09-21 中国科学院半导体研究所 Method for growing varied buffer layer on substrate
WO2013020423A1 (en) * 2011-08-05 2013-02-14 苏州大学 Manufacturing apparatus and manufacturing method for quantum dot material
CN103258722A (en) * 2013-04-27 2013-08-21 中国电子科技集团公司第十三研究所 Method adopting AlGaInN buffering layer to grow three-group nitride in GaAs substrate
WO2013143018A1 (en) * 2012-03-26 2013-10-03 北京通美晶体技术有限公司 Iiiα-va group semiconductor single crystal substrate and method for preparing same
CN104637941A (en) * 2015-02-04 2015-05-20 桂林电子科技大学 Composite channel MHEMT (Metamorphic High Electron Mobility Transistor) microwave oscillator and preparation method thereof
CN106783613A (en) * 2017-01-13 2017-05-31 桂林电子科技大学 A kind of III V races semiconductor MOS HEMT device and preparation method thereof
CN108346556A (en) * 2011-07-12 2018-07-31 纳斯普Ⅲ/Ⅴ有限责任公司 Single-slice integrated semiconductor structure
CN109638085A (en) * 2018-10-29 2019-04-16 中国电子科技集团公司第十三研究所 GaAs base resonance tunnel-through diode and preparation method thereof
CN111404027A (en) * 2020-04-20 2020-07-10 全磊光电股份有限公司 DFB laser epitaxial structure and growth method thereof
CN114758948A (en) * 2022-06-14 2022-07-15 江苏能华微电子科技发展有限公司 Surface treatment method of SiC substrate for semi-insulating GaN epitaxial layer growth
CN116724377A (en) * 2020-12-01 2023-09-08 业纳光学系统有限公司 Semiconductor device and method for producing a substrate for a semiconductor component and use of indium for the production thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194671B (en) * 2011-05-11 2012-08-15 中国科学院半导体研究所 Method for growing varied buffer layer on substrate
CN102194671A (en) * 2011-05-11 2011-09-21 中国科学院半导体研究所 Method for growing varied buffer layer on substrate
CN108346556A (en) * 2011-07-12 2018-07-31 纳斯普Ⅲ/Ⅴ有限责任公司 Single-slice integrated semiconductor structure
WO2013020423A1 (en) * 2011-08-05 2013-02-14 苏州大学 Manufacturing apparatus and manufacturing method for quantum dot material
US8969185B2 (en) 2011-08-05 2015-03-03 Soochow University Manufacturing apparatus and manufacturing method for quantum dot material
WO2013143018A1 (en) * 2012-03-26 2013-10-03 北京通美晶体技术有限公司 Iiiα-va group semiconductor single crystal substrate and method for preparing same
CN103258722A (en) * 2013-04-27 2013-08-21 中国电子科技集团公司第十三研究所 Method adopting AlGaInN buffering layer to grow three-group nitride in GaAs substrate
CN104637941B (en) * 2015-02-04 2017-05-10 桂林电子科技大学 Composite channel MHEMT (Metamorphic High Electron Mobility Transistor) microwave oscillator and preparation method thereof
CN104637941A (en) * 2015-02-04 2015-05-20 桂林电子科技大学 Composite channel MHEMT (Metamorphic High Electron Mobility Transistor) microwave oscillator and preparation method thereof
CN106783613A (en) * 2017-01-13 2017-05-31 桂林电子科技大学 A kind of III V races semiconductor MOS HEMT device and preparation method thereof
CN109638085A (en) * 2018-10-29 2019-04-16 中国电子科技集团公司第十三研究所 GaAs base resonance tunnel-through diode and preparation method thereof
CN111404027A (en) * 2020-04-20 2020-07-10 全磊光电股份有限公司 DFB laser epitaxial structure and growth method thereof
CN116724377A (en) * 2020-12-01 2023-09-08 业纳光学系统有限公司 Semiconductor device and method for producing a substrate for a semiconductor component and use of indium for the production thereof
US12002859B2 (en) 2020-12-01 2024-06-04 Jenoptik Optical Systems Gmbh Semiconductor device and method for producing a substrate for a semiconductor component, and use of indium during production of same
CN114758948A (en) * 2022-06-14 2022-07-15 江苏能华微电子科技发展有限公司 Surface treatment method of SiC substrate for semi-insulating GaN epitaxial layer growth

Similar Documents

Publication Publication Date Title
CN101192517A (en) Fabrication method of multi-layer deformation buffer layer on gallium arsenide substrate
CN102403201B (en) Method for manufacturing nitride semiconductor crystal layer
CN101897000B (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
JP2012253364A (en) Method for manufacturing nitride semiconductor crystal layer and nitride semiconductor crystal layer
US8866154B2 (en) Lattice mismatched heterojunction structures and devices made therefrom
TW200534382A (en) A novel technique to grow high quality SnSe epitaxy layer on Si substrate
CN106653583A (en) Preparation method of large-size III-V heterogeneous substrate
WO2011016219A1 (en) Epitaxial substrate for electronic devices and manufacturing method for said epitaxial substrate
CN107910750B (en) Preparation method of semiconductor laser material
CN105088181B (en) A kind of MOCVD preparation methods of si-based quantum dot laser material
US20210090955A1 (en) Method for preparing a heterostructure
CN107910401B (en) A kind of preparation method of class II superlattice infrared detection device material
KR100959290B1 (en) Nitride semiconductor and manufacturing method thereof
CN103441181A (en) InSb/GaSb quantum dot structure apparatus and growing method
CN110534626B (en) Superlattice quantum dot structure and manufacturing method thereof
CN111262127B (en) Preparation method of silicon-based InGaAs laser substrate, substrate and laser
KR101972045B1 (en) Heterostructure semiconductor device
CN101764054B (en) Compound semiconductor epitaxial chip and manufacturing method thereof
TW201438270A (en) Growth method for reducing defect density of gallium nitride
CN104810256A (en) Developing method for inhibiting In segregation in InAs quantum dot
US8846503B1 (en) Self-aligned and lateral-assembly method for integrating heterogeneous material structures on the same plane
CN109256437B (en) A low-temperature bonding photodetector and its preparation method
CN104377279A (en) Large-mismatch-system silicon-substrate dislocation-free heteroepitaxy method
CN102140695A (en) Method for growing high-indium InGaAs (indium gallium arsenic)
TWI419326B (en) High carrier mobility transistor structure grown on germanium wafer and method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication