CN101191970B - Ultrafast Optical Parametric Image Enlargement Method and Device - Google Patents
Ultrafast Optical Parametric Image Enlargement Method and Device Download PDFInfo
- Publication number
- CN101191970B CN101191970B CN2006101049311A CN200610104931A CN101191970B CN 101191970 B CN101191970 B CN 101191970B CN 2006101049311 A CN2006101049311 A CN 2006101049311A CN 200610104931 A CN200610104931 A CN 200610104931A CN 101191970 B CN101191970 B CN 101191970B
- Authority
- CN
- China
- Prior art keywords
- light
- optical parametric
- dichroic mirror
- optical
- parametric amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000003321 amplification Effects 0.000 claims abstract description 22
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 22
- 238000010226 confocal imaging Methods 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims abstract description 16
- 238000005086 pumping Methods 0.000 claims abstract description 4
- 230000001360 synchronised effect Effects 0.000 claims abstract description 4
- 239000013078 crystal Substances 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012014 optical coherence tomography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种超快光参量图像像放大的方法及其设备。The invention relates to a method and equipment for zooming in on an ultrafast light parameter image.
背景技术Background technique
光学相干X断层摄影技术,目前在生物医学领域中的应用较为成熟。它采用的是弹道光子成像,探测深度有限,仅为1~2mm。无法获得生物组织厚度为几个mm甚至cm量级的图像。Optical coherence tomography technology is relatively mature in the field of biomedicine. It uses ballistic photon imaging, and the detection depth is limited, only 1-2mm. It is impossible to obtain images with the thickness of biological tissues on the order of several mm or even cm.
采用蛇行光子成像,对生物组织的探测深度可提高到厘米量级,但空间分辨率较低。Using snake photon imaging, the detection depth of biological tissue can be increased to centimeter level, but the spatial resolution is low.
发明内容Contents of the invention
本发明的目的在于提供一种超快光参量图像放大的方法及其设备,其解决了背景技术中探测深度有限或空间分辨率较低的技术问题。The object of the present invention is to provide an ultrafast optical parametric image amplification method and its equipment, which solve the technical problems of limited detection depth or low spatial resolution in the background art.
本发明的技术解决方案是:Technical solution of the present invention is:
一种超快光参量图像放大方法,其特殊之处在于,该方法的实现步骤包括:An ultrafast optical parametric image amplification method, which is special in that the implementation steps of the method include:
(1)光源:激光器YDFL发出的红外光经光波导PPLN倍频,产生的倍频光作为光参量放大器OPA的第一泵浦光PR1,剩余的红外光作为第一信号光SR1;(1) Light source: the infrared light emitted by the laser YDFL is frequency-multiplied by the optical waveguide PPLN, and the frequency-doubled light generated is used as the first pump light PR1 of the optical parametric amplifier OPA, and the remaining infrared light is used as the first signal light SR1;
(2)第一泵浦光PR1和第一信号光SR1通过第一双色镜D1后相分离:(2) The first pump light PR1 and the first signal light SR1 are phase-separated after passing through the first dichroic mirror D1:
(2.1)第一信号光SR1透过第一双色镜D1照射至目标物体0,经共焦成像系统CF成像后,再透过第二双色镜D2注入光学参量放大器OPA中;(2.1) The first signal light SR1 is irradiated to the target object 0 through the first dichroic mirror D1, and after being imaged by the confocal imaging system CF, it is injected into the optical parametric amplifier OPA through the second dichroic mirror D2;
(2.2)第一泵浦光PR1经第一双色镜D1后反射至延迟线VDL,经延迟线VDL调节至与第一信号光SR1同步,再经第二双色镜D2反射注入光学参量放大器OPA中;(2.2) The first pump light PR1 is reflected to the delay line VDL after passing through the first dichroic mirror D1, adjusted to be synchronized with the first signal light SR1 through the delay line VDL, and then reflected by the second dichroic mirror D2 and injected into the optical parametric amplifier OPA ;
(3)经光学参量放大器OPA放大后输出的光分为三部分:其一是放大图像的第二信号光SR2,其二是闲频光R,其三是剩余的第二泵浦光PR2;(3) The output light amplified by the optical parametric amplifier OPA is divided into three parts: one is the second signal light SR2 for amplifying the image, the other is the idler light R, and the third is the remaining second pump light PR2;
(4)经光学参量放大器OPA放大输出的第二泵浦光PR2通过第三双色镜D3后被反射掉;(4) The second pump light PR2 amplified and output by the optical parametric amplifier OPA is reflected after passing through the third dichroic mirror D3;
经光学参量放大器OPA放大输出的放大图像的第二信号光SR2和闲频光IR则透过第三双色镜D3,经成像透镜L成像于CCD相机C上。The second signal light SR2 and the idler light IR of the enlarged image amplified and output by the optical parametric amplifier OPA pass through the third dichroic mirror D3 and are imaged on the CCD camera C through the imaging lens L.
一种实现上述超快光参量图像放大方法的设备,其特殊之处在于,它包括光源,该光源由光波导PPLN与激光器YDFL耦合组成;所述光波导PPLN的输出光路上设置有第一双色镜DI;所述第一双色镜D1的反射光路上设置有延迟线VDL,该延迟线VDL的输出光路上设置有第二双色镜D2,所述第二双色镜D2的反射光路卜没置有光学参量放大器OPA,该光学参量放大器OPA设置于共焦成像系统CF的后焦平面上;所述第一双色镜D1透射光路上置有目标物体0,所述的目标物体0同时位于共焦成像系统CF的前焦平面上;所述共焦成像系统CF的二倍焦距处的像平面上设置有成像透镜L,所述成像透镜L的二倍焦距处的像平面上设置有CCD相机C。A device for realizing the above ultrafast optical parametric image amplification method, which is special in that it includes a light source, the light source is composed of an optical waveguide PPLN coupled with a laser YDFL; the output optical path of the optical waveguide PPLN is provided with a first two-color mirror DI; the reflection light path of the first dichroic mirror D1 is provided with a delay line VDL, the output light path of the delay line VDL is provided with a second dichroic mirror D2, and the reflection light path of the second dichroic mirror D2 is not provided with An optical parametric amplifier OPA, the optical parametric amplifier OPA is arranged on the rear focal plane of the confocal imaging system CF; the first dichroic mirror D1 transmission optical path is provided with a target object 0, and the target object 0 is simultaneously located in the confocal imaging On the front focal plane of the system CF; an imaging lens L is arranged on the image plane at the double focal length of the confocal imaging system CF, and a CCD camera C is arranged on the image plane at the double focal length of the imaging lens L.
上述激光器YDFL以采用高重复率、高功率的掺镱光纤激光器为佳。The above laser YDFL is preferably a high repetition rate, high power ytterbium-doped fiber laser.
上述光波导PPLN以采用周期极化的铌酸锂晶体为倍频晶体的倍频装置为佳。The above-mentioned optical waveguide PPLN is preferably a frequency doubling device using a periodically poled lithium niobate crystal as a frequency doubling crystal.
上述共焦成像系统CF是由两个凸透镜构成的共焦成像系统。The above-mentioned confocal imaging system CF is a confocal imaging system composed of two convex lenses.
上述光学参量放大器OPA以采用BBO晶体为非线性晶体的光学参量放大器为佳。The above-mentioned optical parametric amplifier OPA is preferably an optical parametric amplifier using a BBO crystal as a nonlinear crystal.
本发明具有以下优点:The present invention has the following advantages:
1.结构紧凑,体积小。1. Compact structure and small volume.
2.性能稳定,可靠性高。2. Stable performance and high reliability.
3.功耗低,功率大,效率高。3. Low power consumption, high power and high efficiency.
4.能连续地、快速地对目标进行多幅成像放大,使多幅再现叠加平均,随机光子噪声的影响小。4. It can continuously and quickly zoom in on multiple images of the target, so that multiple images can be reconstructed and averaged, and the influence of random photon noise is small.
5.在光参量图像放大过程中能保持信噪比不变,即可以对图像信号进行无噪声放大。5. The signal-to-noise ratio can be kept unchanged in the optical parametric image amplification process, that is, the image signal can be amplified without noise.
6.利于高速图像的获取。6. Facilitate the acquisition of high-speed images.
7.所获得的目标光学放大图像:信噪比高、空间时间分辨率高、灵敏度高。7. The obtained optically enlarged image of the target: high signal-to-noise ratio, high spatial and temporal resolution, and high sensitivity.
附图说明Description of drawings
图1为本发明光参量图像放大系统的结构原理示意图。FIG. 1 is a schematic diagram of the structure and principle of the optical parametric image amplification system of the present invention.
附图标号说明:Explanation of reference numbers:
YDFL-激光器,PPLN-光波导,D1-第一双色镜,0-目标物体,CF-共焦成像系统,D2-第二双色镜,VDL-延迟线,OPA-光学参量放大器,D3-第三双色镜,L-成像透镜,C-CCD相机;PR1-第一泵浦光,SR1-第一信号光,PR2-第二泵浦光,SR2-第二信号光,IR-闲频光;01-物平面,I1-像平面,I2-像平面,FT-傅立叶平面。YDFL-laser, PPLN-optical waveguide, D1-first dichroic mirror, 0-target object, CF-confocal imaging system, D2-second dichroic mirror, VDL-delay line, OPA-optical parametric amplifier, D3-third Dichroic mirror, L-imaging lens, C-CCD camera; PR1-first pump light, SR1-first signal light, PR2-second pump light, SR2-second signal light, IR-idler light; 01 - object plane, I1 - image plane, I2 - image plane, FT - Fourier plane.
光频率。光学参量放大器被超快脉冲泵浦能够对微弱光学图像信号进行放大,利用光学参量放大器进行图像增强的方法称为光参量图像放大。光参量图像放大产生的放大图像和共厄图像是孪生图像,可应用于量子图像相关领域。光参量图像放大可用做激光雷达探测的前端接收器,将来自远处的微弱光学图像信号放大。光参量图像放大对微弱光学图像信号进行放大,增加了图像的强度,而不改变图像的信噪比,即没有引入噪声。对于检测损伤域值低的目标物体使用光参量图像放大的方法来探测,既能补偿由于信号太弱损失的分辨率和信噪比,又能做到对目标物体的无损伤探测。以光参量图像放大作为时间门,以蛇形光子成像,根据光子经过散射介质后到达探测器时间的不同,用光学参量放大器OPA对不同时间到达的光子进行参量放大,可以获得低噪声、高增益以及分辨率比较高的图像。光学参量放大器OPA用作超快时间门,可以使成像在ps时间内曝光,因此可用于超快领域的空间和时间成像。采用光参量图像放大对生物组织的透射光进行成像分析,可以获得生物组织在形态和结构方面的时间和空间分辨信息。light frequency. Optical parametric amplifiers can amplify weak optical image signals by being pumped by ultrafast pulses. The method of image enhancement using optical parametric amplifiers is called optical parametric image amplification. The magnified image and the co-E image produced by optical parametric image amplification are twin images, which can be applied to the related fields of quantum images. Optical parametric image amplification can be used as a front-end receiver for lidar detection, amplifying weak optical image signals from a distance. Optical parametric image amplification amplifies the weak optical image signal and increases the intensity of the image without changing the signal-to-noise ratio of the image, that is, without introducing noise. For the detection of target objects with low damage threshold value, the method of optical parametric image amplification can be used to detect, which can not only compensate the resolution and signal-to-noise ratio lost due to too weak signal, but also achieve non-damage detection of target objects. Using optical parametric image amplification as the time gate and snake-shaped photon imaging, according to the difference in the time when photons arrive at the detector after passing through the scattering medium, the optical parametric amplifier OPA is used to parametrically amplify the photons arriving at different times, which can obtain low noise and high gain. and higher resolution images. The optical parametric amplifier OPA is used as an ultrafast time gate, which can expose the imaging within ps time, so it can be used for space and time imaging in the ultrafast field. Optical parametric image amplification is used to image and analyze the transmitted light of biological tissue, and the temporal and spatial resolution information of biological tissue morphology and structure can be obtained.
参见附图1,本发明超快光参量图像放大方法实施例韵实现步骤如下:Referring to accompanying
(1)光源:以激光器YDFL发出的入s=1050nm的红外光,经光波导PPLN倍频,所产生的入p=525nm的倍频光作为光参量放大器OPA的第一泵浦光PR1;以剩余的λs=1050nm的红外光作为第一信号光SR1。(1) light source: the infrared light of the input s=1050nm sent by the laser YDFL is frequency-multiplied by the optical waveguide PPLN, and the generated frequency-multiplied light of the input p=525nm is used as the first pumping light PR1 of the optical parametric amplifier OPA; The remaining infrared light of λs=1050nm is used as the first signal light SR1.
(2)第一泵浦光PR1和第一信号光SR1通过第一双色镜D1后相分离:(2) The first pump light PR1 and the first signal light SR1 are phase-separated after passing through the first dichroic mirror D1:
(2.1)第一信号光SR1透过第一双色镜D1照射至目标物体0,经共焦成像系统CF成像后,再透过双色境D2注入光学参量放大器OPA中。(2.1) The first signal light SR1 is irradiated to the target object 0 through the first dichroic mirror D1, and after being imaged by the confocal imaging system CF, it is injected into the optical parametric amplifier OPA through the dichroic mirror D2.
(2.1)第一泵浦光PR1经第一双色镜D1后反射至延迟线VDL,经延迟线VDL调节至与第一信号光SR1同步,再经第二双色镜D2反射注入光学参量放大器OPA中。延迟线VDL用于调节不同时间到达其BBO晶体的第一泵浦光PR1,使之与第一信号光SR1相位匹配,则光学参量放大器OPA就可以选择通过目标物体0的不同的光子进行放大。(2.1) The first pump light PR1 is reflected to the delay line VDL after passing through the first dichroic mirror D1, adjusted to be synchronized with the first signal light SR1 through the delay line VDL, and then reflected by the second dichroic mirror D2 and injected into the optical parametric amplifier OPA . The delay line VDL is used to adjust the first pump light PR1 arriving at its BBO crystal at different times to make it phase-matched with the first signal light SR1, then the optical parametric amplifier OPA can select different photons passing through the target object 0 to amplify.
(3)经光学参量放大器OPA放大后输出的光分为三部分:其一是放大图像的第二信号光SR2,其二是λi=525nm的闲频光IR,其三是剩余的第二泵浦光PR2。(3) The output light after being amplified by the optical parametric amplifier OPA is divided into three parts: the first is the second signal light SR2 of the enlarged image, the second is the idler light IR of λi=525nm, and the third is the remaining second pump Puguang PR2.
(4)经光学参量放大器OPA放大输出的第二泵浦光PR2通过第三双色镜D3后被反射掉。经光学参量放大器OPA放大输出的放大图像的第二信号光SR2和闲频光IR则透过第三双色镜D3,经成像透镜L成像于CCD相机C上。(4) The second pump light PR2 amplified and output by the optical parametric amplifier OPA passes through the third dichroic mirror D3 and is reflected off. The second signal light SR2 and the idler light IR of the enlarged image amplified and output by the optical parametric amplifier OPA pass through the third dichroic mirror D3 and are imaged on the CCD camera C through the imaging lens L.
参见附图1,本发明超快光参量图像放大设备主要包括光源。光源由光波导PPLN与激光器YDFL耦合组成,该光源结构简单,稳定性好。激光器YDFL为高重复率、高功率的掺镱光纤激光器,脉冲宽度200ps,中心波长1050nm,单脉冲能量60μJ、重复率3Khz。第一双色镜D1设置于光波导PPLN的输出光路上。光波导PPLN是以周期极化的铌酸锂晶体作为倍频晶体的倍频装置。延迟线VDL设置于第一双色镜D1的反射光路上,延迟线VDL的输出光路上设置有第二双色镜D2。光学参量放大器OPA设置于第二双色镜D2的反射光路上并位于共焦成像系统CF的后焦平面上。光学参量放大器OPA是以BBO晶体为非线性晶体光学参量放大器。光学参量放大器OPA是光学参量图像增强的关键器件,采用BBO晶体作为光学参量放大器OPA的非线性晶体,通过控制BBO晶体的方位角,可调节光学参量放大器OPA的相位匹配。光学参量放大器OPA相位匹配范围宽,非线性系数大,损伤阈值高,能够有选择的对图像的不同的空间频率范围进行放大。完全相位匹配时,光学参量放大器OPA对图像的低频范围放大,用作低通滤波器。有一定的相位失配量时,光学参量放大器OPA对图像的高频范围放大,用作高通滤波器,用于图像的边缘增强。信号光的增益具有相位敏感特性,在放大过程无白发辐射噪声产生,可以实现图像的无噪声放大,即在放大的过程中信噪比保持不变。目标物体0设置于第一双色镜D1的透射光路上,并位于共焦成像系统CF的前焦平面上。共焦成像系统CF由两个凸透镜构成的共焦成像系统,即两个凸透镜之间的距离为该两个凸透镜的焦距之和。两个凸透镜的焦距f=12cm,两个凸透镜之间的距离为24cm。成像透镜L设置于共焦成像系统CF二倍焦距处的像平面上,CCD相机C设置于成像透镜L的二倍焦距处的像平面上。Referring to accompanying
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006101049311A CN101191970B (en) | 2006-11-20 | 2006-11-20 | Ultrafast Optical Parametric Image Enlargement Method and Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006101049311A CN101191970B (en) | 2006-11-20 | 2006-11-20 | Ultrafast Optical Parametric Image Enlargement Method and Device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101191970A CN101191970A (en) | 2008-06-04 |
CN101191970B true CN101191970B (en) | 2010-06-23 |
Family
ID=39487040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101049311A Expired - Fee Related CN101191970B (en) | 2006-11-20 | 2006-11-20 | Ultrafast Optical Parametric Image Enlargement Method and Device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101191970B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106901691A (en) * | 2012-02-29 | 2017-06-30 | 富士胶片株式会社 | Photoacoustic measurement device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104730800B (en) * | 2013-12-24 | 2017-12-19 | 中国科学院理化技术研究所 | Optical image enhancement method and device |
CN105911792A (en) * | 2016-07-04 | 2016-08-31 | 中国科学院理化技术研究所 | Nonlinear optical imaging device based on multiple phase matching processes |
CN106898942A (en) * | 2017-02-28 | 2017-06-27 | 中国科学院光电研究院 | The adjusting method of multi beam pulse phototiming |
CN107256534B (en) * | 2017-05-16 | 2020-07-24 | 上海海事大学 | Reduction and enlargement method of GQIR quantum image based on bilinear interpolation |
WO2021114034A1 (en) * | 2019-12-09 | 2021-06-17 | 深圳大学 | Ultra-high-speed optical parametric amplification optical imaging system |
CN113176583B (en) * | 2021-04-02 | 2023-02-07 | 华东师范大学重庆研究院 | Ultra-sensitive infrared high-resolution three-dimensional imaging technology |
CN113189566B (en) * | 2021-04-29 | 2024-05-24 | 毕思文 | Quantum laser radar system based on quantum light field and control method thereof |
CN120143541A (en) * | 2025-05-07 | 2025-06-13 | 深圳大学 | Compact single ultrafast framing direct imaging device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880996A (en) * | 1988-08-19 | 1989-11-14 | The United States Of America As Represented By The Secretary Of The Air Force | Optical parametric amplifying variable spatial filter |
US5936739A (en) * | 1997-01-29 | 1999-08-10 | Sandia Corporation | Gated frequency-resolved optical imaging with an optical parametric amplifier |
CN1258016A (en) * | 1999-12-02 | 2000-06-28 | 中国科学院上海光学精密机械研究所 | Optical parametric amplifier |
CN1431740A (en) * | 2003-02-14 | 2003-07-23 | 中国科学院上海光学精密机械研究所 | Optical parameter chirped pulse amplification laser system |
-
2006
- 2006-11-20 CN CN2006101049311A patent/CN101191970B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880996A (en) * | 1988-08-19 | 1989-11-14 | The United States Of America As Represented By The Secretary Of The Air Force | Optical parametric amplifying variable spatial filter |
US5936739A (en) * | 1997-01-29 | 1999-08-10 | Sandia Corporation | Gated frequency-resolved optical imaging with an optical parametric amplifier |
CN1258016A (en) * | 1999-12-02 | 2000-06-28 | 中国科学院上海光学精密机械研究所 | Optical parametric amplifier |
CN1431740A (en) * | 2003-02-14 | 2003-07-23 | 中国科学院上海光学精密机械研究所 | Optical parameter chirped pulse amplification laser system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106901691A (en) * | 2012-02-29 | 2017-06-30 | 富士胶片株式会社 | Photoacoustic measurement device |
CN106901691B (en) * | 2012-02-29 | 2020-04-24 | 富士胶片株式会社 | Photoacoustic measurement device |
US10980425B2 (en) | 2012-02-29 | 2021-04-20 | Fujifilm Corporation | Acoustic wave detection probe and photoacoustic measurement apparatus provided with the same |
Also Published As
Publication number | Publication date |
---|---|
CN101191970A (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101191970B (en) | Ultrafast Optical Parametric Image Enlargement Method and Device | |
CN105242280B (en) | Associated imaging device and method based on optical parameter process | |
US6445491B2 (en) | Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification | |
CN103022877B (en) | Method for realizing spectrum combination amplification based on frequency division multiplexing technology | |
US20230099476A1 (en) | Mid-infrared upconversion imaging method and device | |
CN102316282B (en) | Image noise reduction device based on optics dolby | |
US8994932B2 (en) | Multimodal platform for nonlinear optical microscopy and microspectroscopy | |
JP2008529062A (en) | System and method for providing a tunable optical parametric oscillator laser system providing dual frequency output for nonlinear vibrational spectroscopy and microscopy | |
CN102623874B (en) | Laser source device for coherent Raman scattering microscope system and production method of laser source device | |
EP2105789A3 (en) | Wavelength-agile laser transmitter using optical parametric oscillator | |
CN108963748A (en) | Multi-functional coherent Raman scattering bio-imaging light source | |
TW201200898A (en) | Imaging systems including low photon count optical receiver | |
CN103389287B (en) | A kind of high-resolution optics system being applicable to the surface imaging of live body liver | |
Loya et al. | Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber | |
Cui et al. | Femtosecond fluorescence conical optical parametric amplification spectroscopy | |
Resink et al. | Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period | |
CN109242753B (en) | Method and device for stochastic resonance reconstruction of low-light images based on cross-modulation instability | |
CN117526072A (en) | Dual-color pumping high-power femtosecond optical parametric amplifier device | |
JP2007292600A (en) | Electromagnetic imaging device | |
CN101907813B (en) | Device and method for realizing non-colinear Brillouin amplification frequency matching | |
CN213874650U (en) | Ultrashort pulse relative peak power detection device | |
Sun et al. | Optical parametric amplification of gated confocal reflectance microscopy signals in scattering media | |
CN103034013A (en) | Population inversion-free laser energy amplifying system based on long-relaxation-time optical fiber | |
Li et al. | Ghost imaging via optical parametric amplification | |
CN213936856U (en) | Medium wave single resonance optical frequency conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100623 Termination date: 20151120 |
|
EXPY | Termination of patent right or utility model |