CN101183919B - Self-adaptive mixture automatic request retransmission method - Google Patents
Self-adaptive mixture automatic request retransmission method Download PDFInfo
- Publication number
- CN101183919B CN101183919B CN200710168493XA CN200710168493A CN101183919B CN 101183919 B CN101183919 B CN 101183919B CN 200710168493X A CN200710168493X A CN 200710168493XA CN 200710168493 A CN200710168493 A CN 200710168493A CN 101183919 B CN101183919 B CN 101183919B
- Authority
- CN
- China
- Prior art keywords
- bit
- constellation
- sending end
- receiving end
- sending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 title 1
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 238000013507 mapping Methods 0.000 claims abstract description 10
- 238000010586 diagram Methods 0.000 claims description 39
- 230000008707 rearrangement Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims description 8
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims description 8
- 238000004891 communication Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Detection And Prevention Of Errors In Transmission (AREA)
- Radio Transmission System (AREA)
Abstract
Description
技术领域technical field
本发明属于无线通信技术,尤其涉及在多天线系统中的一种组合的混合自动请求重传方法。The invention belongs to wireless communication technology, in particular to a combined hybrid automatic request retransmission method in a multi-antenna system.
背景技术Background technique
无线通信系统期望能够获得更高的数据传输速率和更高的可靠性,然而无线信道的多径衰落特性限制了系统的性能,空时码是一种有效地对抗多经衰落的多天线技术,大致可以分为两大类:一类为基于空间分集的空时码,常用的有空时网格码(STTC)和空时分组码(STBC);一类为基于空间复用的空时码,有分层空时码(BLAST)。信道编码(如LDPC,TURBO码)经过比特交织,采用迭代解码方式,可以获得很好的差错性能。即使如此,无线通信系统仍需要一种自动请求重传(ARQ)协议来保障数据包的可靠传输。The wireless communication system expects to obtain higher data transmission rate and higher reliability. However, the multipath fading characteristics of the wireless channel limit the performance of the system. The space-time code is a multi-antenna technology that can effectively resist multi-path fading. It can be roughly divided into two categories: one is space-time codes based on space diversity, commonly used space-time trellis codes (STTC) and space-time block codes (STBC); the other is space-time codes based on space multiplexing , there is layered space-time code (BLAST). Channel coding (such as LDPC, TURBO code) can obtain good error performance through bit interleaving and iterative decoding. Even so, wireless communication systems still need an Automatic Repeat Request (ARQ) protocol to ensure reliable transmission of data packets.
混合自动请求重传(HARQ)技术充分利用已重传码字中的有用信息,并采用不同的方式对这些有用信息进行合并,从而有效地减少重传次数,系统可获得比传统ARQ更优的性能。一方面,HARQ几乎可以保证数据的无差错传输,另一方面,HARQ会大大降低系统的容量。于是,考虑将混合自动请求重传(HARQ)与多进多出(MIMO)结合将是十分有效和有意义的。Hybrid Automatic Repeat Request (HARQ) technology makes full use of the useful information in the retransmitted codewords, and combines these useful information in different ways, thereby effectively reducing the number of retransmissions, and the system can obtain better performance than traditional ARQ. performance. On the one hand, HARQ can almost guarantee the error-free transmission of data, on the other hand, HARQ will greatly reduce the capacity of the system. Therefore, it will be very effective and meaningful to consider combining Hybrid Automatic Repeat Request (HARQ) with Multiple Input Multiple Output (MIMO).
在无线通信中,为支持更高的速率传输,需要使用高频谱效率调制技术。随着对高频谱效率通信系统的深入研究,各种非自适应和自适应的高阶正交幅度调制(MQAM)技术在无线通信中受到广泛重视。但由于MQAM调制对调制符号的不同比特提供不同的差错保护,使接收端解映射后输出的数据具有不等的可靠性,这将降低针对同等可靠性数据译码的Turbo码的纠错性能。日本Matsushita电子工业有限公司,2002年8月29日提出WO 02067491号名称为“具有不同星座图重排的混合ARQ方法”的国际专利申请,针对16QAM和64QAM调制方式的HARQ系统发明了具有信号星座图重排的HARQ方案,根据QAM调制的不等差错保护特性提出了几个不同的比特到符号映射的均匀星座图,在传输和重传中采用不同的星座图进行调制映射与解映射,或者对比特进行相应的重排和解重排,使得在接收端经重传合并后送往Turbo译码器输入端的数据具有相同的可靠性,提高HARQ系统的吞吐率。这种方法可以提高解码的高效性,从而降低差错率。但这种重传合并机制是基于chase合并的,即每次重传采用相同的符号,没用充分利用多天线的分集增益。In wireless communication, in order to support higher rate transmission, it is necessary to use high spectral efficiency modulation technology. With the in-depth research on high spectral efficiency communication systems, various non-adaptive and adaptive high-order quadrature amplitude modulation (MQAM) techniques are widely valued in wireless communication. However, since MQAM modulation provides different error protection for different bits of modulation symbols, the data output after demapping at the receiving end has unequal reliability, which will reduce the error correction performance of Turbo codes for decoding data with the same reliability. Japan Matsushita Electronics Industry Co., Ltd. filed an international patent application WO 02067491 titled "Hybrid ARQ Method with Different Constellation Rearrangement" on August 29, 2002, and invented a signal constellation for HARQ systems with 16QAM and 64QAM modulation modes. The HARQ scheme of graph rearrangement proposes several different uniform constellation diagrams of bit-to-symbol mapping according to the unequal error protection characteristics of QAM modulation, and uses different constellation diagrams for modulation mapping and demapping in transmission and retransmission, or Corresponding rearrangement and de-rearrangement are performed on the bits, so that the data sent to the input end of the Turbo decoder after retransmission and combination at the receiving end has the same reliability, and the throughput rate of the HARQ system is improved. This method can improve the efficiency of decoding, thereby reducing the error rate. However, this retransmission combination mechanism is based on chase combination, that is, the same symbol is used for each retransmission, and it is useless to make full use of the diversity gain of multiple antennas.
发明内容Contents of the invention
本发明提供一种组合的混合自动请求重传方法,目的在于有效地降低符号的差错率,从而降低重传次数,提高系统的吞吐率。The invention provides a combined hybrid automatic request retransmission method, aiming to effectively reduce the error rate of symbols, thereby reducing the number of retransmissions and improving the throughput rate of the system.
本发明的一种组合的混合自动请求重传方法,在发送端和接收端建立数据传输链路,发送端发射天线数M大于1,发送端和接收端存储M个星座图或者M种比特排列顺序,执行下述步骤:A combined hybrid automatic request retransmission method of the present invention establishes a data transmission link between the sending end and the receiving end, the number M of transmitting antennas at the sending end is greater than 1, and the sending end and the receiving end store M constellation diagrams or M bit arrangements order, perform the following steps:
(1)发送端准备新数据,将数据顺序进行检错编码、信道编码、比特交织,储存于发送缓存区,将NACK数初始化为0;(1) The sender prepares new data, performs error detection coding, channel coding, and bit interleaving on the data in sequence, stores them in the sending buffer, and initializes the number of NACKs to 0;
(2)发送端若收到ACK,则从缓存区中释放当前数据,转步骤(1);否则转步骤(3);(2) If the sender receives the ACK, release the current data from the buffer area, and go to step (1); otherwise, go to step (3);
(3)发送端置传输序号N=NACK数+1;(3) The sending end sets the transmission sequence number N=NACK number+1;
(4)发送端第N次传输,若传输序号N大于发射天线数M,转步骤(5);否则,从发送端储存的星座图中选择第N个星座图,对发送缓 存区储存的比特序列进行映射,或者从发送端储存的比特排列顺序中选择第N种比特排列顺序,对发送缓存区中储存的比特序列进行重排后再进行固定星座图映射;对映射后的数据按准正交的空时码阵的第N列进行编码,发送数据包,转步骤(6);(4) For the Nth transmission at the sending end, if the transmission sequence number N is greater than the number of transmitting antennas M, go to step (5); otherwise, select the Nth constellation from the constellation stored at the sending end, and store it in the sending buffer The bit sequence is mapped, or the Nth bit sequence is selected from the bit sequence stored at the sending end, and the bit sequence stored in the sending buffer is rearranged before performing fixed constellation map mapping; The Nth column of the orthogonal space-time code array encodes, sends data packets, and turns to step (6);
(5)发送端将N对M进行取模运算,更新N值,转步骤(4);(5) The sending end performs a modulo operation on N to M, updates the N value, and turns to step (4);
(6)接收端接收数据,并进行MIMO检测;(6) The receiving end receives the data and performs MIMO detection;
(7)接收端选择与发送端一致的第N个星座图进行解映射,或者恢复比特排列顺序后再进行固定星座图解映射,获得当前的比特软信息,即对数似然比值,并储存于接收缓存区中,且与以前储存的所有比特软信息合并;(7) The receiving end selects the Nth constellation diagram that is consistent with the sending end for demapping, or restores the bit sequence and then performs fixed constellation diagram mapping to obtain the current bit soft information, that is, the log likelihood ratio, and store it in In the receiving buffer area, and merged with all previously stored bit soft information;
(8)接收端利用合并的所有比特软信息进行迭代解码;(8) The receiving end performs iterative decoding using all the combined bit soft information;
(9)接收端将解码后的信息进行差错校验,若正确,进行步骤(10),否则转步骤(11);(9) The receiving end performs error checking on the decoded information, if correct, proceed to step (10), otherwise turn to step (11);
(10)接收端反馈ACK给发送端,转步骤(2);(10) The receiving end feeds back ACK to the sending end, and turns to step (2);
(11)接收端反馈NACK给发送端,转步骤(2)。(11) The receiving end feeds back NACK to the sending end, and then go to step (2).
所述的一种组合的混合自动请求重传方法,其特征在于,所述M个星座图为Gray编码的高阶正交幅度调制的均匀星座图以及在此基础上进行重排后的M-1个星座图,该M-1个星座图的选取规则是:在基于Gray编码的高阶正交幅度调制的均匀星座图重排后的所有星座图中,选取M-1个星座图,能够使映射到这M个星座图上的每个比特间的软信息合并值差异性最小,即可靠性差异最小;所述M种比特排列顺序,为对原始比特排列顺序进行全排列,从中选取M种比特排列顺序,使得每个比特间的软信息合并值差异性最小,即可靠性差异最小。The combined HARQ method is characterized in that the M constellation diagrams are uniform constellation diagrams of Gray-coded high-order quadrature amplitude modulation and the rearranged M- 1 constellation diagram, the selection rule of the M-1 constellation diagrams is: in all the constellation diagrams after the rearrangement of the uniform constellation diagrams based on Gray coded high-order quadrature amplitude modulation, select M-1 constellation diagrams, which can Make the soft information combination value difference between each bit mapped to the M constellation diagrams the smallest, that is, the reliability difference is the smallest; the M kinds of bit arrangement order, in order to fully arrange the original bit arrangement order, select M The order of bit arrangement makes the difference of soft information combination value between each bit the smallest, that is, the difference of reliability is the smallest.
所述的一种组合的混合自动请求重传方法,其特征在于,所述步骤 (4)和步骤(7)中所述的固定星座图为Gray编码的高阶正交幅度调制的均匀星座图。The hybrid automatic request for retransmission method of a kind of combination is characterized in that, the fixed constellation diagram described in the step (4) and the step (7) is the uniform constellation diagram of the high-order quadrature amplitude modulation of Gray coding .
本发明将基于分集增益的空时码结构作为内部编码,将星座图重排和信道编码结合起来,同时对传输数据进行符号在天线上的重排和比特间的重排,可以获得两方面的增益,利用合并后的软信息值进行迭代解码,可以有效地降低重传次数,优化系统性能。The present invention uses the space-time code structure based on diversity gain as internal coding, combines constellation rearrangement and channel coding, and at the same time performs symbol rearrangement on the antenna and rearrangement between bits for the transmission data, so that two aspects can be obtained Gain, using the combined soft information value for iterative decoding can effectively reduce the number of retransmissions and optimize system performance.
附图说明Description of drawings
图1为本发明的流程框图;Fig. 1 is a block flow diagram of the present invention;
图2(A)~图2(D)为16QAM调制的4种类型的星座图;Figure 2(A)-Figure 2(D) are four types of constellation diagrams of 16QAM modulation;
图2(A)为星座图1;Fig. 2 (A) is constellation diagram 1;
图2(B)为星座图2;Fig. 2 (B) is constellation diagram 2;
图2(C)为星座图3;Fig. 2 (C) is constellation diagram 3;
图2(D)为星座图4。Figure 2(D) is the constellation diagram 4.
具体实施方式Detailed ways
本发明采用的实例为:4根发送天线、4根接收天线的MIMO系统,信道编码采用Turbo码,调制方式采用1 6QAM,空时码采用常用的ABBA型的准正交码结构。The example adopted by the present invention is: a MIMO system with 4 transmitting antennas and 4 receiving antennas, the channel coding adopts Turbo code, the modulation mode adopts 16QAM, and the space-time code adopts the commonly used ABBA type quasi-orthogonal code structure.
ABBA型的准正交码的码阵结构,如下所示:The code array structure of the quasi-orthogonal code of the ABBA type is as follows:
ABBA型空时码为M×p的矩阵结构,其中M为发送天线数,p为符号时隙数。矩阵每列对应每个符号时隙上传输的符号矢量,每行对应每根发射天线上的传输符号。The ABBA-type space-time code has an M×p matrix structure, where M is the number of transmitting antennas, and p is the number of symbol time slots. Each column of the matrix corresponds to the symbol vector transmitted on each symbol slot, and each row corresponds to the transmitted symbol on each transmit antenna.
选择发送端储存的4个星座图或者4种比特排列顺序及与其对应的空时码列如表1所示,图2(A)~图2(D)为16QAM调制的4个星座图;此实例采用的固定星座图如图2(A)所示。在这四个星座图中,将每4个比特ci1ci2ci3ci4映射成一个16QAM的复数符号z={zI,zQ},zI,zQ ∈{±Δ1,±Δ2},其中
表1:发送端重排方式及空时编码方式(16QAM)Table 1: Sending end rearrangement mode and space-time coding mode (16QAM)
下面以采用比特重排方式详细说明此实例。其中假定比特原始排列顺序为ci1ci2ci3ci4, (cij为0或1)为取反运算。第1种比特排列顺序为ci1ci2ci3ci4;第2种比特排列顺序为 第3种比特排列顺序为ci3ci4ci1ci2;第4种比特排列顺序为 整个系统工作流程如图1所示:This example will be described in detail below by adopting bit rearrangement. It is assumed that the original order of bits is c i1 c i2 c i3 c i4 , (c ij is 0 or 1) is the negation operation. The first bit arrangement order is c i1 c i2 c i3 c i4 ; the second bit arrangement order is The third bit arrangement order is c i3 c i4 c i1 c i2 ; the fourth bit arrangement order is The workflow of the whole system is shown in Figure 1:
(1)发送端准备新数据,顺序进行检错编码、信道编码、交织后储 存于缓存区中,记缓存区中储存的比特序列为C=(c11,c12,c13,c14,c22,c23,c24,...),将每4个信息比特分为一组,记一个二进制符号为c1=c11c12c13c14。(1) The sender prepares new data, performs error detection coding, channel coding, and interleaving in sequence, and stores them in the buffer area. Note that the bit sequence stored in the buffer area is C=(c 11 , c 12 , c 13 , c 14 , c 22 , c 23 , c 24 , ...), divide each 4 information bits into a group, and record a binary symbol as c 1 =c 11 c 12 c 13 c 14 .
(2)发送端若收到ACK,则从缓存区中释放当前数据,转步骤(1);否则转步骤(3);(2) If the sender receives the ACK, release the current data from the buffer area, and go to step (1); otherwise, go to step (3);
(3)发送端置传输序号N=NACK数+1;(3) The sending end sets the transmission sequence number N=NACK number+1;
(4)发送端第N次传输,若传输序号N大于4,转步骤(5);若N=1,选择第一种比特排列方式,即按原比特排列顺序c1=c11c12c13c14进行固定星座图映射后,按空时码阵的首列进行编码;若N=2,将比特序列重排为
(5)发送端将N对4进行取模运算,更新N值,转步骤(4);(5) The sending end performs a modulo operation on N to 4, updates the N value, and turns to step (4);
(6)接收端接收数据,并进行MIMO检测,检测方法如下:(6) The receiving end receives the data and performs MIMO detection. The detection method is as follows:
记首次传输码向量
记
则(1)式转化为Then formula (1) is transformed into
至此,可以对(2)式采取OSIC等方法检测。So far, methods such as OSIC can be used to detect (2) formula.
对于第三次和第四次传输的检测方式可以依此类推。The detection methods for the third and fourth transmissions can be deduced in the same way.
传输次数N>4,将此次的接收矢量和第N=N mod 4次传输的接收矢量进行chase合并后,再运用OSIC等方法检测。The number of transmissions N>4, the received vector of this time and the received vector of the N=N mod 4th transmission are chased and merged, and then detected by OSIC and other methods.
(7)接收端恢复比特排列顺序后再采用固定星座图解映射,获得当前的比特软信息,即对数似然比值,并储存于接收缓存区中,且与以前储存的所有比特软信息合并;(7) The receiving end recovers the order of the bits and then uses the fixed constellation diagram map to obtain the current bit soft information, that is, the logarithmic likelihood ratio, and stores it in the receiving buffer area, and merges it with all previously stored bit soft information;
(8)接收端利用合并的比特软信息进行迭代解码,迭代解码方法描述如下:(8) The receiving end uses the combined bit soft information to perform iterative decoding, and the iterative decoding method is described as follows:
所有重传合并得到的比特软信息记为L(d),比特交织后输出到缓存中的比特软信息记为La(d),则缓存区输出Le(d)=L(d)-La(d),将输出的软信息经过并串转换,经过解交织后,得到La(c),将La(c)输出到信道解码器,得到新的比特软信息L(c),将Le(c)=L(c)-La(c)经过交织后,进行串并变换得到La(d),输入到缓存区中进行下一次的迭代。当迭代次数达到,信道解码器输出硬判决信息L(b)。The bit soft information obtained by combining all retransmissions is denoted as L(d), and the bit soft information output to the buffer after bit interleaving is denoted as L a (d), then the buffer area outputs L e (d)=L(d)- L a (d), convert the output soft information through parallel to serial conversion, and after deinterleaving, get L a (c), output L a (c) to the channel decoder, and get new bit soft information L(c) , after L e (c) = L (c) - L a (c) is interleaved, serial-to-parallel conversion is performed to obtain L a (d), which is input into the buffer area for the next iteration. When the number of iterations is reached, the channel decoder outputs hard decision information L(b).
(9)接收端将解码后的输出信息进行差错校验,若正确,进行步骤(10),否则转步骤(11);(9) The receiving end performs error checking on the decoded output information, if correct, proceed to step (10), otherwise turn to step (11);
(10)接收端反馈ACK给发送端,转步骤(2);(10) The receiving end feeds back ACK to the sending end, and turns to step (2);
(11)接收端反馈NACK给发送端,转步骤(2)。(11) The receiving end feeds back NACK to the sending end, and then go to step (2).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710168493XA CN101183919B (en) | 2007-11-26 | 2007-11-26 | Self-adaptive mixture automatic request retransmission method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710168493XA CN101183919B (en) | 2007-11-26 | 2007-11-26 | Self-adaptive mixture automatic request retransmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101183919A CN101183919A (en) | 2008-05-21 |
CN101183919B true CN101183919B (en) | 2011-09-14 |
Family
ID=39449018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710168493XA Expired - Fee Related CN101183919B (en) | 2007-11-26 | 2007-11-26 | Self-adaptive mixture automatic request retransmission method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101183919B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753256B (en) * | 2008-12-22 | 2013-09-11 | 中兴通讯股份有限公司 | Constellation map mapping method and device |
CN101867441A (en) | 2009-04-14 | 2010-10-20 | 中兴通讯股份有限公司 | Star map mapping method |
CN101873209A (en) | 2009-04-27 | 2010-10-27 | 三星电子株式会社 | Multi-antenna retransmission method and device |
CN101931515A (en) * | 2009-06-19 | 2010-12-29 | 大唐移动通信设备有限公司 | Data retransmission method, system and device |
US8989320B2 (en) | 2009-09-02 | 2015-03-24 | Qualcomm Incorporated | Hardware simplification of sic-MIMO decoding by use of a single hardware element with channel and noise adaptation for interference cancelled streams |
US8976903B2 (en) | 2009-09-02 | 2015-03-10 | Qualcomm Incorporated | Unified iterative decoding architecture using joint LLR extraction and a priori probability |
US8514984B2 (en) * | 2009-09-02 | 2013-08-20 | Qualcomm Incorporated | Iterative decoding architecture with HARQ combining and soft decision directed channel estimation |
CN102111357B (en) * | 2009-12-28 | 2013-10-09 | 上海无线通信研究中心 | A relay demodulation and forwarding system and method for overcoming signal distortion |
CN102158446B (en) | 2010-02-11 | 2014-03-19 | 中兴通讯股份有限公司 | Method and device for decoding physical broadcast channel (PBCH) in time division duplex (TDD) system |
CN102223216A (en) * | 2010-04-13 | 2011-10-19 | 上海无线通信研究中心 | Network coding hybrid automatic repeat request (HARQ) method in multicast transmission |
US8199034B2 (en) | 2010-04-20 | 2012-06-12 | Qualcomm Incorporated | Method and apparatus for soft symbol determination |
EP3258631B1 (en) * | 2011-11-10 | 2019-08-14 | Sun Patent Trust | Transmitting method, receiving method, transmitter and receiver |
US9197365B2 (en) * | 2012-09-25 | 2015-11-24 | Nvidia Corporation | Decoding a coded data block |
CN103490866B (en) * | 2013-09-06 | 2016-08-17 | 北京航空航天大学 | HARQ transmission method based on network code in star ground transmission network |
EP3444984B1 (en) | 2016-05-10 | 2022-02-23 | Huawei Technologies Co., Ltd. | Data transmission method, data receiving method, transmission apparatus, and receiving apparatus |
CN116760513B (en) * | 2023-08-17 | 2023-11-14 | 上海朗力半导体有限公司 | Data transmission method and related device thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490972A (en) * | 2003-01-27 | 2004-04-21 | 西南交通大学 | Unequal Protection Hybrid Automatic Repeat Request Method Based on Uniform and Non-Uniform Modulation Constellation Mapping |
EP1667391A1 (en) * | 2003-09-30 | 2006-06-07 | Matsushita Electric Industrial Co., Ltd. | Transmitting apparatus and transmitting method |
CN1972174A (en) * | 2005-11-24 | 2007-05-30 | 松下电器产业株式会社 | Data retransmission and detection method in multi-antenna communication system |
-
2007
- 2007-11-26 CN CN200710168493XA patent/CN101183919B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490972A (en) * | 2003-01-27 | 2004-04-21 | 西南交通大学 | Unequal Protection Hybrid Automatic Repeat Request Method Based on Uniform and Non-Uniform Modulation Constellation Mapping |
EP1667391A1 (en) * | 2003-09-30 | 2006-06-07 | Matsushita Electric Industrial Co., Ltd. | Transmitting apparatus and transmitting method |
CN1972174A (en) * | 2005-11-24 | 2007-05-30 | 松下电器产业株式会社 | Data retransmission and detection method in multi-antenna communication system |
Also Published As
Publication number | Publication date |
---|---|
CN101183919A (en) | 2008-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101183919B (en) | Self-adaptive mixture automatic request retransmission method | |
EP1547290B1 (en) | Space-time codes with incremental redundancy | |
US8689088B2 (en) | Method of encoding data using a low density parity check code | |
US8014470B2 (en) | Decoding method for Alamouti scheme with HARQ and/or repetition coding | |
US8516353B2 (en) | Symbol vector-level combining receiver for incremental redundancy HARQ with MIMO | |
CN101461154A (en) | Retransmission of data in a multiple input multiple output (MIMO) system | |
US8718177B2 (en) | Optimal linear equalizer for MIMO systems with HARQ and/or repetition coding | |
CN101582757A (en) | Error control method and apparatus, and adaptive modulation method and apparatus | |
KR20060091578A (en) | Apparatus and method for retransmitting data in communication system | |
JP5135603B2 (en) | Retransmission method, transmitter and receiver using multilevel coded modulation | |
CN101183918A (en) | An adaptive hybrid automatic request retransmission method | |
Van Nguyen et al. | Hybrid ARQ protocols using space-time codes | |
US20070127592A1 (en) | Apparatus and method for transmitting/receiving a signal in a communication system | |
KR20060016465A (en) | Space-time block encoding apparatus and method for improving coding gain | |
KR101253175B1 (en) | hybrid automatic repeat request method using adaptive mapper and transmitter using the same | |
Acolatse et al. | Space time block coding HARQ scheme for highly frequency selective channels | |
Lee et al. | Code construction for space-time bit-interleaved coded modulation systems | |
Ng et al. | Near-capacity iteratively decoded space-time block coding | |
WO2008117994A1 (en) | Method of encoding data using a low density parity check code | |
WO2009137102A2 (en) | Symbol vect0r-level combining wireeless communication system for incremental redundancy harq with mimo | |
KR100651881B1 (en) | Device for transmitting / receiving LDPC encoded data and transmitting / receiving method using same | |
Zhao et al. | Information-theoretic analysis of bit interleaved coded space-time modulation | |
Gidlund | Design and performance of space-time block coded hybrid ARQ schemes for multiple antenna transmission | |
KR101221911B1 (en) | Method for a retransmission using a Low Density Parity Check code | |
Vincent et al. | A bandwidth efficient coding technique for spatial modulation and its error performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110914 Termination date: 20141126 |
|
EXPY | Termination of patent right or utility model |