CN101182044A - A kind of preparation method of nano ferrite - Google Patents
A kind of preparation method of nano ferrite Download PDFInfo
- Publication number
- CN101182044A CN101182044A CNA2007101566859A CN200710156685A CN101182044A CN 101182044 A CN101182044 A CN 101182044A CN A2007101566859 A CNA2007101566859 A CN A2007101566859A CN 200710156685 A CN200710156685 A CN 200710156685A CN 101182044 A CN101182044 A CN 101182044A
- Authority
- CN
- China
- Prior art keywords
- nitrate
- ferrite
- nano
- preparation
- hydrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000002154 agricultural waste Substances 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 23
- 239000011701 zinc Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 12
- 239000011572 manganese Substances 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 229910002651 NO3 Inorganic materials 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 8
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 5
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 4
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000010903 husk Substances 0.000 claims description 4
- -1 Co Substances 0.000 claims description 3
- 235000013339 cereals Nutrition 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- 239000002243 precursor Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000001556 precipitation Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 230000007812 deficiency Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 19
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 9
- 238000009835 boiling Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 6
- WGEATSXPYVGFCC-UHFFFAOYSA-N zinc ferrite Chemical compound O=[Zn].O=[Fe]O[Fe]=O WGEATSXPYVGFCC-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 description 2
- 229910018590 Ni(NO3)2-6H2O Inorganic materials 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- NQNBVCBUOCNRFZ-UHFFFAOYSA-N nickel ferrite Chemical compound [Ni]=O.O=[Fe]O[Fe]=O NQNBVCBUOCNRFZ-UHFFFAOYSA-N 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 235000015099 wheat brans Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Catalysts (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
Abstract
本发明公开了一种纳米铁酸盐的制备方法。它是采用沉淀法得到铁酸盐的前驱体,并以农业废弃物、木屑或锯末为前驱体的载体,经高温煅烧成型,制得纳米铁酸盐。本发明纳米铁酸盐的制备方法,克服了现有纳米铁酸盐制备技术的一些不足,如在水溶液中不同元素沉淀时pH条件的差异所造成的相态不匀、化学均匀性较差且颗粒大小难以控制等缺点。制得的纳米铁酸盐具有孔隙度高、比表面积大、催化活性强的优点。The invention discloses a preparation method of nano ferrite. It adopts the precipitation method to obtain the precursor of ferrite, and uses agricultural waste, sawdust or sawdust as the carrier of the precursor, and is calcined at high temperature to obtain nano-ferrite. The preparation method of nano-ferrite of the present invention overcomes some deficiencies in the existing nano-ferrite preparation technology, such as uneven phase state, poor chemical uniformity and Particle size is difficult to control and other shortcomings. The prepared nano ferrite has the advantages of high porosity, large specific surface area and strong catalytic activity.
Description
技术领域technical field
本发明涉及纳米功能材料的制备技术,尤其涉及一种纳米铁酸盐的制备方法。The invention relates to the preparation technology of nano functional materials, in particular to a preparation method of nano ferrite.
背景技术Background technique
锰、锌、钴、镍的铁酸盐是重要的功能性材料。其中Mn-Zn、Ni-Zn铁酸盐是世界上目前产量最大的高频软磁体,常用作高频变压器、感应器和记录磁头等的磁性材料。铁酸盐还是重要的催化剂,已被应用于合成氨、费托合成,以及乙苯、丁烯等的氧化脱氢反应,它在化学和化工合成等领域具有广阔的应用前景。Ferrites of manganese, zinc, cobalt, and nickel are important functional materials. Among them, Mn-Zn and Ni-Zn ferrite are currently the world's largest high-frequency soft magnets, and are often used as magnetic materials for high-frequency transformers, inductors and recording heads. Ferrite is also an important catalyst, which has been used in the synthesis of ammonia, Fischer-Tropsch synthesis, and the oxidative dehydrogenation of ethylbenzene and butene. It has broad application prospects in the fields of chemical and chemical synthesis.
以往通常是将三氧化二铁和锰、锌、钴、镍的碳酸盐混合物高温煅烧,再经研磨制备铁酸盐。该方法有两个缺点,即化学均匀性较差且颗粒大小难以控制。为克服上述缺点,发展了共沉淀法和醇盐水解法。共沉淀法铁是将可溶性三价Fe和二价Mn、Zn、Ni或Co配制成混合溶液,经过中和反应后形成氢氧化物沉淀,再经水热反应或煅烧形成铁酸盐。由于Fe3+与二价阳离子在中和过程中发生沉淀时的pH值相差很大,因此沉淀物并非均匀的物相,从而影响合成产物的化学均匀性。而醇盐水解法需要合成相应的金属醇盐,设备投资和生产成本均很高,产品在价格上不具竞争力。In the past, the carbonate mixture of ferric oxide and manganese, zinc, cobalt and nickel was usually calcined at high temperature, and then ferrite was prepared by grinding. This method has two disadvantages, poor chemical uniformity and difficult particle size control. In order to overcome the above shortcomings, coprecipitation method and alcohol salt hydrolysis method have been developed. Co-precipitation iron is to prepare a mixed solution of soluble trivalent Fe and divalent Mn, Zn, Ni or Co, form hydroxide precipitate after neutralization reaction, and then form ferrite through hydrothermal reaction or calcination. Due to the large difference in pH value when Fe 3+ and divalent cations precipitate during the neutralization process, the precipitate is not a uniform phase, which affects the chemical uniformity of the synthesized product. However, the alkoxide hydrolysis method needs to synthesize corresponding metal alkoxides, and the equipment investment and production costs are very high, and the products are not competitive in price.
为了提高铁酸盐的磁导率和催化活性,需要制备纳米尺寸铁酸盐。纳米级铁酸盐的出现进一步拓展了铁酸盐的应用领域。见诸报道的关于铁酸盐纳米材料的制备方法很多,如化学共沉淀法、水热法、溶胶-凝胶法、喷雾热解法、微乳液法、相转化法、超临界法、冲击波合成法、微波场下湿法合成、爆炸法、高能球磨法和自蔓延高温合成法等。这些方法各有千秋,如何简化工艺、降低成本是纳米材料制备技术承待解决的共同问题。In order to improve the magnetic permeability and catalytic activity of ferrite, it is necessary to prepare nano-sized ferrite. The appearance of nano-scale ferrite has further expanded the application field of ferrite. There are many preparation methods for ferrite nanomaterials reported, such as chemical co-precipitation method, hydrothermal method, sol-gel method, spray pyrolysis method, microemulsion method, phase inversion method, supercritical method, shock wave synthesis, etc. method, wet synthesis under microwave field, explosion method, high-energy ball milling method and self-propagating high-temperature synthesis method, etc. These methods have their own advantages and disadvantages. How to simplify the process and reduce the cost is a common problem to be solved in the preparation of nanomaterials.
发明内容Contents of the invention
本发明的目的是提供一种纳米铁酸盐的制备方法。The purpose of the present invention is to provide a preparation method of nano ferrite.
纳米铁酸盐的制备方法包括如下步骤:The preparation method of nano ferrite comprises the steps:
1)将硝酸铁或其水合物与二价阳离子的硝酸盐或其水合物按摩尔比1∶0.4~0.6的比例置于容器中,加入重量相当于硝酸铁或其水合物和二价阳离子的硝酸盐或其水合物总重量0.8~1.5倍的酒精,搅拌直至硝酸铁和硝酸盐完全溶解;1) Put ferric nitrate or its hydrate and the nitrate of divalent cation or its hydrate in the ratio of 1:0.4~0.6 by molar ratio and put in the container, add the iron nitrate or its hydrate and divalent cation by weight Alcohol 0.8-1.5 times the total weight of nitrate or its hydrate, stir until ferric nitrate and nitrate are completely dissolved;
2)在上述溶液中加入相当于酒精重量8~16%的农业废弃物、木屑或锯末,搅拌下水浴加热,直至酒精被蒸干;2) Add agricultural waste, sawdust or sawdust equivalent to 8-16% of alcohol weight to the above solution, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物加热到600~1100℃,并恒温2~3小时,冷却至室温后取出,得到纳米铁酸盐。3) Heating the mixture to 600-1100° C., keeping the temperature constant for 2-3 hours, cooling to room temperature and taking it out to obtain nano ferrite.
所述的纳米铁酸盐是单晶尺寸10~100纳米的RFe2O4,R为Mn、Ni、Co、Zn、Cu中的一种或数种。二价阳离子是Mn2+、Ni2+、Co2+、Zn2+或Cu2+中的一种或数种。硝酸盐是硝酸锰、硝酸镍、硝酸钴、硝酸锌或硝酸铜中的一种或数种。农业废弃物是谷类的外壳、经粉碎的农作物秸秆或玉米芯。硝酸铁或其水合物与二价阳离子的硝酸盐或其水合物按摩尔比优选1∶0.5。The nano ferrite is RFe 2 O 4 with a single crystal size of 10-100 nanometers, and R is one or more of Mn, Ni, Co, Zn and Cu. Divalent cations are one or more of Mn 2+ , Ni 2+ , Co 2+ , Zn 2+ or Cu 2+ . Nitrate is one or more of manganese nitrate, nickel nitrate, cobalt nitrate, zinc nitrate or copper nitrate. Agricultural waste is cereal husks, comminuted crop straw or corncobs. The molar ratio of ferric nitrate or its hydrate to divalent cation nitrate or its hydrate is preferably 1:0.5.
本发明采用物理沉淀法得到铁酸盐的前驱体,避免了在水溶液中因不同元素沉淀时pH条件不同所造成的相态不均匀。采用农业废弃物或锯末作为前驱体的载体,具有来源广泛、价格低廉的优点。在高温煅烧成型后,载体经燃烧氧化后气化,因此制备出的铁酸盐具有孔隙度高、比表面积大、催化活性强的优点。The present invention adopts the physical precipitation method to obtain the ferrite precursor, avoiding the inhomogeneous phase state caused by the different pH conditions when different elements are precipitated in the aqueous solution. The use of agricultural waste or sawdust as the carrier of the precursor has the advantages of wide sources and low price. After high-temperature calcination, the carrier is gasified after combustion and oxidation, so the prepared ferrite has the advantages of high porosity, large specific surface area and strong catalytic activity.
具体实施方式Detailed ways
制备方法的第一步,是将硝酸铁和二价元素的硝酸盐溶解在酒精中,二者的摩尔比为1∶0.4~0.6。避免使用水作为溶剂,是因为三价铁和二价元素在水溶液中沉淀时pH相差过大,难以形成均匀的沉淀,在后续反应中将形成独立的氧化物,而不是铁酸盐。推荐使用硝酸铁和硝酸锰,是因为它们在酒精中的溶解度大,分解温度低,可以减少酒精用量以及能耗。所说的二价阳离子是Mn2+、Ni2+、Co2+、Zn2+或Cu2+中的一种或数种;所说的硝酸盐是硝酸锰、硝酸镍、硝酸钴、硝酸锌或硝酸铜中的一种或数种。The first step of the preparation method is to dissolve ferric nitrate and nitrates of divalent elements in alcohol, and the molar ratio of the two is 1:0.4-0.6. Avoid using water as a solvent because the pH difference between ferric iron and divalent elements is too large when they are precipitated in aqueous solution, and it is difficult to form a uniform precipitate, and independent oxides will be formed in subsequent reactions instead of ferrites. It is recommended to use ferric nitrate and manganese nitrate because they have high solubility in alcohol and low decomposition temperature, which can reduce the amount of alcohol and energy consumption. Said divalent cations are one or more of Mn 2+ , Ni 2+ , Co 2+ , Zn 2+ or Cu 2+ ; said nitrates are manganese nitrate, nickel nitrate, cobalt nitrate, nitric acid One or more of zinc or copper nitrate.
制备方法的第二步是将用作前驱体载体的农业废弃物、木屑或锯末与配置的酒精溶液混合,并将溶液蒸干。使用水浴加热有利于温度控制,以避免过热引起酒精燃烧,工业化生产时酒精可回收利用。蒸干过程要持续搅拌,以免出现沉淀不均匀。所说的农业废弃物是谷类的外壳、经粉碎的农作物秸秆或玉米芯。The second step of the preparation method is to mix the agricultural waste, wood chips or sawdust used as the carrier of the precursor with the prepared alcohol solution, and evaporate the solution to dryness. The use of water bath heating is beneficial to temperature control to avoid alcohol burning caused by overheating, and alcohol can be recycled during industrial production. Stir continuously during the evaporation process to avoid uneven precipitation. Said agricultural wastes are cereal husks, comminuted crop straw or corncobs.
制备方法的第三步是将搭载有硝酸铁和其它硝酸盐的载体在预定温度下煅烧。在煅烧过程中硝酸盐先分解,然后进一步反应形成铁酸盐,并被烧结成载体的形状。煅烧温度应根据最终产品的用途调节,用作磁性材料的产品可选择较低的煅烧温度,用作催化剂的产品应选择较高的煅烧温度。The third step of the preparation method is to calcinate the carrier loaded with iron nitrate and other nitrates at a predetermined temperature. During calcination, the nitrates are first decomposed and react further to form ferrites, which are sintered into the shape of the carrier. The calcination temperature should be adjusted according to the use of the final product. The product used as a magnetic material can choose a lower calcination temperature, and the product used as a catalyst should choose a higher calcination temperature.
本发明结合以下实例作进一步的说明,但本发明的内容不仅限于实施例中所涉及的内容。The present invention is further illustrated in conjunction with the following examples, but the content of the present invention is not limited to the content involved in the examples.
实施例1:铁酸锰的制备Embodiment 1: the preparation of manganese ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Mn(NO3)2·4H2O 125.5克置于反应瓶中,加入423.6克工业酒精,搅拌直至硝酸铁和硝酸锰完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 125.5 grams of Mn(NO 3 ) 2 4H 2 O respectively in a reaction flask, add 423.6 grams of industrial alcohol, and stir until ferric nitrate and manganese nitrate are completely dissolve;
2)加入34克稻壳粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 34 grams of rice husk powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到600℃,恒温2小时,冷却至室温后取出,即得到纳米~亚微米级铁酸锰。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 600° C., keep the temperature constant for 2 hours, take it out after cooling to room temperature, and obtain nanometer to submicron manganese ferrite.
实施例2:铁酸锰锌的制备(Mn0.6Zn0.4Fe2O4)Example 2: Preparation of manganese zinc ferrite (Mn 0.6 Zn 0.4 Fe 2 O 4 )
1)分别称取Fe(NO3)3·9H2O 404克、Mn(NO3)2·4H2O 75.3克和Zn(NO3)2·6H2O59.5克置于反应瓶中,加入808.2克无水酒精,搅拌直至硝酸铁、硝酸锰和硝酸锌完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O, 75.3 grams of Mn(NO 3 ) 2 4H 2 O and 59.5 grams of Zn(NO 3 ) 2 6H 2 O in a reaction flask, Add 808.2 grams of absolute alcohol and stir until ferric nitrate, manganese nitrate and zinc nitrate are completely dissolved;
2)加入129.3克玉米芯粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 129.3 grams of corncob powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到1100℃,恒温3小时,冷却至室温后取出,即得到纳米~亚微米级铁酸锰锌。3) Take the mixture out of the reaction bottle, put it in a horse boiling furnace, raise the temperature to 1100° C., keep the temperature constant for 3 hours, take it out after cooling to room temperature, and obtain nanometer to submicron manganese zinc ferrite.
实施例3:铁酸钴的制备Embodiment 3: the preparation of cobalt ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Co(NO3)2·6H2O 145.02克置于反应瓶中,加入549克工业酒精,搅拌直至硝酸铁和硝酸锰完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 145.02 grams of Co(NO 3 ) 2 6H 2 O in a reaction flask, add 549 grams of industrial alcohol, and stir until the ferric nitrate and manganese nitrate are completely dissolve;
2)加入55克玉米秸秆粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 55 grams of corn stalk powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到900℃,恒温2.5小时,冷却至室温后取出,即得到纳米~亚微米级铁酸钴。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 900° C., keep the temperature constant for 2.5 hours, cool to room temperature and take it out to obtain nanometer to submicron cobalt ferrite.
实施例4:铁酸镍的制备Embodiment 4: the preparation of nickel ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Ni(NO3)2·6H2O 145.4克置于反应瓶中,加入600克工业酒精,搅拌直至硝酸铁和硝酸镍完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 145.4 grams of Ni(NO 3 ) 2 6H 2 O in a reaction flask, add 600 grams of industrial alcohol, and stir until iron nitrate and nickel nitrate are completely dissolve;
2)加入70克玉米秸秆粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 70 grams of corn stalk powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到850℃,恒温2.5小时,冷却至室温后取出,即得到纳米~亚微米级铁酸镍。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 850° C., keep the temperature constant for 2.5 hours, take it out after cooling to room temperature, and obtain nanometer to submicron nickel ferrite.
实施例5:铁酸铜的制备Embodiment 5: the preparation of copper ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Cu(NO3)2·3H2O 120.8克置于反应瓶中,加入630克工业酒精,搅拌直至硝酸铁和硝酸铜完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 120.8 grams of Cu(NO 3 ) 2 3H 2 O in a reaction flask, add 630 grams of industrial alcohol, and stir until the iron nitrate and copper nitrate are completely dissolve;
2)加入58克麦麸,搅拌下水浴加热,直至酒精被蒸干;2) Add 58 grams of wheat bran, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到1000℃,恒温2.5小时,冷却至室温后取出,即得到纳米~亚微米级铁酸铜。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 1000° C., keep the temperature constant for 2.5 hours, take it out after cooling to room temperature, and obtain nanometer to submicron copper ferrite.
实施例6:铁酸钴镍的制备(Ni0.6Co0.4Fe2O4)Example 6: Preparation of cobalt-nickel ferrite (Ni 0.6 Co 0.4 Fe 2 O 4 )
1)分别称取Fe(NO3)3·9H2O 404克、Co(NO3)2·6H2O 58克和Ni(NO3)2·6H2O87.2克置于反应瓶中,加入670克无水酒精,搅拌直至硝酸铁、硝酸钴和硝酸镍完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O, 58 grams of Co(NO 3 ) 2 6H 2 O and 87.2 grams of Ni(NO 3 ) 2 6H 2 O and place them in the reaction flask, Add 670 grams of absolute alcohol and stir until the iron nitrate, cobalt nitrate and nickel nitrate are completely dissolved;
2)加入80克锯末粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 80 grams of sawdust powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到950℃,恒温3小时,冷却至室温后取出,即得到纳米~亚微米级铁酸钴镍。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 950° C., keep the temperature constant for 3 hours, take it out after cooling to room temperature, and obtain nanometer to submicron cobalt-nickel ferrite.
实施例7:铁酸锌的制备Embodiment 7: the preparation of zinc ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Zn(NO3)2·6H2O 148.7克置于反应瓶中,加入550克工业酒精,搅拌直至硝酸铁和硝酸锌完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 148.7 grams of Zn(NO 3 ) 2 6H 2 O respectively in a reaction flask, add 550 grams of industrial alcohol, and stir until iron nitrate and zinc nitrate are completely dissolve;
2)加入50克木屑粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 50 grams of sawdust powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到750℃,恒温2.2小时,冷却至室温后取出,即得到纳米~亚微米级铁酸锌。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 750° C., keep the temperature constant for 2.2 hours, take it out after cooling to room temperature, and obtain nanometer to submicron zinc ferrite.
实施例8:铁酸锌的制备Embodiment 8: the preparation of zinc ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Zn(NO3)2·6H2O 178.4克置于反应瓶中,加入800克工业酒精,搅拌直至硝酸铁和硝酸锌完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 178.4 grams of Zn(NO 3 ) 2 6H 2 O respectively in a reaction flask, add 800 grams of industrial alcohol, and stir until the ferric nitrate and zinc nitrate are completely dissolve;
2)加入120克木屑粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 120 grams of sawdust powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到600℃,恒温2小时,冷却至室温后取出,即得到纳米~亚微米级铁酸锌。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 600° C., keep the temperature constant for 2 hours, take it out after cooling to room temperature, and obtain nanometer to submicron zinc ferrite.
实施例9:铁酸锌的制备Embodiment 9: the preparation of zinc ferrite
1)分别称取Fe(NO3)3·9H2O 404克和Zn(NO3)2·6H2O 118.9克置于反应瓶中,加入420克工业酒精,搅拌直至硝酸铁和硝酸锌完全溶解;1) Weigh 404 grams of Fe(NO 3 ) 3 9H 2 O and 118.9 grams of Zn(NO 3 ) 2 6H 2 O respectively in a reaction flask, add 420 grams of industrial alcohol, and stir until iron nitrate and zinc nitrate are completely dissolve;
2)加入40克木屑粉,搅拌下水浴加热,直至酒精被蒸干;2) Add 40 grams of sawdust powder, stir and heat in a water bath until the alcohol is evaporated to dryness;
3)将混合物从反应瓶中取出,置于马沸炉中,升温到1000℃,恒温3小时,冷却至室温后取出,即得到纳米~亚微米级铁酸锌。3) Take the mixture out of the reaction bottle, place it in a horse boiling furnace, raise the temperature to 1000° C., keep the temperature constant for 3 hours, take it out after cooling to room temperature, and obtain nanometer to submicron zinc ferrite.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101566859A CN101182044B (en) | 2007-11-12 | 2007-11-12 | A kind of preparation method of nano ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101566859A CN101182044B (en) | 2007-11-12 | 2007-11-12 | A kind of preparation method of nano ferrite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101182044A true CN101182044A (en) | 2008-05-21 |
CN101182044B CN101182044B (en) | 2010-06-02 |
Family
ID=39447489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101566859A Expired - Fee Related CN101182044B (en) | 2007-11-12 | 2007-11-12 | A kind of preparation method of nano ferrite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101182044B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102275999A (en) * | 2011-05-27 | 2011-12-14 | 山东大学 | Network cobalt ferrite for anode material for lithium ion battery and use thereof |
CN102790211A (en) * | 2012-08-23 | 2012-11-21 | 山东大学 | Preparation method of high-performance copper ferrite ultrafine powder for lithium ion battery cathode materials |
CN102815762A (en) * | 2012-08-30 | 2012-12-12 | 浙江大学 | Method for absorbing precipitation by nano iron and removing phosphate in water by magnetic separation technology |
CN103466715A (en) * | 2013-09-16 | 2013-12-25 | 华北电力大学 | Method for preparing nano-copper ferrite composite oxygen carrier by microwave hydrothermal method |
CN103657680A (en) * | 2012-09-26 | 2014-03-26 | 上海华谊丙烯酸有限公司 | Ferrate catalyst, preparation method and application of ferrate catalyst |
CN105118691A (en) * | 2015-09-14 | 2015-12-02 | 南京大学 | Foamed nickel-supported cobalt acid ferrous submicron tube electrode material and preparation method thereof |
CN106277065A (en) * | 2015-06-05 | 2017-01-04 | 颜笑天 | A kind of preparation method of nano ferrite |
CN109399725A (en) * | 2017-08-15 | 2019-03-01 | 中国石油化工股份有限公司 | A kind of preparation method and applications of the nano-structure array of dregs containing zinc |
CN110038324A (en) * | 2019-04-26 | 2019-07-23 | 河南大学 | A kind of magnetism fire resisting oil absorbing porous silastic material and its preparation method and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1065836C (en) * | 1998-09-18 | 2001-05-16 | 清华大学 | Technology for preparing plane haxagon structural soft ferrimagnetics high activity superfine powder by gel method |
CN1189962C (en) * | 2002-07-30 | 2005-02-16 | 复旦大学 | Nano anode material for Li-ion battery and its preparing process |
-
2007
- 2007-11-12 CN CN2007101566859A patent/CN101182044B/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102275999B (en) * | 2011-05-27 | 2013-06-19 | 山东大学 | Network cobalt ferrite for anode material for lithium ion battery and use thereof |
CN102275999A (en) * | 2011-05-27 | 2011-12-14 | 山东大学 | Network cobalt ferrite for anode material for lithium ion battery and use thereof |
CN102790211B (en) * | 2012-08-23 | 2014-10-29 | 山东大学 | Preparation method of high-performance copper ferrite ultrafine powder for lithium ion battery cathode materials |
CN102790211A (en) * | 2012-08-23 | 2012-11-21 | 山东大学 | Preparation method of high-performance copper ferrite ultrafine powder for lithium ion battery cathode materials |
CN102815762A (en) * | 2012-08-30 | 2012-12-12 | 浙江大学 | Method for absorbing precipitation by nano iron and removing phosphate in water by magnetic separation technology |
CN103657680A (en) * | 2012-09-26 | 2014-03-26 | 上海华谊丙烯酸有限公司 | Ferrate catalyst, preparation method and application of ferrate catalyst |
CN103657680B (en) * | 2012-09-26 | 2015-04-08 | 上海华谊丙烯酸有限公司 | Ferrate catalyst, preparation method and application of ferrate catalyst |
CN103466715A (en) * | 2013-09-16 | 2013-12-25 | 华北电力大学 | Method for preparing nano-copper ferrite composite oxygen carrier by microwave hydrothermal method |
CN103466715B (en) * | 2013-09-16 | 2016-01-13 | 华北电力大学 | A kind of microwave-hydrothermal method prepares the method for nano-copper ferrite composite oxygen carrier |
CN106277065A (en) * | 2015-06-05 | 2017-01-04 | 颜笑天 | A kind of preparation method of nano ferrite |
CN105118691A (en) * | 2015-09-14 | 2015-12-02 | 南京大学 | Foamed nickel-supported cobalt acid ferrous submicron tube electrode material and preparation method thereof |
CN105118691B (en) * | 2015-09-14 | 2018-01-23 | 南京大学 | Nickel foam supports ferrous sub-micron tube electrode material of cobalt acid and preparation method thereof |
CN109399725A (en) * | 2017-08-15 | 2019-03-01 | 中国石油化工股份有限公司 | A kind of preparation method and applications of the nano-structure array of dregs containing zinc |
CN109399725B (en) * | 2017-08-15 | 2021-04-13 | 中国石油化工股份有限公司 | Preparation method and application of zinc ferrite-containing nano-structure array |
CN110038324A (en) * | 2019-04-26 | 2019-07-23 | 河南大学 | A kind of magnetism fire resisting oil absorbing porous silastic material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN101182044B (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101182044B (en) | A kind of preparation method of nano ferrite | |
CN103011288B (en) | A preparation method of BiVO4 powder with visible light photocatalytic performance | |
Kombaiah et al. | Studies on Opuntia dilenii haw mediated multifunctional ZnFe2O4 nanoparticles: Optical, magnetic and catalytic applications | |
Hankare et al. | Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method | |
Kaur et al. | Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles | |
CN113461415B (en) | Hydrothermal method for preparing high-entropy oxide material (MAlFeCuMg) 3 O 4 Method (2) | |
Bhavani et al. | Okra (Abelmoschus esculentus) plant extract-assisted combustion synthesis and characterization studies of spinel ZnAl2O4 nano-catalysts | |
CN108706637B (en) | Preparation method of a magnetic iron oxide mesocrystalline material with uniform and adjustable size | |
CN104276608B (en) | Method for preparing ferrite nano-sheet by molten salt method | |
CN105948085B (en) | A kind of preparation method of magnetic hydrotalcite | |
CN100395852C (en) | A method for synthesizing monodisperse ferrite nano magnetic beads | |
CN102660220A (en) | Preparation method of graphene supported ferriferrous oxide nanocomposite | |
CN109970039A (en) | In-situ embedding of binary transition metal nanoparticles into porous nitrogen-doped carbon spheres and preparation method thereof | |
CN102009959A (en) | Preparation method of organic acid anion intercalation hydrotalcite | |
CN102107910A (en) | Preparation method of nano magnesium ferrite | |
CN106582743A (en) | Core-shell structure thionazin composite microspheres and preparation method thereof | |
Randhawa et al. | Synthesis of lithium ferrite by precursor and combustion methods: A comparative study | |
CN107185543A (en) | A kind of catalyst and its preparation and application for synthesizing methanol by hydrogenating carbon dioxide | |
CN106745305A (en) | A kind of α Fe2O3The preparation method of magnetic nano powder material | |
CN101274771B (en) | Preparation method of metal oxide nanocrystals | |
CN107737942B (en) | A zero-valent iron/flower-like zinc oxide nanocomposite material and preparation method thereof | |
CN100577576C (en) | A Simple Method for Preparation of α-FeOOH, β-MnO2 and Co3O4 Nanomaterials by Ozone Oxidation | |
Xue et al. | Thermal, magnetic and photoelectrical behaviors of sillenite Bi25FeO39 microcrystals | |
CN107879377A (en) | A kind of regulation and control method of nano lamellar MgFe hydrotalcite Growing Process of Crystal Particles | |
CN103296269A (en) | Green controllable preparation process of lithium nickel cobalt manganese oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20111112 |