CN101179109A - Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes - Google Patents
Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes Download PDFInfo
- Publication number
- CN101179109A CN101179109A CN 200710193557 CN200710193557A CN101179109A CN 101179109 A CN101179109 A CN 101179109A CN 200710193557 CN200710193557 CN 200710193557 CN 200710193557 A CN200710193557 A CN 200710193557A CN 101179109 A CN101179109 A CN 101179109A
- Authority
- CN
- China
- Prior art keywords
- phthalocyanine
- battery
- semiconductor layer
- nanometers
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种采用有机异质结薄膜作为中间电极的叠层有机光伏电池。The invention relates to a laminated organic photovoltaic cell using an organic heterojunction thin film as an intermediate electrode.
背景技术Background technique
近年来,有机光伏器件在廉价光伏电池方面显现出应用潜力,能量转换效率是光伏电池实际应用的一个重要指标。1986年美国的应用物理快报(C.W.Tang,Applied Physics Letters 48,183(1986))报道了一种采用双层有机薄膜结构的有机光伏电池,能量转换效率接近1%。经过近十年的努力,人们认识到限制有机光伏器件效率进一步提高的主要原因是有机材料的激子扩散长度(一般不高于10nm)远小于材料的光吸收长度(一般在100nm左右)。1995年美国的科学杂志(G.Yu,J.Gao,J.C.Hummelen,F.Wudl,A.J.Heeger,Sciences 270,1789(1995))报道了一种采用两种有机材料共混的方法来克服上述矛盾,实现了单色光下能量转化效率超过2%的光伏电池。该方法是控制两种材料在比较厚的膜内实现纳米尺寸的两相分离,形成两种材料各自相连续,彼此之间相互贯穿的体异质结,极大提高了两相的界面面积,缩短了激子到达两相界面的距离,从而提高电池的转换效率。另外一种解决上述矛盾的方法是将多个电池采用串联或并联方式连接在一起,上层电池没有吸收完全的光可以被下层电池继续利用,这就是叠层光伏电池。1990年日本的化学快报(M.Hiramoto,M.Suezaki,M.Yokoyama,Chemistry Letters,1990,327)首先报道了利用Au作为中间电极制备的第一块叠层有机光伏电池。目前叠层有机光伏电池普遍采用金属或金属氧化物作为中间层,导致光透过性差,光生激子在金属附近淬灭,限制了器件效率的进一步提高。2006年美国的应用物理快报(X.J.Yan,J.Wang,H.B.Wang,H.Wang,D.H.Yan,Applied Physics Letters 89,053510(2006))报道了利用酞菁铜(CuPc)和氟代酞菁铜(F16CuPc)异质结效应的高电导率特性改善有机薄膜晶体管的金属半导体电接触性质,2007年美国的应用物理杂志(S.L.Lai,M.Y Chan,M.K.Fung,C.S.Lee,S.T.Lee,Journal of Applied Physics 101,014509(2007))报道了采用这种酞菁铜和氟代酞菁铜双层异质结作为叠层有机发光二极管的中间电极,叠层发光二极管的电流发光效率显著提高。但是,酞菁铜和氟代酞菁铜异质结双层膜直接用于金属酞菁-富勒烯(C60)叠层有机光伏电池一般会导致电池开路电压和填充因子显著降低,不能发挥出叠层有机光伏电池的优点。In recent years, organic photovoltaic devices have shown application potential in cheap photovoltaic cells, and energy conversion efficiency is an important indicator for the practical application of photovoltaic cells. In 1986, the American Applied Physics Letters (CWTang, Applied Physics Letters 48, 183 (1986)) reported an organic photovoltaic cell with a double-layer organic thin film structure, and the energy conversion efficiency was close to 1%. After nearly a decade of hard work, it has been recognized that the main reason for limiting the further improvement of the efficiency of organic photovoltaic devices is that the exciton diffusion length of organic materials (generally not higher than 10nm) is much smaller than the light absorption length of materials (generally around 100nm). In 1995, the American Journal of Science (G.Yu, J.Gao, JCHummelen, F.Wudl, AJHeeger, Sciences 270, 1789 (1995)) reported a method of blending two kinds of organic materials to overcome the above-mentioned contradictions and realize Photovoltaic cells with energy conversion efficiency exceeding 2% under monochromatic light. This method is to control the two materials to achieve nanoscale two-phase separation in a relatively thick film, forming a bulk heterojunction in which the two materials are continuous in phase and interpenetrating with each other, which greatly increases the interface area of the two phases. The distance from excitons to the two-phase interface is shortened, thereby improving the conversion efficiency of the battery. Another way to solve the above contradiction is to connect multiple cells in series or in parallel. The light that is not fully absorbed by the upper cell can be continuously used by the lower cell. This is a tandem photovoltaic cell. In 1990, Japan's Chemical Letters (M. Hiramoto, M. Suezaki, M. Yokoyama, Chemistry Letters, 1990, 327) first reported the first tandem organic photovoltaic cell prepared using Au as an intermediate electrode. At present, tandem organic photovoltaic cells generally use metal or metal oxide as the intermediate layer, resulting in poor light transmission and quenching of photogenerated excitons near the metal, which limits the further improvement of device efficiency. In 2006, the U.S. Applied Physics Letters (XJYan, J.Wang, HBWang, H.Wang, DHYan, Applied Physics Letters 89, 053510 (2006)) reported the use of copper phthalocyanine (CuPc) and copper phthalocyanine (F 16 The high conductivity characteristic of CuPc) heterojunction effect improves the metal-semiconductor electrical contact properties of organic thin film transistors, the Journal of Applied Physics of the United States in 2007 (SLLai, MY Chan, MKFung, CSLee, STLee, Journal of Applied Physics 101, 014509 (2007 )) reported that using this double-layer heterojunction of copper phthalocyanine and copper fluorophthalocyanine as the intermediate electrode of stacked organic light-emitting diodes, the current luminous efficiency of stacked light-emitting diodes was significantly improved. However, the direct application of copper phthalocyanine and copper fluorophthalocyanine heterojunction bilayer films to metal phthalocyanine-fullerene (C60) stacked organic photovoltaic cells generally leads to a significant decrease in the open circuit voltage and fill factor of the battery, and cannot exert its full potential. Advantages of tandem organic photovoltaic cells.
发明内容Contents of the invention
本发明的目的是提供一种采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池,克服现有技术中光透过性质差、光生激子在中间层附近淬灭和开路电压及填充因子损失的问题,同时可以显著提高电池效率。The object of the present invention is to provide a stacked organic photovoltaic cell using a three-layer organic heterojunction thin film as an intermediate electrode, which overcomes the poor light transmission properties, photogenerated excitons quenching near the intermediate layer, and open circuit voltage and The problem of fill factor loss can be significantly improved at the same time.
本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池构成有三种。The stacked organic photovoltaic cells provided by the present invention using three layers of organic heterojunction thin films as intermediate electrodes have three types.
如附图1所示,本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第一种的构成为:透明基板1、透明电极2、第一电池的第一半导体层3、第一电池的第二半导体层4、中间电极层5、中间电极层6、中间电极层7、第二电池的第一半导体层8、第二电池的第二半导体层9和金属电极10;透明基板1、透明电极2、第一电池的第一半导体层3、第一电池的第二半导体层4、中间电极层5、中间电极层6、中间电极层7、第二电池的第一半导体层8、第二电池的第二半导体层9和金属电极10顺次连接;其中,第一电池的第一半导体层3和第一电池的第二半导体层4构成第一电池,第二电池的第一半导体层8和第二电池的第二半导体层9构成第二电池,中间电极层5、中间电极层6和中间电极层7构成连接第一电池和第二电池的中间电极;As shown in Figure 1, the first type of laminated organic photovoltaic cell using three-layer organic heterojunction thin film as the intermediate electrode provided by the present invention is composed of: a
所述的第一电池的第一半导体层3是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的任意一种;其厚度大于或等于10纳米,小于或等于30纳米;The
所述第一电池的第二半导体层4是富勒烯(C60)、二苯并咪唑苝(PTCBI)、酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的的任意一种;其厚度大于或等于20纳米,小于或等于60纳米;The
所述第二电池的第一半导体层8是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于10纳米,小于或等于50纳米;The
所述第二电池的第二半导体层9是富勒烯(C60)、二苯并咪唑苝(PTCBI)、酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的的任意一种,其厚度大于或等于20纳米,小于或等于100纳米;The
所述的中间电极层5是酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的一种,其厚度大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层6是酞菁氧锡(SnOPc)、酞菁锡二氯(SnCl2Pc)、十六氯代酞菁氯铝(Cl16AlClPc)、十六氟代酞菁氧钛(F16TiOPc)、十六氟代酞菁氧钒(F16VOPc)、十六氟代酞菁铟氯(F16InClPc)、十六氟代酞菁锰氯(F16MnClPc)、十六氟代酞菁锡二氯(F16SnCl2Pc)、十六氟代钛二氯(F16TiCl2Pc)、十六氟代酞菁铝氯(F16AlClPc)、十六氯代酞菁锡二氯(Cl16SnCl2Pc)、十六氯代酞菁氧钛(Cl16TiOPc)、十六氯代酞菁氧钒(Cl16VOPc)、十六氯代酞菁铟氯(Cl16InClPc)和十六氟代酞菁铜(F16CuPc)中的任意一种;其厚度大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层7是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的任意一种;其厚度大于或等于2纳米,小于或等于30纳米。The
如附图3所示,本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第二种的构成为:透明基板1、透明电极2、第一电池的第一半导体层3、第一电池的第二半导体层4、中间电极层5、中间电极层6、中间电极层7、第二电池的第二半导体层9和金属电极10;透明基板1、透明电极2、第一电池的第一半导体层3、第一电池的第二半导体层4、中间电极层5、中间电极层6、中间电极层7、第二电池的第二半导体层9和金属电极10顺次连接;其中,第一电池的第一半导体层3和第一电池的第二半导体层4构成第一电池,中间电极层5、中间电极层6和中间电极层7构成连接第一电池和第二电池的中间电极,中间电极层7同时作为第二电池的第一半导体层,中间电极层7和第二电池的第二半导体层9构成第二电池;As shown in Figure 3, the second type of laminated organic photovoltaic cell using three-layer organic heterojunction thin film as the intermediate electrode provided by the present invention consists of: a
所述第一电池的第一半导体层3是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于10纳米,小于或等于30纳米;The
所述第一电池的第二半导体层4是富勒烯(C60)、二苯并咪唑苝(PTCBI)、酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的的任意一种;其厚度大于或等于20纳米,小于或等于60纳米;The
所述的中间电极层5是酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的一种;其厚度大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层6是酞菁氧锡(SnOPc)、酞菁锡二氯(SnCl2Pc)、十六氯代酞菁氯铝(Cl16AlClPc)、十六氟代酞菁氧钛(F16TiOPc)、十六氟代酞菁氧钒(F16VOPc)、十六氟代酞菁铟氯(F16InClPc)、十六氟代酞菁锰氯(F16MnClPc)、十六氟代酞菁锡二氯(F16SnCl2Pc)、十六氟代钛二氯(F16TiCl2Pc)、十六氟代酞菁铝氯(F16AlClPc)、十六氯代酞菁锡二氯(Cl16SnCl2Pc)、十六氯代酞菁氧钛(Cl16TiOPc)、十六氯代酞菁氧钒(Cl16VOPc)、十六氯代酞菁钢氯(Cl16InClPc)和十六氟代酞菁铜(F16CuPc)中的一种;其厚度大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层7是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于2纳米,小于或等于30纳米;The
所述第二电池的第二半导体层9是富勒烯(C60)、二苯并咪唑苝(PTCBI)、酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的的任意一种;其厚度大于或等于20纳米,小于或等于100纳米。The
与本发明的第一种构成相比,第二种构成将中间电极层7同时用于第二电池的第一半导体,简化制备工艺。Compared with the first configuration of the present invention, the second configuration uses the
如附图5所示,本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第三种的构成为:透明基板1、透明电极2、第一电池的第一半导体层3、中间电极层5、中间电极层6、中间电极层7、第二电池的第一半导体层8、第二电池的第二半导体层9和金属电极10;透明基板1、透明电极2、第一电池的第一半导体层3、中间电极层5、中间电极层6、中间电极层7、第二电池的第一半导体层8、第二电池的第二半导体层9和金属电极10顺次连接;其中,中间电极层5、中间电极层6和中间电极层7构成连接第一电池和第二电池的中间电极,同时,中间电极层5作为第一电池的第二半导体与第一电池的第一半导体层3构成第一电池;第二电池的第一半导体层8和第二电池的第二半导体层9构成第二电池;As shown in Figure 5, the third type of stacked organic photovoltaic cell using three-layer organic heterojunction thin film as the intermediate electrode provided by the present invention is composed of:
所述第一电池的第一半导体层3是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于10纳米,小于或等于30纳米;The
所述第二电池的第一半导体层8是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于10纳米,小于或等于50纳米;The
所述第二电池的第二半导体层9是富勒烯(C60)、二苯并咪唑花(PTCBI)、酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的的任意一种;其厚度大于或等于20纳米,小于或等于100纳米;The
所述的中间电极层5是酞菁氧锡(SnOPc)和酞菁锡二氯(SnCl2Pc)中的一种;其厚度应大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层6是酞菁氧锡(SnOPc)、酞菁锡二氯(SnCl2Pc)、十六氯代酞菁氯铝(Cl16AlClPc)、十六氟代酞菁氧钛(F16TiOPc)、十六氟代酞菁氧钒(F16VOPc)、十六氟代酞菁铟氯(F16InClPc)、十六氟代酞菁锰氯(F16MnClPc)、十六氟代酞菁锡二氯(F16SnCl2Pc)、十六氟代钛二氯(F16TiCl2Pc)、十六氟代酞菁铝氯(F16AlClPc)、十六氯代酞菁锡二氯(Cl16SnCl2Pc)、十六氯代酞菁氧钛(Cl16TiOPc)、十六氯代酞菁氧钒(Cl16VOPc)、十六氯代酞菁铟氯(Cl16InClPc)和十六氟代酞菁铜(F16CuPc)中的一种;其厚度大于或等于2纳米,小于或等于30纳米;The
所述的中间电极层7是酞菁镍(NiPc)、酞菁亚铁(FePc)、酞菁锡(SnPc)、酞菁铜(CuPc)、酞菁钴(CoPc)、酞菁锌(ZnPc)、酞菁铅(PbPc)、酞菁氧钒(VOPc)、酞菁氧钛(TiOPc)、酞菁铁氯(FeClPc)、酞菁钛二氯(TiCl2Pc)、酞菁铟氯(InClPc)、酞菁锰氯(MnClPc)、酞菁镓氯(GaClPc)、酞菁钛二氟(TiF2Pc)、酞菁锡二氟(SnF2Pc)、酞菁铟氟(InFPc)和酞菁锗二氯(GeCl2Pc)中的一种;其厚度大于或等于2纳米,小于或等于30纳米。The
与本发明的第一种构成相比,第三种构成将中间电极层5同时用于第一电池的第二半导体,简化制备工艺。Compared with the first configuration of the present invention, the third configuration uses the
本发明的又一个目的是提供采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的制备方法。Another object of the present invention is to provide a method for preparing a stacked organic photovoltaic cell using a three-layer organic heterojunction thin film as an intermediate electrode.
1)采用三层有机异质结薄膜作为中间电极的第一种的结构的叠层有机光伏电池的制备方法的步骤和条件如下:1) The steps and conditions of the preparation method of the stacked organic photovoltaic cell using the first structure of the three-layer organic heterojunction thin film as the intermediate electrode are as follows:
按照每一层的所给出的材料,所使用的真空沉积设备其真空腔体本底真空8.0×10-4,衬底温度在室温到120度之间,沉积速率每分钟10纳米,在透明电极2上采用真空蒸镀的方法沉积第一电池的第一半导体层3,其厚度大于或等于10纳米,小于或等于30纳米;在第一电池的第一半导体层3上采用真空蒸镀的方法沉积第一电池的第二半导体层4,其厚度大于或等于20纳米,小于或等于60纳米,在第一电池的第二半导体层4上采用真空蒸镀的方法依次沉积构成中间电极的中间电极层5、中间电极层6、中间电极层7三层有机异质结薄膜,每层厚度均大于或等于2纳米,小于或等于30纳米;在中间电极层7上采用真空蒸镀的方法沉积第二电池的第一半导体层8,其厚度大于或等于10纳米,小于或等于50纳米;在第二电池的第一半导体层8上采用真空蒸镀的方法沉积第二电池的第二半导体层9,其厚度大于或等于20纳米,小于或等于100纳米;在第二电池的第二半导体层9上采用真空蒸镀的方法制备金属电极10。According to the materials given for each layer, the vacuum deposition equipment used has a vacuum chamber background vacuum of 8.0×10 -4 , the substrate temperature is between room temperature and 120 degrees, and the deposition rate is 10 nanometers per minute. The
2)采用三层有机异质结薄膜作为中间电极的第二种的结构的叠层有机光伏电池的制备方法的步骤和条件如下:2) The steps and conditions of the preparation method of the stacked organic photovoltaic cell using the second structure of the three-layer organic heterojunction thin film as the intermediate electrode are as follows:
按照每一层的所给出的材料,所使用的真空沉积设备其真空腔体本底真空8.0×10-4Pa,衬底温度在室温到120度之间,沉积速率每分钟10纳米,在透明电极2上采用真空蒸镀的方法沉积第一电池的第一半导体层3,其厚度大于或等于10纳米,小于或等于30纳米;在第一电池的第一半导体层3上采用真空蒸镀的方法沉积第一电池的第二半导体层4,其厚度大于或等于20纳米,小于或等于60纳米,在第一电池的第二半导体层4上采用真空蒸镀的方法依次沉积构成中间电极的中间电极层5、中间电极层6、中间电极层7三层有机异质结薄膜,每层厚度均大于或等于2纳米,小于或等于30纳米;在中间电极层7上采用真空蒸镀的方法沉积第二电池的第二半导体层9,其厚度大于或等于20纳米,小于或等于100纳米;在第二电池的第二半导体层9上采用真空蒸镀的方法制备金属电极10。According to the given materials for each layer, the vacuum deposition equipment used has a vacuum chamber background vacuum of 8.0×10 -4 Pa, a substrate temperature between room temperature and 120 degrees, and a deposition rate of 10 nanometers per minute. The
3)采用三层有机异质结薄膜作为中间电极的第三种的结构的叠层有机光伏电池的制备方法的步骤和条件如下:3) The steps and conditions of the preparation method of the stacked organic photovoltaic cell using the third structure of the three-layer organic heterojunction thin film as the intermediate electrode are as follows:
按照每一层的所给出的材料,所使用的真空沉积设备其真空腔体本底真空8.0×10-4Pa,衬底温度在室温到120度之间,沉积速率每分钟10纳米,在透明电极2上采用真空蒸镀的方法沉积第一电池的第一半导体层3,其厚度大于或等于10纳米,小于或等于30纳米;在第一电池的第一半导体层3上采用真空蒸镀的方法依次沉积构成中间电极的中间电极层5、中间电极层6、中间电极层7三层有机异质结薄膜,每层厚度均大于或等于2纳米,小于或等于30纳米;在中间电极层7上采用真空蒸镀的方法沉积第二电池的第一半导体层8,其厚度大于或等于10纳米,小于或等于50纳米;在第二电池的第一半导体层8上采用真空蒸镀的方法沉积第二电池的第二半导体层9,其厚度大于或等于20纳米,小于或等于100纳米;在第二电池的第二半导体层9上采用真空蒸镀的方法制备金属电极10。According to the given materials for each layer, the vacuum deposition equipment used has a vacuum chamber background vacuum of 8.0×10 -4 Pa, a substrate temperature between room temperature and 120 degrees, and a deposition rate of 10 nanometers per minute. The
本发明的有益效果:采用有机异质结薄膜为中间电极,由于有机异质结薄膜具有电子和空穴分立传输的特点,在异质结界面处可以有效地进行电子-空穴的复合而几乎没有能量损失,同时与有机活性层有比较好的电接触,有利于叠层有机光伏电池性能的提高。Beneficial effects of the present invention: the organic heterojunction thin film is used as the intermediate electrode. Since the organic heterojunction thin film has the characteristics of separate transmission of electrons and holes, the recombination of electrons and holes can be effectively carried out at the heterojunction interface and almost There is no energy loss, and at the same time, it has relatively good electrical contact with the organic active layer, which is beneficial to the improvement of the performance of the laminated organic photovoltaic cell.
本发明的优点是电池性能显著提高,制备工艺简单。该器件可以广泛地应用于低成本和高效率的光伏电池和宽光谱敏感的传感器等领域。The invention has the advantages of remarkably improved battery performance and simple preparation process. The device can be widely used in low-cost and high-efficiency photovoltaic cells and wide-spectrum sensitive sensors and other fields.
附图说明Description of drawings
图1是采用三层有机半导体异质结作为中间电极的叠层有机光伏电池结构示意图。其中,1是透明基板,2是透明阳极,3是第一电池的第一半导体层,4是第一电池的第二半导体层,5是中间电极层,6是中间电极层,7是中间电极层,8是第二电池的第一半导体层,9是第二电池的第二半导体层,10是金属阴极。图1也是摘要附图。Figure 1 is a schematic diagram of the structure of a stacked organic photovoltaic cell using a three-layer organic semiconductor heterojunction as an intermediate electrode. Among them, 1 is the transparent substrate, 2 is the transparent anode, 3 is the first semiconductor layer of the first battery, 4 is the second semiconductor layer of the first battery, 5 is the intermediate electrode layer, 6 is the intermediate electrode layer, and 7 is the intermediate electrode Layer, 8 is the first semiconductor layer of the second cell, 9 is the second semiconductor layer of the second cell, and 10 is the metal cathode. Figure 1 is also an abstract drawing.
图2是采用图1结构的叠层有机光伏电池的电流-电压特性曲线。其中,透明阳极为ITO,第一和第二电池的第一半导体层为酞菁锌(ZnPc),第一和第二电池的第二半导体层为富勒烯(C60),中间电极层5为酞菁锡二氯(SnCl2Pc),中间电极层6为十六氟代酞菁铜(F16CuPc),中间电极层7为酞菁铜(CuPc),金属阴极为Al。Fig. 2 is a current-voltage characteristic curve of the stacked organic photovoltaic cell adopting the structure of Fig. 1 . Wherein, the transparent anode is ITO, the first semiconductor layer of the first and second cells is zinc phthalocyanine (ZnPc), the second semiconductor layer of the first and second cells is fullerene (C60), and the
图3是采用三层有机半导体异质结作为中间电极的叠层有机光伏电池第二种结构示意图。其中,1是透明基板,2是透明阳极,3是第一电池的第一半导体层,4是第一电池的第二半导体层,5是中间电极层,6是中间电极层,7是中间电极层,9是第二电池的第二半导体层,10是金属阴极。Fig. 3 is a schematic diagram of a second structure of a stacked organic photovoltaic cell using a three-layer organic semiconductor heterojunction as an intermediate electrode. Among them, 1 is the transparent substrate, 2 is the transparent anode, 3 is the first semiconductor layer of the first battery, 4 is the second semiconductor layer of the first battery, 5 is the intermediate electrode layer, 6 is the intermediate electrode layer, and 7 is the
图4是采用图3结构的叠层有机光伏电池的电流-电压特性曲线。其中,透明阳极为ITO,第一电池的第一半导体层为CuPc,第一和第二电池的第二半导体层为C60,中间电极层5为SnOPc,中间电极层6为F16AlClPc,中间电极层7为ZnPc兼有第二电池的第一半导体层的功能,金属阴极为Al。Fig. 4 is a current-voltage characteristic curve of the stacked organic photovoltaic cell adopting the structure of Fig. 3 . Among them, the transparent anode is ITO, the first semiconductor layer of the first battery is CuPc, the second semiconductor layer of the first and second batteries is C60, the
图5是采用三层有机半导体异质结作为中间电极的叠层有机电池第三种结构示意图。其中,1是透明基板,2是透明阳极,3是第一电池的第一半导体层,5是中间电极层,6是中间电极层,7是中间电极层,8是第二电池的第一半导体层,9是第二电池的第二半导体层,10是金属阴极。Fig. 5 is a schematic diagram of a third structure of a stacked organic battery using a three-layer organic semiconductor heterojunction as an intermediate electrode. Among them, 1 is the transparent substrate, 2 is the transparent anode, 3 is the first semiconductor layer of the first cell, 5 is the intermediate electrode layer, 6 is the intermediate electrode layer, 7 is the intermediate electrode layer, 8 is the first semiconductor layer of the
图6是采用图5结构的叠层有机光伏电池的电流-电压特性曲线。其中,透明阳极为ITO,第一电池和第二电池的的第一半导体层为酞菁镍(NiPc),中间电极层5为SnCl2Pc兼有第一电池的第二半导体层的功能,中间电极层6为Cl16CuPc,中间电极层7为CoPc,第二电池的第二半导体层为SnCl2Pc。Fig. 6 is a current-voltage characteristic curve of the stacked organic photovoltaic cell adopting the structure of Fig. 5 . Wherein, the transparent anode is ITO, the first semiconductor layer of the first battery and the second battery is nickel phthalocyanine (NiPc), the
实施例1Example 1
所用酞菁镍(NiPc),酞菁锡(SnPc),酞菁铜(CuPc),酞菁钴(CoPc),酞菁锌(ZnPc),酞菁铅(PbPc),酞菁氧钒(VOPc),酞菁氧钛(TiOPc),酞菁铁氯(FeClPc),酞菁钛二氯(TiCl2Pc),酞菁锡二氯(SnCl2Pc),酞菁铟氯(InClPc),十六氯代酞菁氯铝(Cl16AlClPc),酞菁锰氯(MnClPc),酞菁镓氯(GaClPc),酞菁氧锡(SnOPc),酞菁钛二氟(TiF2Pc),酞菁锡二氟(SnF2Pc),酞菁铟氟(InFPc),酞菁锗二氯(GeCl2Pc),十六氟代酞菁氧钛(F16TiOPc),十六氟代酞菁氧钒(F16VOPc),十六氟代酞菁铟氯(F16InClPc),十六氟代酞菁锰氯(F16MnClPc),十六氟代酞菁锡二氯(F16SnCl2Pc),十六氟代酞菁钛二氯(F16TiCl2Pc),十六氟代酞菁铝氯(F16AlClPc),十六氯代酞菁锡二氯(Cl16SnCl2Pc),十六氯代酞菁氧钛(Cl16TiOPc),十六氯代酞菁氧钒(Cl16VOPc),十六氯代酞菁铟氯(Cl16InClPc),十六氟代酞菁铜(F16CuPc)、富勒烯(C60)和二苯并咪唑苝(PTCBI)为商业产品,二次升华提纯后使用。ITO玻璃为商业产品,清洗后使用。金属铝为商业产品,直接使用。Nickel phthalocyanine (NiPc), tin phthalocyanine (SnPc), copper phthalocyanine (CuPc), cobalt phthalocyanine (CoPc), zinc phthalocyanine (ZnPc), lead phthalocyanine (PbPc), vanadyl phthalocyanine (VOPc) used , titanium oxyphthalocyanine (TiOPc), iron chloride phthalocyanine (FeClPc), titanium dichloride phthalocyanine (TiCl 2 Pc), tin dichloride phthalocyanine (SnCl 2 Pc), indium chloride phthalocyanine (InClPc), hexadecyl chloride Aluminum chloride phthalocyanine (Cl 16 AlClPc), manganese chloride phthalocyanine (MnClPc), gallium chloride phthalocyanine (GaClPc), tin oxytin phthalocyanine (SnOPc), titanium difluoride phthalocyanine (TiF 2 Pc), tin difluoride phthalocyanine Fluorine (SnF 2 Pc), indium fluorine phthalocyanine (InFPc), germanium phthalocyanine dichloride (GeCl 2 Pc), hexadecafluorotitanyl phthalocyanine (F 16 TiOPc), hexadecafluorovanadyl phthalocyanine (F 16 VOPc), hexadecafluorophthalocyanine indium chloride (F 16 InClPc), hexadecafluorophthalocyanine manganese chloride (F 16 MnClPc), hexadecafluorophthalocyanine tin dichloride (F 16 SnCl 2 Pc), ten Titanium dichloride hexafluorophthalocyanine (F 16 TiCl 2 Pc), Aluminum chloride hexafluorophthalocyanine (F 16 AlClPc), Tin dichloride hexachlorophthalocyanine (Cl 16 SnCl 2 Pc), Hexadecyl chloride Titanium oxyphthalocyanine (Cl 16 TiOPc), vanadyl phthalocyanine hexadecyl chloride (Cl 16 VOPc), indium chloride phthalocyanine hexadecyl chloride (Cl 16 InClPc), copper hexadecafluorophthalocyanine (F 16 CuPc ), fullerene (C60) and perylene dibenzimidazole (PTCBI) are commercial products, which are used after secondary sublimation purification. ITO glass is a commercial product and is used after cleaning. Metal aluminum is a commercial product and is used directly.
器件结构采用本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第一种的构成。The device structure adopts the first type of composition of the laminated organic photovoltaic cell using three layers of organic heterojunction thin films as intermediate electrodes provided by the present invention.
器件具体加工方法如下:The specific processing method of the device is as follows:
在ITO玻璃2上采用真空蒸镀的方法依次沉积第一电池的第一半导体层3、第一电池的第二半导体层4;在第一电池上的第二半导体层4上采用真空蒸镀的方法依次沉积中间电极层5、中间电极层6、中间电极层7;在中间电极层7上采用真空蒸镀的方法依次沉积第二电池的第一半导体层8和第二电池的第二半导体层9;在第二电池的第二半导体层9上采用真空蒸镀的方法,利用漏板沉积一层面积3.14平方厘米100纳米厚的铝(Al)作为金属阴极10形成如图1所示结构的叠层电池。On the
其中,本底真空8×10-4Pa,衬底温度从室温到120℃,蒸镀速率为每分钟10纳米;第一电池的第一半导体层3为酞菁锌(ZnPc),厚度10纳米;第一电池的第二半导体层4是富勒烯(C60),厚度20纳米;中间电极层5是酞菁锡二氯(SnCl2Pc),厚度2纳米;中间电极层6是十六氟代酞菁铜(F16CuPc),厚度3纳米;中间电极层7是酞菁铜(CuPc),厚度5纳米;第二电池的第一半导体层8是酞菁锌(ZnPc),厚度10纳米,第二电池的第二半导体层9是富勒烯(C60),厚度20纳米。Among them, the background vacuum is 8×10 -4 Pa, the substrate temperature is from room temperature to 120°C, and the evaporation rate is 10 nanometers per minute; the
为了便于比较,在ITO玻璃表面采用同样条件制备了采用ZnPc为第一半导体层、C60为第二半导体层、Al为金属阴极的单电池。For the convenience of comparison, a single cell using ZnPc as the first semiconductor layer, C60 as the second semiconductor layer, and Al as the metal cathode was prepared on the surface of ITO glass under the same conditions.
图2是在ITO玻璃表面采用ZnPc为第一和第二电池的第一半导体层、C60为第一和第二电池的第二半导体层、SnCl2Pc为中间电极层5、F16CuPc为中间电极层6、CuPc为中间电极层7、Al为金属阴极的叠层有机光伏电池在暗态下和模拟太阳光源照射下的电流-电压曲线。在大气质量(AM)1.5,光强度100mW/cm2模拟太阳光源下,器件的开路电压为1.02V,短路电流密度为3.0mA/cm2,填充因子为0.5,能量转换效率为1.53%。与单电池比较,开路电压0.54V,短路电流密度3.9mA/cm2,填充因子0.53,能量转换效率1.1%,效率提高40%以上。因此,三层有机异质结薄膜构成的中间电极能够克服现有技术中光透过性质差、光生激子在中间层附近淬灭和开路电压及填充因子损失的问题,同时可以显著提高电池效率。Figure 2 shows the use of ZnPc as the first semiconductor layer of the first and second cells, C60 as the second semiconductor layer of the first and second cells, SnCl 2 Pc as the
表一给出依照实施例1制备的本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第一种构成的器件的结构和性能,从表一中可以看出,三层有机异质结薄膜构成的中间电极能够实现高效率的叠层有机光伏电池。Table 1 shows the structure and performance of the device of the first configuration of the stacked organic photovoltaic cell using the three-layer organic heterojunction thin film as the intermediate electrode prepared according to Example 1 provided by the present invention, as can be seen from Table 1 , the intermediate electrode composed of three layers of organic heterojunction thin films can realize high-efficiency stacked organic photovoltaic cells.
表一:采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的结构和性能Table 1: Structure and performance of tandem organic photovoltaic cells using three-layer organic heterojunction thin films as intermediate electrodes
续表一Continued Table 1
实施例2Example 2
所用材料同实施例1。Materials used are the same as in Example 1.
器件结构采用本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第二种的构成。The device structure adopts the second structure of the laminated organic photovoltaic cell using three layers of organic heterojunction thin films as the intermediate electrodes provided by the present invention.
器件具体加工方法如下:在ITO玻璃2上采用真空蒸镀的方法依次沉积第一电池的第一半导体层3、第一电池的第二半导体层4;在第一电池的第二半导体层4上采用真空蒸镀的方法依次沉积中间电极层5、中间电极层6、中间电极层7,其中,中间电极层7同时作为第二电池的第一半导体;在中间电极层7上采用真空蒸镀的方法依次第二电池的第二半导体层9;在第二电池的第二半导体层9上采用真空蒸镀的方法,利用漏板沉积一层面积3.14平方厘米100纳米厚的铝(Al)作为金属阴极10形成如图3所示结构的叠层有机光伏电池。The specific processing method of the device is as follows: the
其中,本底真空8×10-4Pa,衬底温度从室温到120℃,蒸镀速率为每分钟10纳米;透明阳极为ITO,第一电池的第一半导体层为CuPc,厚度10纳米,第一和第二电池的第二半导体层为C60,厚度分别为20纳米和30纳米,中间电极层5为SnOPc,厚度5纳米,中间电极层6为F16AlClPc,厚度2纳米;中间电极层7为ZnPc,厚度30纳米兼有第二电池的第一半导体层的功能。Among them, the background vacuum is 8×10 -4 Pa, the substrate temperature is from room temperature to 120°C, and the evaporation rate is 10 nanometers per minute; the transparent anode is ITO, and the first semiconductor layer of the first cell is CuPc with a thickness of 10 nanometers. The second semiconductor layer of the first and second cells is C60, the thickness is 20 nanometers and 30 nanometers respectively, the
图4是实施例2所对应的叠层有机光伏电池在暗态及模拟太阳光源照射下的电流-电压曲线。在大气质量(AM)1.5,光强度100mW/cm2模拟光源下,器件的开路电压为1.04V,短路电流密度为3.65mA/cm2,填充因子为0.48,能量转换效率为1.8%。Fig. 4 is the current-voltage curve of the stacked organic photovoltaic cell corresponding to Example 2 in the dark state and under the irradiation of a simulated solar light source. Under the simulated light source with air mass (AM) of 1.5 and light intensity of 100mW/cm 2 , the open circuit voltage of the device is 1.04V, the short circuit current density is 3.65mA/cm 2 , the fill factor is 0.48, and the energy conversion efficiency is 1.8%.
表二给出依照实施例2制备的本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第二种构成的器件的结构和性能。Table 2 shows the structure and performance of the device of the second configuration of the stacked organic photovoltaic cell using the three-layer organic heterojunction thin film as the intermediate electrode prepared according to Example 2 provided by the present invention.
表二:采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的结构和性能Table 2: Structure and performance of tandem organic photovoltaic cells using three-layer organic heterojunction thin films as intermediate electrodes
实施例3Example 3
所用材料同实施例1。Materials used are the same as in Example 1.
器件结构采用本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第三种的构成。The device structure adopts the third structure of the laminated organic photovoltaic cell using three-layer organic heterojunction thin film as the intermediate electrode provided by the present invention.
器件具体加工方法如下:在ITO玻璃2上采用真空蒸镀的方法沉积第一电池的第一半导体层3;在第一电池的第一半导体层3上采用真空蒸镀的方法依次沉积中间电极层5、中间电极层6、中间电极层7;其中,中间电极层5同时作为第一电池的第二半导体层;在中间电极上7上采用真空蒸镀的方法依次沉积第二电池的第一半导体层8和第二电池的第二半导体层9;在第二电池的第二半导体层9上采用真空蒸镀的方法,利用漏板沉积一层面积3.14平方厘米100纳米厚的铝(Al)作为金属阴极10形成如图5所示结构的叠层有机光伏电池。The specific processing method of the device is as follows: the
其中,本底真空8×10-4Pa,衬底温度从室温到120℃,蒸镀速率为每分钟10纳米;透明阳极为ITO,第一和第二电池的第一半导体层为NiPc,厚度分别为20纳米和35纳米;中间电极层5为SnCl2Pc兼有第一电池的第二半导体层的功能,厚度为30纳米;中间电极层6为Cl16CuPc,厚度2纳米;中间电极层7为CoPc,厚度5纳米;第二电池的第二半导体层为SnCl2Pc,厚度50纳米。Among them, the background vacuum is 8×10 -4 Pa, the substrate temperature is from room temperature to 120°C, and the evaporation rate is 10 nanometers per minute; the transparent anode is ITO, and the first semiconductor layer of the first and second cells is NiPc, with a thickness of 20 nanometers and 35 nanometers respectively; the
图6是实施例3所对应的叠层有机光伏电池在暗态及模拟太阳光源照射下的电流-电压曲线。在大气质量(AM)1.5,光强度100mW/cm2模拟太阳光源下,器件的开路电压为0.62V,短路电流密度为1.2mA/cm2,填充因子为0.37,能量转换效率为0.28%。Fig. 6 is the current-voltage curve of the stacked organic photovoltaic cell corresponding to Example 3 in the dark state and under the irradiation of a simulated solar light source. Under the atmosphere mass (AM) 1.5, light intensity 100mW/cm 2 simulated solar light source, the open circuit voltage of the device is 0.62V, the short circuit current density is 1.2mA/cm 2 , the fill factor is 0.37, and the energy conversion efficiency is 0.28%.
表三给出依照实施例3制备的本发明提供的采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的第三种构成的器件的结构和性能。Table 3 shows the structure and performance of the device of the third configuration of the tandem organic photovoltaic cell prepared according to Example 3 and using the three-layer organic heterojunction thin film as the intermediate electrode provided by the present invention.
表三:采用三层有机异质结薄膜作为中间电极的叠层有机光伏电池的结构和性能Table 3: Structure and performance of tandem organic photovoltaic cells using three-layer organic heterojunction thin films as intermediate electrodes
本发明不限于上述实施例。一般来说,本发明所公开叠层有机光伏电池可以加工形成两个或多个有机电池的串联或并联。使用基于本发明的叠层有机光伏电池可以在室温到120℃范围内加工。The present invention is not limited to the above-described embodiments. In general, the stacked organic photovoltaic cells disclosed in the present invention can be processed to form two or more organic cells connected in series or in parallel. The tandem organic photovoltaic cells based on the present invention can be processed in the range of room temperature to 120°C.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710193557 CN101179109B (en) | 2007-12-17 | 2007-12-17 | Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710193557 CN101179109B (en) | 2007-12-17 | 2007-12-17 | Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101179109A true CN101179109A (en) | 2008-05-14 |
CN101179109B CN101179109B (en) | 2010-06-02 |
Family
ID=39405272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710193557 Expired - Fee Related CN101179109B (en) | 2007-12-17 | 2007-12-17 | Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101179109B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100587997C (en) * | 2008-07-08 | 2010-02-03 | 中国科学院长春应用化学研究所 | A kind of laminated structure polymer thin film solar cell |
CN101826597A (en) * | 2010-05-04 | 2010-09-08 | 北京大学 | Organic resistive random access memory and preparation method thereof |
CN102088060A (en) * | 2010-12-06 | 2011-06-08 | 电子科技大学 | Laminated organic thin-film solar cell and preparation method thereof |
CN102834925A (en) * | 2010-01-15 | 2012-12-19 | Isis创新有限公司 | Solar cell |
CN103635482A (en) * | 2011-03-30 | 2014-03-12 | 国立科学研究中心 | Use of cobalt complexes for preparing an active layer in a photovoltaic cell, and corresponding photovoltaic cell |
CN106898695A (en) * | 2015-12-21 | 2017-06-27 | 兰州大学 | A kind of organic mixed film wide spectrum organic and inorganic photodiode |
CN109545869A (en) * | 2018-10-24 | 2019-03-29 | 四川大学 | A kind of flexible cadmium telluride solar cell of two-sided three terminal |
CN113135926A (en) * | 2021-04-23 | 2021-07-20 | 昆明学院 | Novel crystal structure indium phthalocyanine nanowire and preparation method thereof |
CN113809295A (en) * | 2021-09-06 | 2021-12-17 | 温州大学 | SnCl2Pc-Gra composite material and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3118907A1 (en) * | 2001-06-11 | 2017-01-18 | The Trustees of Princeton University | Organic photovoltaic devices |
CN1300858C (en) * | 2004-05-12 | 2007-02-14 | 北京交通大学 | Multi-band-gap cascaded structural organic solar battery |
CN100383982C (en) * | 2004-06-14 | 2008-04-23 | 王东生 | Multi-absorbing-layer solar battery and manufacturing method thereof |
US7196366B2 (en) * | 2004-08-05 | 2007-03-27 | The Trustees Of Princeton University | Stacked organic photosensitive devices |
-
2007
- 2007-12-17 CN CN 200710193557 patent/CN101179109B/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100587997C (en) * | 2008-07-08 | 2010-02-03 | 中国科学院长春应用化学研究所 | A kind of laminated structure polymer thin film solar cell |
CN102834925A (en) * | 2010-01-15 | 2012-12-19 | Isis创新有限公司 | Solar cell |
CN101826597A (en) * | 2010-05-04 | 2010-09-08 | 北京大学 | Organic resistive random access memory and preparation method thereof |
CN101826597B (en) * | 2010-05-04 | 2012-08-29 | 北京大学 | Organic resistive random access memory and preparation method thereof |
CN102088060A (en) * | 2010-12-06 | 2011-06-08 | 电子科技大学 | Laminated organic thin-film solar cell and preparation method thereof |
CN103635482A (en) * | 2011-03-30 | 2014-03-12 | 国立科学研究中心 | Use of cobalt complexes for preparing an active layer in a photovoltaic cell, and corresponding photovoltaic cell |
CN103635482B (en) * | 2011-03-30 | 2016-11-09 | 国立科学研究中心 | Use of cobalt complexes in the preparation of active layers in photovoltaic cells and corresponding photovoltaic cells |
CN106898695A (en) * | 2015-12-21 | 2017-06-27 | 兰州大学 | A kind of organic mixed film wide spectrum organic and inorganic photodiode |
CN106898695B (en) * | 2015-12-21 | 2019-10-01 | 兰州大学 | A kind of organic mixed film wide spectrum organic and inorganic photodiode |
CN109545869A (en) * | 2018-10-24 | 2019-03-29 | 四川大学 | A kind of flexible cadmium telluride solar cell of two-sided three terminal |
CN113135926A (en) * | 2021-04-23 | 2021-07-20 | 昆明学院 | Novel crystal structure indium phthalocyanine nanowire and preparation method thereof |
CN113809295A (en) * | 2021-09-06 | 2021-12-17 | 温州大学 | SnCl2Pc-Gra composite material and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101179109B (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101179109B (en) | Tandem organic photovoltaic cells using three layers of organic heterojunction thin films as intermediate electrodes | |
US11211559B2 (en) | Materials for controlling the epitaxial growth of photoactive layers in photovoltaic devices | |
US20100084011A1 (en) | Organic tandem solar cells | |
EP2926387A1 (en) | Hybrid planar-graded heterojunction for organic photovoltaics | |
CN110600614A (en) | Tunneling junction structure of perovskite/perovskite two-end laminated solar cell | |
CN105723537A (en) | Exciton-blocking treatments for buffer layers in organic photovoltaics | |
Han et al. | Recent advances of semitransparent organic solar cells | |
AU2013296423A1 (en) | Organic optoelectronics with electrode buffer layers | |
CN102097601B (en) | Organic light-emitting diode for N-type doping membrane | |
US11744089B2 (en) | Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers | |
CN101562230B (en) | Organic Solar Cells Using Weakly Epitaxially Grown Thin Films as Donors | |
CN114914365A (en) | A perovskite/perovskite tandem solar cell with an inverted structure | |
CN102694123B (en) | Organic semiconductor micro nanocrystalline array, preparation method and its application in the photovoltaic cells | |
JP5118296B2 (en) | Stacked organic solar cell | |
WO2012160911A1 (en) | Organic photoelectric conversion element | |
CN110993795B (en) | Solar cell based on copper oxide quantum dot interface layer and preparation method of interface layer | |
JP2018046056A (en) | Solar cell and method of manufacturing the same | |
Lee et al. | Transparent and tandem solar cells using solution-processed metal nanowire transparent electrodes | |
JP2016115880A (en) | Organic/inorganic hybrid solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20151217 |
|
EXPY | Termination of patent right or utility model |