CN101174671A - Preparation method of vanadium dioxide nano film with phase change characteristics - Google Patents
Preparation method of vanadium dioxide nano film with phase change characteristics Download PDFInfo
- Publication number
- CN101174671A CN101174671A CNA2007100599357A CN200710059935A CN101174671A CN 101174671 A CN101174671 A CN 101174671A CN A2007100599357 A CNA2007100599357 A CN A2007100599357A CN 200710059935 A CN200710059935 A CN 200710059935A CN 101174671 A CN101174671 A CN 101174671A
- Authority
- CN
- China
- Prior art keywords
- film
- silicon
- vanadium
- temperature
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明属于半导体技术领域,具体涉及一种制备具有相变特性二氧化钒纳米薄膜的制备方法,用于在硅基片上制作二氧化钒纳米薄膜,包括下列步骤:1)硅基片表面清洗;2)采用等离子体增强化学气相沉积方法在硅基片上生长二氧化硅薄膜或氮化硅薄膜;3)以金属钒作为靶材,采用对靶反应磁控溅射法,在上述二氧化硅/硅基片或氮化硅/硅基片上沉积氧化钒薄膜;4)将制得的氧化钒/二氧化硅/硅复合薄膜或氧化钒/氮化硅/硅复合薄膜置于已达到所需退火温度的退火装置中,在空气气氛下进行退火,退火温度为300-400℃,退火时间为1-3小时。本发明提供的制备方法,薄膜溅射温度为室温,退火温度很低,最低仅为300℃左右,利用该方法制备的二氧化钒纳米薄膜具有良好的相变特性,与MEMS工艺的兼容性很好。
The invention belongs to the technical field of semiconductors, and in particular relates to a preparation method for preparing a vanadium dioxide nano-film with a phase change characteristic, which is used for making a vanadium dioxide nano-film on a silicon substrate, comprising the following steps: 1) cleaning the surface of the silicon substrate; 2) using plasma-enhanced chemical vapor deposition method to grow a silicon dioxide film or a silicon nitride film on a silicon substrate; 3) using metal vanadium as a target material, using a reactive magnetron sputtering method to the target, on the above-mentioned silicon dioxide/ Deposit vanadium oxide thin film on silicon substrate or silicon nitride/silicon substrate; In the annealing device with high temperature, the annealing is carried out under the air atmosphere, the annealing temperature is 300-400° C., and the annealing time is 1-3 hours. In the preparation method provided by the invention, the film sputtering temperature is room temperature, and the annealing temperature is very low, the lowest being only about 300°C. The vanadium dioxide nano film prepared by this method has good phase transition characteristics and is very compatible with MEMS technology. good.
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种制备具有相变特性二氧化钒纳米薄膜的制备方法。The invention belongs to the technical field of semiconductors, and in particular relates to a preparation method for preparing vanadium dioxide nano-films with phase transition properties.
背景技术Background technique
二氧化钒是一种热致相变材料,在温度升高的过程中,由低温半导体态转变为高温金属态,同时晶体结构由单斜金红石结构变为四方金红石结构。在相变过程中,二氧化钒的光学、电学和磁学性能发生可逆性突变。这一特性使其在光电开关、光存储器、智能窗口涂层等领域都有广泛的应用。通常情况下,二氧化钒多晶薄膜的相变温度同块体材料一样为68℃,相变温度附近,电阻温度系数远大于其他温度区域的值,其相变温度可通过掺杂或改变工艺条件的方法有效的降低,使得其高电阻温度系数区域向低温区域移动,同时合适的电阻率使其也成为非制冷微测辐射热计的理想热敏感元材料。要实现二氧化钒薄膜在上述领域更好的应用,除了追求低相变温度,高相变幅度,高电阻温度系数及合适的电阻率外,在制备二氧化钒薄膜时,其制备工艺与微机械电子系统(MEMS)工艺的兼容性问题也至关重要,最重要的是制备温度不能超过450℃。目前,制备二氧化钒薄膜时,其退火温度一般在400℃,有时甚至达到500℃以上。例如申请号为200510039179.2的专利申请提供了一种室温电阻温度系数高于10%/K(电阻温度系数的单位)的多晶二氧化钒薄膜制备方法,该种制备方法所采用的退火温度高达500-700℃。如果二氧化钒薄膜的制备温度过高,容易破坏衬底上已有的电路和微观结构,从而限制二氧化钒在上述领域的应用,因此,性能良好的二氧化钒薄膜的低制备温度成为其上述应用的必要条件。Vanadium dioxide is a thermally induced phase-change material, which changes from a low-temperature semiconductor state to a high-temperature metal state in the process of temperature rise, and at the same time, the crystal structure changes from a monoclinic rutile structure to a tetragonal rutile structure. During the phase transition, the optical, electrical and magnetic properties of vanadium dioxide undergo reversible mutations. This feature makes it widely used in photoelectric switch, optical memory, smart window coating and other fields. Normally, the phase transition temperature of vanadium dioxide polycrystalline film is 68°C the same as that of the bulk material. Near the phase transition temperature, the temperature coefficient of resistance is much larger than the values in other temperature regions. The phase transition temperature can be changed by doping or changing the process. The method of condition is effectively reduced, so that the region of high temperature coefficient of resistance moves to the region of low temperature, and the appropriate resistivity makes it also an ideal heat-sensitive element material for uncooled microbolometers. To achieve a better application of vanadium dioxide thin film in the above fields, in addition to the pursuit of low phase transition temperature, high phase transition amplitude, high temperature coefficient of resistance and suitable resistivity, when preparing vanadium dioxide thin film, its preparation process and micro The compatibility issue of the mechatronics system (MEMS) process is also crucial, the most important thing is that the preparation temperature should not exceed 450°C. At present, when preparing vanadium dioxide thin films, the annealing temperature is generally 400°C, sometimes even above 500°C. For example, the patent application whose application number is 200510039179.2 provides a method for preparing a polycrystalline vanadium dioxide thin film with a temperature coefficient of resistance at room temperature higher than 10%/K (the unit of temperature coefficient of resistance). The annealing temperature used in this preparation method is as high as 500 -700°C. If the preparation temperature of vanadium dioxide film is too high, it is easy to damage the existing circuit and microstructure on the substrate, thereby limiting the application of vanadium dioxide in the above fields. Therefore, the low preparation temperature of vanadium dioxide film with good performance becomes its Necessary for the above application.
发明内容Contents of the invention
本发明的目的是提供一种制备具有相变特性二氧化钒纳米薄膜的低温氧化退火方法,此方法的主要特征为,薄膜溅射温度为室温,退火温度很低,最低仅为300℃左右,利用该方法制备的二氧化钒纳米薄膜具有良好的相变特性,与MEMS工艺的兼容性很好。The purpose of the present invention is to provide a low-temperature oxidation annealing method for preparing vanadium dioxide nano-films with phase transition characteristics. The main features of this method are that the film sputtering temperature is room temperature, and the annealing temperature is very low, the lowest being only about 300 ° C. The vanadium dioxide nanometer thin film prepared by the method has good phase transition properties, and has good compatibility with MEMS technology.
本发明具有相变特性二氧化钒纳米薄膜的低温退火制备方法,用于在硅基片上制作二氧化钒纳米薄膜,包括下列步骤:The low-temperature annealing preparation method of the vanadium dioxide nano-film with phase change characteristics of the present invention is used to make the vanadium dioxide nano-film on a silicon substrate, comprising the following steps:
1)硅基片表面清洗;1) Silicon substrate surface cleaning;
2)采用等离子体增强化学气相沉积方法在硅基片上生长二氧化硅薄膜或氮化硅薄膜;2) growing a silicon dioxide film or a silicon nitride film on a silicon substrate by a plasma-enhanced chemical vapor deposition method;
3)以金属钒作为靶材,采用对靶反应磁控溅射法,在上述二氧化硅/硅基片或氮化硅/硅基片上沉积氧化钒薄膜;3) Depositing a vanadium oxide film on the above-mentioned silicon dioxide/silicon substrate or silicon nitride/silicon substrate by using metal vanadium as the target material and adopting a reactive magnetron sputtering method to the target;
4)将制得的氧化钒/二氧化硅/硅复合薄膜或氧化钒/氮化硅/硅复合薄膜置于已达到所需退火温度的退火装置中,在空气气氛下进行退火,退火温度为300-400℃,退火时间为1-3小时。4) Place the prepared vanadium oxide/silicon dioxide/silicon composite film or vanadium oxide/silicon nitride/silicon composite film in an annealing device that has reached the required annealing temperature, and perform annealing in an air atmosphere at an annealing temperature of 300-400°C, the annealing time is 1-3 hours.
作为优选实施方案,上述制备方法中的步骤2)可以采用下列步骤:先将处理好的硅基片置于真空室,基片温度为130℃-160℃,工作气体为NO2和SiH4,工作气体压强为3-5Pa,气流量比为1∶2~1∶3,淀积时间为10-15分钟;步骤3)中对靶反应磁控溅射工艺条件可以为:抽本底真空度至(2-3)×10-4Pa,工作气体为氧气和氩气,气流量比分别为49.2ml/min:0.8ml/min~48.8:1.2ml/min,溅射时的工作气压为1-2Pa,所用功率为200-220W,溅射时间为3-10分钟;步骤4)之后还可以包括在氧化钒薄膜两端溅射金属电极的步骤。As a preferred embodiment, step 2) in the above preparation method can adopt the following steps: first place the processed silicon substrate in a vacuum chamber, the temperature of the substrate is 130°C-160°C, the working gas is NO 2 and SiH 4 , The working gas pressure is 3-5Pa, the gas flow ratio is 1:2 to 1:3, and the deposition time is 10-15 minutes; the process condition of magnetron sputtering for target reaction in step 3) can be: background vacuum degree To (2-3)×10 -4 Pa, the working gas is oxygen and argon, the gas flow ratio is 49.2ml/min: 0.8ml/min~48.8: 1.2ml/min, the working pressure during sputtering is 1 -2Pa, the power used is 200-220W, and the sputtering time is 3-10 minutes; after step 4), a step of sputtering metal electrodes at both ends of the vanadium oxide film may also be included.
本发明的技术效果如下:Technical effect of the present invention is as follows:
1)在本发明中,氧化钒薄膜的制备不需要加衬底温度,经过低温退火(最低温度可为300℃),便可以使氧化钒薄膜变为具有较好相变特性的二氧化钒纳米薄膜,提高了与MEMS工艺的兼容性。1) In the present invention, the preparation of the vanadium oxide film does not need to increase the substrate temperature, and after low-temperature annealing (the lowest temperature can be 300 ° C), the vanadium oxide film can be changed into a vanadium dioxide nanometer with good phase transition characteristics. Thin films, improving compatibility with MEMS processes.
2)由本发明在二氧化硅/硅基片或氮化硅/硅基片上制备的具有相变特性二氧化钒纳米薄膜的相变温度降低为45℃,低于二氧化钒的相变温度68℃。2) The phase transition temperature of the vanadium dioxide nano-film with phase transition properties prepared on silicon dioxide/silicon substrate or silicon nitride/silicon substrate by the present invention is reduced to 45°C, which is lower than the phase transition temperature of vanadium dioxide by 68°C. ℃.
附图说明Description of drawings
图1为本发明硅基片上氧化钒薄膜的结构示意图。图中:1为硅基片,2为二氧化硅层,3为氧化钒薄膜层;Fig. 1 is a schematic structural view of a vanadium oxide thin film on a silicon substrate of the present invention. In the figure: 1 is a silicon substrate, 2 is a silicon dioxide layer, and 3 is a vanadium oxide film layer;
图2为实施例1所制得的低温氧化二氧化钒薄膜的电阻随温度变化的曲线图;Fig. 2 is the graph that the resistance of the low-temperature oxidized vanadium dioxide thin film that
图3为300℃低温氧化退火后二氧化钒薄膜的X射线衍射(XRD)图谱;Fig. 3 is the X-ray diffraction (XRD) pattern of vanadium dioxide film after 300 ℃ of low-temperature oxidation annealings;
图4为300℃低温氧化退火后二氧化钒薄膜的表面形貌;Figure 4 is the surface morphology of the vanadium dioxide film after low temperature oxidation annealing at 300°C;
图5为实施例2所制得的低温氧化二氧化钒薄膜的电阻随温度变化的曲线图;Fig. 5 is the graph that the resistance of the low-temperature oxidized vanadium dioxide thin film that
图6为实施例3所制得的低温氧化二氧化钒薄膜的电阻随温度变化的曲线图。FIG. 6 is a graph showing the variation of the resistance of the low-temperature vanadium dioxide film prepared in Example 3 as a function of temperature.
具体实施方式Detailed ways
本发明提供一种在硅基片上制作具有相变特性二氧化钒纳米薄膜的制备方法,主要包括下列步骤:The invention provides a method for preparing a vanadium dioxide nano-film with phase transition properties on a silicon substrate, which mainly includes the following steps:
1)硅基片表面清洗,采用标准半导体清洗工艺;1) Silicon substrate surface cleaning, using standard semiconductor cleaning process;
2)采用等离子体增强化学气相沉积方法在硅基片上生长二氧化硅薄膜;2) growing a silicon dioxide film on a silicon substrate by plasma-enhanced chemical vapor deposition;
3)采用对靶反应磁控溅射法,在上述二氧化硅/硅基片上沉积氧化钒薄膜,对靶反应磁控溅射工艺条件为:本底真空度为(2-3)×10-4Pa,溅射时的工作气压为1-2Pa,所用功率为200-220W,溅射时间3-10分钟,Ar、O2气体流量分别为49ml/min和1ml/min;3) The vanadium oxide thin film is deposited on the silicon dioxide/silicon substrate by using the reactive magnetron sputtering method to the target, and the process condition of the reactive magnetron sputtering to the target is: the background vacuum degree is (2-3)×10 − 4 Pa, the working pressure during sputtering is 1-2Pa, the power used is 200-220W, the sputtering time is 3-10 minutes, and the gas flow rates of Ar and O2 are 49ml/min and 1ml/min respectively;
4)制得的氧化钒/二氧化硅/硅复合薄膜置于已达到所需退火温度的退火装置中,在空气气氛下进行退火,退火温度为300-400℃,退火时间为1-3小时,从而得到性能良好的具有相变特性的二氧化钒薄膜;4) The prepared vanadium oxide/silicon dioxide/silicon composite film is placed in an annealing device that has reached the required annealing temperature, and annealed in an air atmosphere. The annealing temperature is 300-400 ° C, and the annealing time is 1-3 hours , so as to obtain a vanadium dioxide film with good performance and phase change characteristics;
5)在氧化钒薄膜两端溅射金属电极。5) Sputtering metal electrodes on both ends of the vanadium oxide film.
下面结合实施例和附图对本发明做进一步详述。The present invention will be described in further detail below in conjunction with the embodiments and accompanying drawings.
实施例1Example 1
1)采用厚度为380-420μm,长2.5cm,宽1cm,p型(100)单面抛光单晶硅片作为基片,对硅基片表面进行如下处理:取质量浓度为98%的H2SO4 30毫升和质量浓度为30%的H2O2 10毫升配成清洗液,将硅片放入清洗液中,在室温条件下浸泡,放置40分钟,除去了表面的有机污染物;将硅片从混合酸中取出后用去离子水冲洗3遍,再放入体积为30毫升、质量浓度为20%的HF溶液中浸泡30秒除去表面的氧化层;再用去离子水冲洗干净;将硅片放在体积为20毫升的丙酮溶液中超声清洗5分钟;将硅片取出,再放入体积为20毫升的无水乙醇中超声清洗5分钟;取出硅片烘干备用;采用等离子体化学气相沉积法(PECVD)方法在硅基片上先沉积一层二氧化硅薄膜,具体做法是:先将处理好的硅置于真空室,抽本底真空至4.5×10-1Pa,工作气体压强为4.3Pa,基片温度为150℃,工作气体为NO2和SiH4,气流量分别为12ml/min和38ml/min,淀积时间为10分钟,得到的SiO2层厚度为1000;采用直流对靶反应磁控溅射法,在上述附有二氧化硅的硅基片制备氧化钒薄膜,质量纯度为99.9%的金属钒作为靶材,氩气与氧气的质量纯度分别为99.999%和99.995%,对靶反应磁控溅射的具体步骤为:抽本底真空至2×10-4Pa,氧气和氩气流量比为49ml/min:1ml/min,溅射气压1Pa,溅射功率为210W,溅射时间5分钟,基片温度为室温,得到长度为2cm,宽度为0.2cm的氧化钒薄膜层;将上述氧化钒薄膜置于退火装置中,在300℃下保持1小时;对上述二氧化钒薄膜进行电阻温度特性测试,温度范围为:20-80℃,电阻温度曲线如图2所示,二氧化钒薄膜的相变温度为45℃,相变幅度大于1个数量级。1) Using a p-type (100) single-sided polished single-crystal silicon wafer with a thickness of 380-420 μm, a length of 2.5 cm, and a width of 1 cm as a substrate, the surface of the silicon substrate is treated as follows: take H2 with a mass concentration of 98% 30 milliliters of SO 4 and 10 milliliters of H 2 O 2 with a mass concentration of 30% were used as a cleaning solution, and the silicon wafer was put into the cleaning solution, soaked at room temperature, and left for 40 minutes to remove organic pollutants on the surface; After the silicon chip is taken out from the mixed acid, it is rinsed with deionized water for 3 times, and then immersed in a HF solution with a volume of 30 ml and a mass concentration of 20% for 30 seconds to remove the oxide layer on the surface; and then rinsed with deionized water; Place the silicon wafer in an acetone solution with a volume of 20 ml and ultrasonically clean it for 5 minutes; take out the silicon wafer and put it into anhydrous ethanol with a volume of 20 ml for ultrasonic cleaning for 5 minutes; take out the silicon wafer and dry it for later use; Chemical vapor deposition (PECVD) method first deposits a layer of silicon dioxide film on the silicon substrate. The specific method is: first place the processed silicon in a vacuum chamber, pump the background vacuum to 4.5×10 -1 Pa, and use the working gas The pressure is 4.3Pa, the substrate temperature is 150°C, the working gas is NO 2 and SiH 4 , the gas flow is 12ml/min and 38ml/min respectively, the deposition time is 10 minutes, and the obtained SiO 2 layer has a thickness of 1000 Ȧ; The vanadium oxide thin film is prepared on the above-mentioned silicon substrate with silicon dioxide by DC reactive magnetron sputtering method, and the metal vanadium with a mass purity of 99.9% is used as the target material, and the mass purity of argon and oxygen are respectively 99.999% And 99.995%, the specific steps of magnetron sputtering for the target reaction are: pump the background vacuum to 2×10 -4 Pa, the flow ratio of oxygen and argon is 49ml/min: 1ml/min, the sputtering pressure is 1Pa, sputtering The power is 210W, the sputtering time is 5 minutes, the substrate temperature is room temperature, and a vanadium oxide film layer with a length of 2 cm and a width of 0.2 cm is obtained; the above vanadium oxide film is placed in an annealing device and kept at 300 ° C for 1 hour; The above-mentioned vanadium dioxide film was tested for resistance-temperature characteristics. The temperature range is 20-80°C. The resistance-temperature curve is shown in Figure 2. The phase transition temperature of the vanadium dioxide film is 45°C, and the phase transition range is greater than 1 order of magnitude.
本实施例中,采用等离子体化学气相沉积法(PECVD)方法在硅基片上沉积二氧化硅薄膜这一工艺步骤,采用常规的工艺条件即可,工作气体压强及流量比、硅基片温度、淀积时间等工艺条件可以有所变化。In this embodiment, the process step of depositing a silicon dioxide film on a silicon substrate by using the plasma chemical vapor deposition (PECVD) method can adopt conventional process conditions, such as working gas pressure and flow ratio, silicon substrate temperature, Process conditions such as deposition time may vary.
实施例2Example 2
本实施例与实施例1相似,不同之处在于:步骤4中氧化钒退火的工艺参数中退火温度为320℃,退火时间为3小时,得到的二氧化钒薄膜的相变温度为43℃,相变幅度大于1个数量级;电阻温度曲线如图5所示。This embodiment is similar to
实施例3Example 3
本实施例与实施例1相似,不同之处在于:步骤4中氧化钒退火的工艺参数中退火温度为360℃,退火时间为1小时,得到的二氧化钒薄膜的相变温度为40℃,相变幅度大于1个数量级;电阻温度曲线如图6所示。This embodiment is similar to
实施例4Example 4
本实施例与实施例1的不同之处在于:实施例1是在经过清洗处理的硅基片上先沉积一层二氧化硅薄膜,而本实施例则是采用等离子体化学气相沉积法(PECVD)方法在硅基片上先沉积一层氮化硅薄膜,具体做法是:先将处理好的硅置于真空室,抽本底真空至4.5×10-1Pa,工作气体压强为4.3Pa,基片温度为150℃,工作气体为NH3和SiH4,气流量分别为14ml/min和40ml/min,淀积时间为15分钟,得到的氮化硅层厚度为1000.其他工艺条件与实施例1相似。The difference between this embodiment and
实施例5Example 5
本实施例与实施例4相似,不同之处在于:步骤4中氧化钒退火的工艺参数中退火温度为320℃,退火时间为3小时。This embodiment is similar to embodiment 4, except that: the annealing temperature is 320° C., and the annealing time is 3 hours in the process parameters of vanadium oxide annealing in step 4.
实施例6Example 6
本实施例与实施例4相似,不同之处在于:步骤4中氧化钒退火的工艺参数中退火温度为360℃,退火时间为1小时。This embodiment is similar to Embodiment 4, except that the annealing temperature is 360° C. and the annealing time is 1 hour in the process parameters of vanadium oxide annealing in step 4.
发明人对本方法制备的氧化钒薄膜进行了薄膜成分、表面形貌、热学性能分析。制作的薄膜结构剖视图,如图1所示;沉积的氧化钒薄膜经退火后在25~80℃的温度变化范围内进行了电阻值测量,如图2所示;退火后氧化钒薄膜的结晶取向与成分分析,如图3所示,薄膜以二氧化钒为主;退火后氧化钒薄膜的场发射扫描电子显微镜照片,如图4所示,通过照片可以看出颗粒大小为20-40nm;图5与图6分别为320℃与360℃退火温度下,得到的二氧化钒薄膜的电阻与温度的关系曲线。The inventors analyzed the composition, surface morphology and thermal properties of the vanadium oxide film prepared by the method. The cross-sectional view of the produced film structure is shown in Figure 1; the resistance value of the deposited vanadium oxide film was measured in the temperature range of 25-80 °C after annealing, as shown in Figure 2; the crystallographic orientation of the vanadium oxide film after annealing And component analysis, as shown in Figure 3, the film is dominated by vanadium dioxide; the field emission scanning electron microscope photo of the vanadium oxide film after annealing, as shown in Figure 4, it can be seen from the photo that the particle size is 20-40nm; Figure 5 and Figure 6 are the relationship curves of the resistance and temperature of the obtained vanadium dioxide film at the annealing temperature of 320°C and 360°C respectively.
对比图2、图5、图6可看出,经300℃、320℃与360℃退火后,氧化钒薄膜均获得了具有相变特性的二氧化钒纳米薄膜,这说明采用直流对靶磁控溅射方法,在室温条件下制备氧化钒薄膜,经过300℃低温退火可以获得高性能的相变特性的二氧化钒纳米薄膜,与MEMS工艺的兼容性提高。Comparing Figure 2, Figure 5, and Figure 6, it can be seen that after annealing at 300°C, 320°C, and 360°C, vanadium oxide films have obtained vanadium dioxide nano-films with phase transition characteristics, which shows that the use of direct current to the target magnetron The vanadium oxide thin film is prepared at room temperature by the sputtering method, and the vanadium dioxide nano thin film with high-performance phase change characteristics can be obtained after low-temperature annealing at 300°C, and the compatibility with the MEMS process is improved.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100599357A CN101174671A (en) | 2007-10-18 | 2007-10-18 | Preparation method of vanadium dioxide nano film with phase change characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100599357A CN101174671A (en) | 2007-10-18 | 2007-10-18 | Preparation method of vanadium dioxide nano film with phase change characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101174671A true CN101174671A (en) | 2008-05-07 |
Family
ID=39423019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100599357A Pending CN101174671A (en) | 2007-10-18 | 2007-10-18 | Preparation method of vanadium dioxide nano film with phase change characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101174671A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101560638B (en) * | 2009-05-27 | 2010-12-01 | 天津大学 | Method for preparing vanadium oxide film by metal oxidation method |
CN101950092A (en) * | 2010-09-08 | 2011-01-19 | 天津大学 | Terahertz wave band vanadium oxide optical switch and preparation method thereof |
CN102181827A (en) * | 2011-03-31 | 2011-09-14 | 天津大学 | Method for preparing nano vanadium dioxide film with phase change property on metal substrate |
CN102212782A (en) * | 2011-05-24 | 2011-10-12 | 天津大学 | Quick thermal treatment method for preparing vanadium dioxide film |
CN101746712B (en) * | 2009-12-11 | 2012-07-04 | 华东师范大学 | Composite VO2 flake and porous nanostructure phase change material on silicon wafer and its preparation method |
CN103745914A (en) * | 2013-12-24 | 2014-04-23 | 上海新傲科技股份有限公司 | Growth method of strained layer and substrate with strained layer |
CN103981488A (en) * | 2014-05-23 | 2014-08-13 | 天津大学 | Method for preparing vanadium oxide nanoparticle array by rapid heat treatment |
CN104099563A (en) * | 2013-04-03 | 2014-10-15 | 中国科学院上海硅酸盐研究所 | Method for preparing vanadium dioxide film by using magnetron sputtering process |
CN104213087A (en) * | 2013-10-17 | 2014-12-17 | 常州博锐恒电子科技有限公司 | Magnetron sputtering preparation method of vanadium oxide |
CN104928641A (en) * | 2015-07-15 | 2015-09-23 | 哈尔滨工业大学 | Method for preparing monox infrared permeability increasing vanadium oxide film |
CN105369200A (en) * | 2015-10-13 | 2016-03-02 | 西安交通大学 | A kind of preparation method of polycrystalline porous VO2 film |
WO2017045398A1 (en) * | 2015-09-16 | 2017-03-23 | 深圳大学 | Low-temperature deposition method for vanadium dioxide thin film |
CN106935703A (en) * | 2015-12-08 | 2017-07-07 | 科洛斯巴股份有限公司 | Regulation interface layer forms two ends memory |
CN109457228A (en) * | 2018-12-18 | 2019-03-12 | 深圳先进技术研究院 | A kind of temperature automatically controlled smart membranes and preparation method thereof |
CN109666909A (en) * | 2018-12-18 | 2019-04-23 | 深圳先进技术研究院 | A kind of method that low temperature buffer layer technology prepares flexible vanadium oxide composite film |
WO2020125440A1 (en) * | 2018-12-18 | 2020-06-25 | 深圳先进技术研究院 | Method for preparing flexible vanadium oxide thin film by means of two-step method |
CN113755795A (en) * | 2021-09-13 | 2021-12-07 | 电子科技大学 | Monoclinic phase vanadium dioxide film and preparation method thereof |
CN117026193A (en) * | 2023-09-07 | 2023-11-10 | 无锡尚积半导体科技有限公司 | High-phase-change-performance vanadium dioxide film and preparation method thereof |
-
2007
- 2007-10-18 CN CNA2007100599357A patent/CN101174671A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101560638B (en) * | 2009-05-27 | 2010-12-01 | 天津大学 | Method for preparing vanadium oxide film by metal oxidation method |
CN101746712B (en) * | 2009-12-11 | 2012-07-04 | 华东师范大学 | Composite VO2 flake and porous nanostructure phase change material on silicon wafer and its preparation method |
CN101950092A (en) * | 2010-09-08 | 2011-01-19 | 天津大学 | Terahertz wave band vanadium oxide optical switch and preparation method thereof |
CN102181827A (en) * | 2011-03-31 | 2011-09-14 | 天津大学 | Method for preparing nano vanadium dioxide film with phase change property on metal substrate |
CN102212782A (en) * | 2011-05-24 | 2011-10-12 | 天津大学 | Quick thermal treatment method for preparing vanadium dioxide film |
CN104099563A (en) * | 2013-04-03 | 2014-10-15 | 中国科学院上海硅酸盐研究所 | Method for preparing vanadium dioxide film by using magnetron sputtering process |
CN104213087A (en) * | 2013-10-17 | 2014-12-17 | 常州博锐恒电子科技有限公司 | Magnetron sputtering preparation method of vanadium oxide |
CN103745914A (en) * | 2013-12-24 | 2014-04-23 | 上海新傲科技股份有限公司 | Growth method of strained layer and substrate with strained layer |
CN103981488A (en) * | 2014-05-23 | 2014-08-13 | 天津大学 | Method for preparing vanadium oxide nanoparticle array by rapid heat treatment |
CN104928641A (en) * | 2015-07-15 | 2015-09-23 | 哈尔滨工业大学 | Method for preparing monox infrared permeability increasing vanadium oxide film |
WO2017045398A1 (en) * | 2015-09-16 | 2017-03-23 | 深圳大学 | Low-temperature deposition method for vanadium dioxide thin film |
CN105369200A (en) * | 2015-10-13 | 2016-03-02 | 西安交通大学 | A kind of preparation method of polycrystalline porous VO2 film |
CN106935703A (en) * | 2015-12-08 | 2017-07-07 | 科洛斯巴股份有限公司 | Regulation interface layer forms two ends memory |
CN106935703B (en) * | 2015-12-08 | 2020-01-17 | 科洛斯巴股份有限公司 | Adjusting interface layer to form two-terminal memory |
US10693062B2 (en) | 2015-12-08 | 2020-06-23 | Crossbar, Inc. | Regulating interface layer formation for two-terminal memory |
CN109457228A (en) * | 2018-12-18 | 2019-03-12 | 深圳先进技术研究院 | A kind of temperature automatically controlled smart membranes and preparation method thereof |
CN109666909A (en) * | 2018-12-18 | 2019-04-23 | 深圳先进技术研究院 | A kind of method that low temperature buffer layer technology prepares flexible vanadium oxide composite film |
WO2020125440A1 (en) * | 2018-12-18 | 2020-06-25 | 深圳先进技术研究院 | Method for preparing flexible vanadium oxide thin film by means of two-step method |
WO2020125438A1 (en) * | 2018-12-18 | 2020-06-25 | 深圳先进技术研究院 | Vanadium oxide composite film and preparation method therefor |
WO2020125439A1 (en) * | 2018-12-18 | 2020-06-25 | 深圳先进技术研究院 | Method for preparing flexible vanadium oxide composite thin film by means of low-temperature buffer layer technology |
CN109457228B (en) * | 2018-12-18 | 2022-07-08 | 深圳先进技术研究院 | Automatic temperature control intelligent film and preparation method thereof |
CN113755795A (en) * | 2021-09-13 | 2021-12-07 | 电子科技大学 | Monoclinic phase vanadium dioxide film and preparation method thereof |
CN117026193A (en) * | 2023-09-07 | 2023-11-10 | 无锡尚积半导体科技有限公司 | High-phase-change-performance vanadium dioxide film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101174671A (en) | Preparation method of vanadium dioxide nano film with phase change characteristics | |
Jeong et al. | Atomic layer deposition of a SnO 2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3% | |
CN102227013B (en) | A kind of preparation method of self-supporting multiferroic composite film | |
CN102557728B (en) | Method for preparing graphene film and graphene composite carbon film | |
CN101942696A (en) | Si-base reversed extension 3C-SiC monocrystal film and preparation method thereof | |
CN106637404A (en) | Method for growing large-area mono-crystal vanadium dioxide thin film by utilizing tubular furnace | |
CN109449214A (en) | A kind of gallium oxide semiconductor Schottky diode and preparation method thereof | |
CN102181827A (en) | Method for preparing nano vanadium dioxide film with phase change property on metal substrate | |
CN1308482C (en) | Process for preparing vanadium oxide film capable of regulating phase change temp. | |
CN102634758A (en) | High-transmittivity vanadium-based multi-layer superlattice film and preparation method thereof | |
CN106591781A (en) | Improvement method for interface dead layer of ultrathin lanthanum-strontium-manganese oxide film | |
CN114999895B (en) | Cerium doped hafnium oxide film with iron resistance electric coupling characteristic and preparation method thereof | |
CN104181206A (en) | Preparation method of gold-doped porous silicon/vanadium oxide nanorod gas sensitive material | |
CN103194798B (en) | Ferromagnetic polycrystal film of a kind of transient metal doped zno-based and preparation method thereof | |
CN105568265B (en) | Highly doped BaTiO3:Many ferroelectric material films of Fe and preparation method thereof | |
CN109234680B (en) | A preparation method of an ultra-thin layered organic molecular ferroelectric film and the application of the ferroelectric film | |
CN114438449B (en) | Metal-assisted gallium oxide crystalline film and preparation method thereof | |
CN102386281B (en) | Manufacturing method for zinc oxide (ZnO)/nanocrystalline-diamond-thin-film-based hetero junction photoelectric detector | |
US7994602B2 (en) | Titanium dioxide thin film systems | |
CN116240493A (en) | Method for preparing amorphous La-Mn-O film by direct-current magnetron sputtering | |
CN103572370B (en) | A kind of ytterbium acid bismuth single crystal epitaxial film and preparation method thereof | |
CN101148781B (en) | A kind of preparation method of zinc oxide ferroelectric film | |
CN106702327B (en) | A Method for Optimizing the Electrical Transport Properties of Ultra-Thin Lanthanum Nickel Oxide Thin Films | |
CN110819956B (en) | A method for improving the biocompatibility of Ag micro-nano thin films and the application of the membrane | |
CN115954273B (en) | Gas-phase iodine doped metal oxide thin film transistor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080507 |