[go: up one dir, main page]

CN101174668A - Semiconductor light emitting element and method for manufacturing the same - Google Patents

Semiconductor light emitting element and method for manufacturing the same Download PDF

Info

Publication number
CN101174668A
CN101174668A CNA2007101970236A CN200710197023A CN101174668A CN 101174668 A CN101174668 A CN 101174668A CN A2007101970236 A CNA2007101970236 A CN A2007101970236A CN 200710197023 A CN200710197023 A CN 200710197023A CN 101174668 A CN101174668 A CN 101174668A
Authority
CN
China
Prior art keywords
semiconductor light
light emitting
fluorescent material
light
emitting stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101970236A
Other languages
Chinese (zh)
Other versions
CN100573947C (en
Inventor
谢明勋
蔡嘉芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CNB2007101970236A priority Critical patent/CN100573947C/en
Publication of CN101174668A publication Critical patent/CN101174668A/en
Application granted granted Critical
Publication of CN100573947C publication Critical patent/CN100573947C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

The invention discloses a semiconductor light-emitting component and a manufacturing method thereof, the semiconductor light-emitting component is provided with an opaque substrate, a combination structure formed on the opaque substrate, a semiconductor light-emitting laminated layer formed on the combination structure, and a fluorescent material structure formed on the semiconductor light-emitting laminated layer, and the semiconductor light-emitting laminated layer is separated from an original growth substrate. The method for manufacturing the semiconductor light-emitting element comprises the steps of separating a semiconductor light-emitting laminated layer from an original growth substrate, combining the semiconductor light-emitting laminated layer on an opaque substrate, and forming a fluorescent material structure above the semiconductor light-emitting laminated layer.

Description

半导体发光元件及其制造方法 Semiconductor light emitting element and manufacturing method thereof

本申请是申请日为2004年9月10日且发明名称为“半导体发光元件及其制造方法”的中国专利申请No.200410077053.X的分案申请。This application is a divisional application of Chinese Patent Application No. 200410077053.X with a filing date of September 10, 2004 and an invention title of "Semiconductor Light-Emitting Element and Manufacturing Method Thereof".

技术领域technical field

本发明涉及一种半导体发光元件,特别是涉及一种具有荧光材料结构的半导体发光元件。The invention relates to a semiconductor light-emitting element, in particular to a semiconductor light-emitting element with a fluorescent material structure.

背景技术Background technique

半导体发光元件,诸如:发光二极管(Light Emitting Diode)、有机发光二极管(Organic Light Emitting Diode)以及激光二极管(Laser Diode)等,具有体积小、发光效率佳、寿命长、反应速度快、可靠性高及单色性佳等优点,已广泛应用于各类电子装置、汽车工业、广告看板及交通显示号志上,其中,发光二极管(LED;Light Emitting Diode)更由于近年来全彩技术的突破,而有逐渐取代传统照明光源的趋势。Semiconductor light-emitting elements, such as: Light Emitting Diode (Light Emitting Diode), Organic Light Emitting Diode (Organic Light Emitting Diode) and Laser Diode (Laser Diode), etc., have small size, good luminous efficiency, long life, fast response and high reliability. And the advantages of good monochromaticity have been widely used in various electronic devices, automobile industry, advertising billboards and traffic display signs. And there is a tendency to gradually replace traditional lighting sources.

传统上,为了形成白光多使用蓝光发光二极管晶粒及荧光材料(如:荧光粉体等)的组合,藉由蓝光激发荧光材料以产生黄光或绿光及红光,再由蓝光、黄光或绿光及红光混合以形成白光。现今的白光发光二极管一般使用蓝宝石(sapphire;Al2O3)、SiC或其它透明基板作为基板,由于光线会从透明基板向外射出,为了使所有光线均可以经由荧光材料(如荧光粉体)的转换而形成所需要的色彩,荧光材料必须在发光二极管晶片(Wafer)切割(Dicing)为晶粒(Chip)后,再于封装(Package)工艺时覆盖于整个发光二极管晶粒上,以避免未经荧光材料转换的光线经由透明基板射出而影响整体发光二极管所发出光线的色彩。Traditionally, in order to form white light, a combination of blue light-emitting diode crystal grains and fluorescent materials (such as: phosphor powder, etc.) is often used. The fluorescent material is excited by blue light to produce yellow light or green light and red light, and then blue light, yellow light Or green and red light mixed to form white light. Today's white light-emitting diodes generally use sapphire (Al 2 O 3 ), SiC or other transparent substrates as the substrate. Since the light will be emitted from the transparent substrate, in order to make all the light pass through the fluorescent material (such as phosphor powder) To form the required color, the fluorescent material must be cut into chips after the light-emitting diode wafer (Wafer) is cut (Dicing), and then covered on the entire light-emitting diode chip during the packaging process to avoid The light that is not converted by the fluorescent material is emitted through the transparent substrate to affect the color of the light emitted by the overall LED.

此外,当基板为透明时,荧光材料除需要覆盖于透明基板或发光二极管晶粒的上方外尚需要覆盖于透明基板或发光二极管晶粒的四周,然而要使得荧光材料均匀地覆盖于透明基板或发光二极管晶粒的四周并不容易,往往造成透明基板或发光二极管晶粒上方及四周的荧光材料的厚度分布不均,当发光二极管所产生的光线通过厚度不均的荧光材料时,厚度较厚处会吸收较多的光线,厚度较薄处则会吸收较少的光线,且经由不同厚度的荧光材料所转换的光线色彩亦将不同,因此造成发光二极管所产生的光线于不同方向上有不同的色彩。如美国专利第6,642,652号所揭示者为一种具有荧光材料结构的覆晶式(Flip-Chip)半导体发光元件,为使得荧光材料可以均匀地覆盖于半导体发光元件的上方及四周,而使用复杂的制造方法,如:电泳法(electrophoresis)等,然而藉由复杂的制造方法往往造成制造成本的增加以及成品率下降,并不能有效且简单地解决荧光材料厚度不均的问题。In addition, when the substrate is transparent, the fluorescent material needs to cover the transparent substrate or the LED crystal grains in addition to the top of the transparent substrate or the LED crystal grains. However, the fluorescent material should be evenly covered on the transparent substrate or the It is not easy to surround the LED crystal grains, which often causes uneven thickness distribution of the fluorescent material above and around the transparent substrate or LED crystal grains. When the light generated by the LED passes through the fluorescent material with uneven thickness, the thickness is thicker. More light will be absorbed at the thinner part, and less light will be absorbed at the thinner part, and the color of the light converted by the fluorescent material with different thickness will be different, so the light generated by the LED will be different in different directions. color. As disclosed in U.S. Patent No. 6,642,652, it is a flip-chip (Flip-Chip) semiconductor light-emitting element with a fluorescent material structure. In order to make the fluorescent material evenly cover the top and surroundings of the semiconductor light-emitting element, a complicated method is used. Manufacturing methods, such as electrophoresis, etc., however, often result in increased manufacturing costs and reduced yields due to complex manufacturing methods, which cannot effectively and simply solve the problem of uneven thickness of fluorescent materials.

检视以上的问题点,本发明提出一种半导体发光元件及其制造方法,可以于晶粒封装前即可以于晶片上形成荧光材料层,且可以避免光线自透明基板射出以及因荧光材料覆盖不均所造成的色彩差异。In view of the above problems, the present invention proposes a semiconductor light-emitting element and its manufacturing method, which can form a fluorescent material layer on the wafer before die packaging, and can avoid light emission from the transparent substrate and uneven coverage due to the fluorescent material resulting color differences.

发明内容Contents of the invention

本发明的半导体发光元件包括有一不透光基板;一结合结构;至少一个半导体发光叠层,藉由结合结构而与不透光基板结合,并可以发出一原始光线,且半导体发光叠层分离自一原始成长基板;及一荧光材料结构,设置于半导体发光叠层上方并大体上符合半导体发光叠层的形状,且荧光材料结构包括一荧光材料,荧光材料可以吸收原始光线并产生一转换后光线。The semiconductor light-emitting element of the present invention includes an opaque substrate; a bonding structure; at least one semiconductor light-emitting laminate is combined with the opaque substrate through the bonding structure, and can emit an original light, and the semiconductor light-emitting laminate is separated from An original growth substrate; and a fluorescent material structure disposed above the semiconductor light-emitting stack and substantially conforming to the shape of the semiconductor light-emitting stack, and the fluorescent material structure includes a fluorescent material that can absorb the original light and generate a converted light .

本发明的半导体发光元件中的结合结构构包括有一第一中介层、一粘结层及/或第二中介层,利用上述结构可以提高半导体发光叠层与不透光基板间的结合力,或者使半导体发光叠层与不透光基板间形成电连接。The bonding structure in the semiconductor light-emitting element of the present invention includes a first intermediary layer, an adhesive layer and/or a second intermediary layer, and the above-mentioned structure can improve the bonding force between the semiconductor light-emitting stack and the opaque substrate, or An electrical connection is formed between the semiconductor light emitting stack and the light-proof substrate.

本发明的荧光材料结构中包括有荧光材料,此荧光材料可以直接形成于半导体发光叠层上,或利用一胶合剂而形成于半导体发光叠层上,并且此荧光材料可以吸收由半导体发光叠层所产生的原始光线并将其转换为转换后光线。The fluorescent material structure of the present invention includes a fluorescent material, which can be directly formed on the semiconductor light-emitting stack, or formed on the semiconductor light-emitting stack by using an adhesive, and this fluorescent material can absorb light emitted from the semiconductor light-emitting stack. The resulting original ray is converted into a converted ray.

本发明的半导体发光元件的制造方法包括有分离一半导体发光叠层自一原始成长基板;结合半导体发光叠层至一不透光基板上;及形成一荧光材料结构于半导体发光叠层上方。The manufacturing method of the semiconductor light-emitting element of the present invention includes separating a semiconductor light-emitting stack from an original growth substrate; combining the semiconductor light-emitting stack on an opaque substrate; and forming a fluorescent material structure above the semiconductor light-emitting stack.

附图说明Description of drawings

图1a~1c为显示一本发明的优选实施例的半导体发光元件的结构示意图;及Figures 1a-1c are schematic structural views showing a semiconductor light-emitting element according to a preferred embodiment of the present invention; and

图2a及2b为显示一本发明另一优选实施例的半导体发装置的结构示意图。2a and 2b are schematic diagrams showing the structure of a semiconductor device according to another preferred embodiment of the present invention.

简单符号说明simple notation

10~半导体发光元件;11~不透光基板;12~结合结构;1201~第一中介层;1202~粘结层;1203~第二中介层;13~半导体发光叠层;1301~电接点;1302~沟槽;14~荧光材料结构;1401~荧光材料;15~保护结构;1501~光学层;1502~光学层;及16~反射层。10~semiconductor light emitting element; 11~opaque substrate; 12~bonding structure; 1201~first intermediary layer; 1202~bonding layer; 1203~second intermediary layer; 13~semiconductor light emitting stack; 1301~electric contact; 1302~groove; 14~fluorescent material structure; 1401~fluorescent material; 15~protective structure; 1501~optical layer; 1502~optical layer; and 16~reflective layer.

具体实施方式Detailed ways

为使贵审查委员更了解本发明的特点,以下列举数个优选实施例,配合图式,详述如下:In order to make your examining committee members better understand the characteristics of the present invention, several preferred embodiments are listed below, which are described in detail as follows in conjunction with the drawings:

第一实施例first embodiment

图1a~1c为显示本发明一优选实施例中半导体发光元件的结构示意图。本发明所揭示的半导体发光元件10包括有:不透光基板11、结合结构12、半导体发光叠层13以及荧光材料结构14。其中半导体发光叠层13可以产生原始光线,且因为原始光线不会穿透不透光基板11而使得半导体发光元件10的出光区大都集中于不透光基板11的相反侧,亦即半导体发光元件10形成有荧光材料结构14之侧。当原始光线射入荧光材料结构14时,荧光材料结构14中的荧光材料1401将吸收原始光线并产生转换后光线,优选地,原始光线与转换后光线混合后可以产生白光。此外,本发明的半导体发光叠层13可以为垂直结构(电接点位于相异侧)亦可以为水平结构(电接点位于同一侧)。1a-1c are schematic diagrams showing the structure of a semiconductor light emitting element in a preferred embodiment of the present invention. The semiconductor light emitting device 10 disclosed in the present invention includes: an opaque substrate 11 , a bonding structure 12 , a semiconductor light emitting stack 13 and a fluorescent material structure 14 . Among them, the semiconductor light-emitting stack 13 can generate original light, and because the original light does not penetrate the opaque substrate 11, most of the light-emitting regions of the semiconductor light-emitting element 10 are concentrated on the opposite side of the opaque substrate 11, that is, the semiconductor light-emitting element 10 is formed with a side of a fluorescent material structure 14 . When the original light enters the fluorescent material structure 14, the fluorescent material 1401 in the fluorescent material structure 14 will absorb the original light and generate converted light. Preferably, the original light and the converted light can be mixed to generate white light. In addition, the semiconductor light emitting stack 13 of the present invention can be a vertical structure (electrical contacts are located on different sides) or a horizontal structure (electrical contacts are located on the same side).

不透光基板11的材料可以为半导体基板、金属基板、上述材料的组合或其它不透光材料,优选地,不透光基板11的材料可以为Si、GaN/Si、GaAs或其组合,此外,如图1b所示,不透光基板11可以为一晶片(Wafer),而晶片11上可以形成沟槽1302以分隔出二个以上的半导体发光叠层13,优选地,半导体发光叠层13可以于荧光材料结构14形成后再进行晶粒切割(chipdicing)的步骤。The material of the opaque substrate 11 can be a semiconductor substrate, a metal substrate, a combination of the above materials or other opaque materials, preferably, the material of the opaque substrate 11 can be Si, GaN/Si, GaAs or a combination thereof, in addition 1b, the opaque substrate 11 can be a wafer (Wafer), and grooves 1302 can be formed on the wafer 11 to separate more than two semiconductor light emitting stacks 13, preferably, the semiconductor light emitting stacks 13 The step of chip dicing can be performed after the fluorescent material structure 14 is formed.

如第1c图所示,不透光基板11亦可以为包括有透明基板1101及反射层16。利用反射层16反射射向透明基板1101的光线使得原始光线或/及转换后光线皆能朝向荧光材料14的方向前进,并且避免原始光线或/及转换后光线由透明基板1101处射出。其中,透明基板1101的材料可以为GaP、SiC、ZnO、GaAsP、AlGaAs、Al2O3、玻璃、上述材料的组合或其它可替代材料。As shown in FIG. 1 c , the opaque substrate 11 may also include a transparent substrate 1101 and a reflective layer 16 . Using the reflective layer 16 to reflect the light directed towards the transparent substrate 1101 allows the original light or/and the converted light to travel toward the direction of the fluorescent material 14 , and prevents the original light and/or the converted light from being emitted from the transparent substrate 1101 . Wherein, the material of the transparent substrate 1101 may be GaP, SiC, ZnO, GaAsP, AlGaAs, Al 2 O 3 , glass, a combination of the above materials or other alternative materials.

结合结构12用以结合不透明基板11与半导体发光叠层13。结合结构12可以为金属,使金属于一适当温度下与不透光基板11与半导体发光叠层13产生键结,且可以利用金属的物理性质形成一镜面以反射射向不透光基板的光线,或于不透光基板11与半导体发光叠层13间形成一欧姆接触层而使得不透光基板11与半导体发光叠层13间电连接。The bonding structure 12 is used for bonding the opaque substrate 11 and the semiconductor light emitting stack 13 . The bonding structure 12 can be a metal, so that the metal can be bonded with the opaque substrate 11 and the semiconductor light-emitting stack 13 at an appropriate temperature, and the physical properties of the metal can be used to form a mirror to reflect the light directed to the opaque substrate , or form an ohmic contact layer between the opaque substrate 11 and the semiconductor light emitting stack 13 to make the electrical connection between the opaque substrate 11 and the semiconductor light emitting stack 13 .

此外,结合结构12亦可以由不透光基板11与半导体发光叠层13直接键结而形成,利用一较高温度,如1000℃并施加适当的压力使不透光基板11及半导体发光叠层13的接触面产生键结而结合。In addition, the bonding structure 12 can also be formed by directly bonding the opaque substrate 11 and the semiconductor light-emitting stack 13, using a relatively high temperature, such as 1000° C., and applying appropriate pressure to make the opaque substrate 11 and the semiconductor light-emitting stack The contact surface of 13 produces bond and combines.

优选地,结合结构12以胶合方式结合不透明基板11及半导体发光叠层13,此方法可以于较低温度下进行而降低了半导体发光叠层13于高温下受损的机率,并可以达到适当的粘结效果。结合结构12的材料可以为聚酰亚胺(PI)、苯并环丁烯(BCB)、过氟环丁烯(PFCB)或其它的有机粘结材料。此外,结合结构12的材料可以为透明,如上所述的苯并环丁烯(BCB)即为一例,当结合结构12为透明时,可以与下述的反射层相配合将多数半导体发光元件10的出射光皆导引至相同的方向。Preferably, the bonding structure 12 combines the opaque substrate 11 and the semiconductor light-emitting stack 13 by gluing. This method can be carried out at a relatively low temperature to reduce the probability of damage to the semiconductor light-emitting stack 13 at high temperatures, and can achieve a suitable bonding effect. The material of the bonding structure 12 can be polyimide (PI), benzocyclobutene (BCB), perfluorocyclobutene (PFCB) or other organic bonding materials. In addition, the material of the bonding structure 12 can be transparent, for example, the above-mentioned benzocyclobutene (BCB). All outgoing light is directed in the same direction.

当不透光基板11与半导体发光叠层13可以形成电连接时,半导体发光叠层13便可以于垂直方向形成一电通路而成为一垂直结构型式的半导体发光元件10,此时,半导体发光元件10的一个电接点1301可以设置于垂直方向上,而不透光基板11本身亦成为另一个电接点,或于不透光基板11上另形成一个电接点。When the opaque substrate 11 and the semiconductor light-emitting stack 13 can be electrically connected, the semiconductor light-emitting stack 13 can form an electrical path in the vertical direction to become a semiconductor light-emitting element 10 with a vertical structure. At this time, the semiconductor light-emitting element One electrical contact 1301 of 10 can be arranged in the vertical direction, and the opaque substrate 11 itself becomes another electrical contact, or another electrical contact is formed on the opaque substrate 11 .

荧光材料结构14中可以包括有一种或多种荧光材料1401,且荧光材料1401可以吸收来自半导体发光叠层13所产生的原始光线并产生转换后光线,此转换后光线泛指不同于原始光线者,而非仅指定一种光线,亦可以配合二种以上的荧光材料1401而产生多种的转换后光线,并且,于本发明中荧光材料结构14形成于半导体发光元件10上并大体上符合半导体发光叠层13的形状,因此,可以简化后续的封装工艺。其中,荧光材料1401可以利用胶合剂(Binder;未显示)而固定于半导体发光叠层13之上,此胶合剂可以与荧光材料1401预先混合后再形成于半导体发光叠层13之上,或可以将胶合剂先形成于半导体发光叠层13之上,再利用此胶合剂将荧光材料1401固定于半导体发光叠层13之上,再者亦可以于半导体发光叠层13上先形成其它种结构(未显示)用以承载、充填或固定荧光材料1401。The fluorescent material structure 14 may include one or more fluorescent materials 1401, and the fluorescent material 1401 can absorb the original light generated from the semiconductor light-emitting stack 13 and generate converted light. The converted light generally refers to something different from the original light. Instead of only specifying one kind of light, two or more kinds of fluorescent materials 1401 can also be used to produce a variety of converted light. Moreover, in the present invention, the fluorescent material structure 14 is formed on the semiconductor light-emitting element 10 and generally conforms to the semiconductor The shape of the light emitting stack 13, therefore, can simplify the subsequent packaging process. Wherein, the fluorescent material 1401 can be fixed on the semiconductor light-emitting stack 13 by using an adhesive (Binder; not shown), and the adhesive can be mixed with the fluorescent material 1401 before being formed on the semiconductor light-emitting stack 13, or can The adhesive is first formed on the semiconductor light emitting stack 13, and then the fluorescent material 1401 is fixed on the semiconductor light emitting stack 13 by using the adhesive, and other structures ( not shown) is used to carry, fill or fix the fluorescent material 1401.

此外,优选地,荧光材料结构14可以仅包括荧光材料1401,或为一种非胶结荧光材料结构(non-glued fluorescent material structure),所谓非胶结荧光材料结构指非经由胶合剂或其它环氧树脂及其它具有胶结功能的材料而聚合成块状的荧光材料,因此荧光材料1401可以直接聚合成块而覆盖于半导体发光叠层13上。将荧光材料1401直接聚合的方法可以使用如沉积法(Sedimentation)、或其它的薄膜沉积法等,并经由适当的聚合程序(如:加压、加热等)加强荧光材料1401间的聚合力,使荧光材料1401紧密地接合成块而覆盖于半导体发光叠层13上。由于荧光材料结构13藉由荧光材料1401直接地聚合成块,因此,可以避免胶合剂或环氧树脂等胶合材料不当地吸光而提供更佳的光转换效率及色彩表现。In addition, preferably, the fluorescent material structure 14 may only include the fluorescent material 1401, or be a non-glued fluorescent material structure (non-glued fluorescent material structure). and other materials with a bonding function to form a bulk fluorescent material, so the fluorescent material 1401 can be directly aggregated into a block to cover the semiconductor light emitting stack 13 . The method of directly polymerizing the fluorescent material 1401 can use such as deposition method (Sedimentation), or other thin film deposition methods, etc., and strengthen the cohesion between the fluorescent materials 1401 through appropriate polymerization procedures (such as: pressurization, heating, etc.), so that The fluorescent material 1401 is tightly bonded into a block and covers the semiconductor light emitting stack 13 . Since the fluorescent material structure 13 is directly aggregated into blocks by the fluorescent material 1401 , it is possible to avoid undue light absorption of adhesive materials such as adhesives or epoxy resins, thereby providing better light conversion efficiency and color performance.

如上所例示的荧光材料结构14虽形成于半导体发光叠层13上,然而其并不需要与半导体发光叠层13直接接触,亦可以于半导体发光叠层13上形成其它结构(如保护层、光学层等)后再形成荧光材料结构14。此外,荧光材料1401可以为一种粉体,优选地可以为一种硫化物粉体,为获得优选的光转换效率此粉体的直径可以介于约0.1~100μm之间。Although the above-illustrated fluorescent material structure 14 is formed on the semiconductor light-emitting stack 13, it does not need to be in direct contact with the semiconductor light-emitting stack 13, and other structures (such as protective layers, optics, etc.) can also be formed on the semiconductor light-emitting stack 13. layer, etc.) and then form the fluorescent material structure 14. In addition, the fluorescent material 1401 can be a powder, preferably a sulfide powder, and the diameter of the powder can be between about 0.1-100 μm in order to obtain a preferred light conversion efficiency.

第二实施例second embodiment

图2a~2b显示本发明另一优选实施例中半导体发光装置的结构示意图,与第一实施例相同的元件将使用相同的标号且不再赘述,合先陈明。2a-2b show a schematic structural diagram of a semiconductor light-emitting device in another preferred embodiment of the present invention. The same components as those in the first embodiment will use the same reference numerals and will not be described again, and will be stated first.

如上例所述结合结构12用以结合不透明基板11与半导体发光叠层13,本实施例中结合结构12还可以包括有:第一中介层1201、粘结层1202及第二中介层1203。第一中介层1201及第二中介层1203可以分别形成于不透光基板11及半导体发光叠层13之上,再于第一中介层1201及第二中介层1203间形成粘结层1202以粘结第一中介层1201及第二中介层1203,利用第一中介层1201及第二中介层1203可以增加粘结层1202与不透光基板11及半导体发光叠层13间的结合力。As mentioned above, the bonding structure 12 is used to bond the opaque substrate 11 and the semiconductor light emitting stack 13 . In this embodiment, the bonding structure 12 may further include: a first intermediary layer 1201 , an adhesive layer 1202 and a second intermediary layer 1203 . The first interposer 1201 and the second interposer 1203 can be formed on the opaque substrate 11 and the semiconductor light-emitting stack 13 respectively, and then an adhesive layer 1202 is formed between the first interposer 1201 and the second interposer 1203 for adhesion. Combine the first interposer layer 1201 and the second interposer layer 1203 , and use the first interposer layer 1201 and the second interposer layer 1203 to increase the binding force between the adhesive layer 1202 and the opaque substrate 11 and the semiconductor light emitting stack 13 .

结合结构12中的粘结层1202的材料可以为聚酰亚胺(PI)、苯并环丁烯(BCB)、过氟环丁烯(PFCB)或其它的有机粘结材料。第一中介层1201与第二中介层1203的材料可以为SiNx、Ti、Cr或其它可以增加粘结层1202与不透光基板11及/或半导体发光叠层13间的结合力的材料。The material of the bonding layer 1202 in the bonding structure 12 can be polyimide (PI), benzocyclobutene (BCB), perfluorocyclobutene (PFCB) or other organic bonding materials. The material of the first interposer 1201 and the second interposer 1203 can be SiN x , Ti, Cr or other materials that can increase the bonding force between the adhesive layer 1202 and the opaque substrate 11 and/or the semiconductor light emitting stack 13 .

仍参照图2a及2b所示,本发明的半导体发光元件10还可以具有保护结构15,其设置于荧光材料结构14之上,可以用来保护荧光材料结构14或其下的其它结构。保护结构15的材料可以为Su8、苯并环丁烯(BCB)、环氧树脂(Epoxy)、丙烯酸树脂(Acrylic Resin)、环烯烃聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸二乙酯(PET)、聚碳酸酯(PC)、聚醚酰亚胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、硅胶(Silicone)、玻璃、上述材料的组合及其它可以透光的材料。Still referring to FIGS. 2 a and 2 b , the semiconductor light emitting element 10 of the present invention can also have a protective structure 15 disposed on the fluorescent material structure 14 to protect the fluorescent material structure 14 or other structures below it. The material of the protective structure 15 can be Su8, benzocyclobutene (BCB), epoxy resin (Epoxy), acrylic resin (Acrylic Resin), cycloolefin polymer (COC), polymethyl methacrylate (PMMA), Polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), fluorocarbon polymer (Fluorocarbon Polymer), silica gel (Silicone), glass, combinations of the above materials and others Light-transmitting materials.

保护结构15内还可以包括有多个光学层1501、1502,此多个光学层1501、1502更具有不等的厚度,优选地,多个光学层1501、1502的厚度分别随远离半导体发光叠层13的距离而增加,亦即外层厚度大于内层厚度,即光学层1502的厚度大于光学层1501,藉由此渐增的厚度分布而使得因半导体发光元件12动作时产生的高温于保护结构15上所引起的热应力(Thermal Stress)可以获得纾解,而避免保护结构15因热应力产生龟裂。此外,此多个光学层1501、1502中可以为散光层(diffuser)、聚光层或其它可以调整半导体发光元件10出光性质的结构。The protection structure 15 may also include a plurality of optical layers 1501, 1502, and the plurality of optical layers 1501, 1502 have different thicknesses. 13, that is, the thickness of the outer layer is greater than the thickness of the inner layer, that is, the thickness of the optical layer 1502 is greater than that of the optical layer 1501. With this increasing thickness distribution, the temperature generated by the semiconductor light-emitting element 12 is higher than that of the protective structure. The thermal stress (Thermal Stress) caused on 15 can be relieved, and the protection structure 15 is prevented from being cracked due to the thermal stress. In addition, the plurality of optical layers 1501 , 1502 may be a diffuser layer, a light-gathering layer or other structures capable of adjusting the light-emitting properties of the semiconductor light-emitting element 10 .

此外,半导体发光元件10还可以设置反射层16以反射射向不透光基板11的光线,使得多数光线均朝向荧光材料结构14的方向前进。反射层16可以设置于结合结构12及不透光基板11之间,此时结合结构12为透明,如图2a所示。或者反射层16可以设置于结合结构12及半导体发光叠层13之间,如图2b所示。亦或者反射层16可以设置于半导体发光叠层13中(未显示),如布拉格反射层(Bragg Reflector)等。In addition, the semiconductor light-emitting element 10 can also be provided with a reflective layer 16 to reflect light directed towards the opaque substrate 11 , so that most of the light travels toward the direction of the fluorescent material structure 14 . The reflective layer 16 can be disposed between the bonding structure 12 and the opaque substrate 11, and the bonding structure 12 is transparent at this time, as shown in FIG. 2a. Alternatively, the reflective layer 16 may be disposed between the bonding structure 12 and the semiconductor light emitting stack 13, as shown in FIG. 2b. Alternatively, the reflective layer 16 can be disposed in the semiconductor light emitting stack 13 (not shown), such as a Bragg Reflector or the like.

其中,反射层16的材料可以为金属、氧化物、其组合或其它可以反射光线的材料。优选地,反射层16的材料可以为In、Sn、Al、Au、Pt、Zn、Ag、Ti、Pb、Ge、Cu、Ni、AuBe、AuGe、AuZn、PbSn、SiNx、SiO2、Al2O3、TiO2、MgO或上述材料的组合。Wherein, the material of the reflective layer 16 may be metal, oxide, a combination thereof or other materials capable of reflecting light. Preferably, the material of the reflective layer 16 can be In, Sn, Al, Au, Pt, Zn, Ag, Ti, Pb, Ge, Cu, Ni, AuBe, AuGe, AuZn, PbSn, SiN x , SiO 2 , Al 2 O 3 , TiO 2 , MgO or a combination of the above materials.

本发明中的半导体发光叠层13中还可以包括有一透明导电层(未显示)以提高电流分散的效果,或与其它叠层形成优选的欧姆接触。此透明导电层的材料可以为氧化铟锡(ITO)、氧化镉锡(CTO)、氧化锑锡、氧化锌、氧化锌锡、Ni/Au、NiO/Au、TiWN、透光金属层、上述材料的组合或其它可代替材料。The semiconductor light emitting stack 13 of the present invention may also include a transparent conductive layer (not shown) to improve the effect of current spreading, or to form a preferred ohmic contact with other stacks. The material of this transparent conductive layer can be indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, zinc oxide, zinc tin oxide, Ni/Au, NiO/Au, TiWN, transparent metal layer, the above materials combination or other alternative materials.

第三实施例third embodiment

参照图1a~1c及2a~2b,本发明的半导体发光元件10的制造方法可以包括有:分离半导体发光叠层13自一原始成长基板(未显示);结合半导体发光叠层13至不透光基板11上;及形成荧光材料结构14于半导体发光叠层13上方。其中结合步骤可以将半导体发光叠层13与不透光基板11于一适当温度及压力下直接结合;或者可以于半导体发光叠层13及不透光基板11间形成结合结构12,结合结构12可以为一粘结层(未显示)以胶合半导体发光叠层13及不透光基板11;或者结合结构12可以为金属(未显示),于一适当温度及压力下使此金属与半导体发光叠层13及不透光基板11产生键结,并且亦可以于金属上形成一镜面(未显示)以反射光线使其朝向荧光材料结构14的方向。1a~1c and 2a~2b, the manufacturing method of semiconductor light-emitting element 10 of the present invention can comprise: separating semiconductor light-emitting laminated layer 13 from an original growth substrate (not shown); Combining semiconductor light-emitting laminated layer 13 to opaque on the substrate 11; and forming a fluorescent material structure 14 on the semiconductor light emitting stack 13. In the bonding step, the semiconductor light-emitting stack 13 and the light-transmitting substrate 11 can be directly combined at an appropriate temperature and pressure; or a bonding structure 12 can be formed between the semiconductor light-emitting stack 13 and the light-proof substrate 11, and the bonding structure 12 can be It is an adhesive layer (not shown) to glue the semiconductor light-emitting stack 13 and the light-proof substrate 11; or the bonding structure 12 can be a metal (not shown), and the metal and the semiconductor light-emitting stack are made under a suitable temperature and pressure 13 is bonded with the opaque substrate 11 , and a mirror (not shown) may also be formed on the metal to reflect light toward the direction of the fluorescent material structure 14 .

优选地,结合步骤包括有:形成第一中介层1201于不透光基板11上;形成第二中介层1203于半导体叠层13上;及藉由粘结层1202以胶合不透明载体11及半导体发光叠层13,并使粘结层1202位于第一中介层1201及第二中介层1203之间,利用第一中介层1201及第二中介层1203可以加强粘结层1202与不透明载体11及半导体发光叠层13间的结合力。Preferably, the bonding step includes: forming a first interposer 1201 on the opaque substrate 11; forming a second interposer 1203 on the semiconductor stack 13; stack 13, and make the adhesive layer 1202 between the first intermediary layer 1201 and the second intermediary layer 1203, the first intermediary layer 1201 and the second intermediary layer 1203 can be used to strengthen the adhesive layer 1202 and the opaque carrier 11 and semiconductor light emitting Bonding force between stacks 13.

本发明方法中荧光材料结构14优选地可以藉由直接沉积(Sedimentation)荧光材料1401而形成于半导体发光叠层13上方,或者荧光材料结构14可以藉由将荧光材料1401与一胶合剂(Binder;未显示)混合后再形成于半导体发光叠层13上方。In the method of the present invention, the fluorescent material structure 14 can preferably be formed above the semiconductor light emitting stack 13 by directly depositing (Sedimentation) the fluorescent material 1401, or the fluorescent material structure 14 can be formed by combining the fluorescent material 1401 with a binder (Binder; (not shown) are mixed and then formed on the semiconductor light emitting stack 13 .

优选地,本发明的方法还可以设置保护结构15于荧光材料结构14上方,且保护结构15可以包括有多层结构1501及1502,藉由保护结构15可以保护其下的其它结构或纾解高温所造成的热应力。Preferably, the method of the present invention can also arrange a protective structure 15 above the fluorescent material structure 14, and the protective structure 15 can include multi-layer structures 1501 and 1502, and the protective structure 15 can protect other structures under it or relieve high temperature caused by thermal stress.

再者,亦可以形成反射层16于不透光基板11及结合结构12之间,或形成反射层16于结合结构12及半导体发光叠层13之间,亦可以将反射层16,如:布拉格反射层等,直接形成于半导体发光叠层12中以反射光线使其朝向荧光材料结构14的方向Furthermore, the reflective layer 16 can also be formed between the opaque substrate 11 and the bonding structure 12, or the reflective layer 16 can be formed between the bonding structure 12 and the semiconductor light emitting stack 13, and the reflective layer 16 can also be formed, such as: Bragg A reflective layer, etc., is directly formed in the semiconductor light-emitting stack 12 to reflect light toward the direction of the fluorescent material structure 14

此外,本发明的方法可以于晶片或晶粒上形成荧光材料结构14,若荧光材料结构14是形成于晶片上,可以于半导体发光叠层13上先形成沟槽1302,再于半导体发光叠层13上形成荧光材料结构14,此外于荧光材料结构14或保护结构15完成后进行晶片切割以形成半导体发光元件10的晶粒。In addition, the method of the present invention can form the fluorescent material structure 14 on the wafer or crystal grain. If the fluorescent material structure 14 is formed on the wafer, the groove 1302 can be formed on the semiconductor light emitting stack 13 first, and then the semiconductor light emitting stack The fluorescent material structure 14 is formed on the fluorescent material structure 13 , and wafer dicing is performed after the fluorescent material structure 14 or the protection structure 15 is completed to form crystal grains of the semiconductor light emitting element 10 .

虽然本发明已以具体的实施例说明如上,然其并非用以限定本发明,任何本领域技术人员任施匠思而为诸般修饰,皆不脱如附权利要求所欲保护者。Although the present invention has been described above with specific embodiments, they are not intended to limit the present invention, and any modifications made by those skilled in the art will not deviate from what is intended to be protected by the appended claims.

Claims (10)

1.一种半导体发光元件,至少包括:1. A semiconductor light emitting element, comprising at least: 一半导体发光叠层;A semiconductor light emitting stack; 一萤光材料结构,位于该半导体发光叠层的一侧;及a fluorescent material structure located on one side of the semiconductor light emitting stack; and 一电接点,位于该萤光材料结构的一空缺中,并与该半导体发光叠层电接触。An electrical contact is located in a vacancy of the fluorescent material structure and is in electrical contact with the semiconductor light emitting stack. 2.如权利要求1所述的半导体发光元件,还包括:2. The semiconductor light emitting element according to claim 1, further comprising: 一欧姆接触层,位于该半导体发光叠层的另一侧。An ohmic contact layer is located on the other side of the semiconductor light emitting stack. 3.如权利要求1所述的半导体发光元件,还包括:3. The semiconductor light emitting element according to claim 1, further comprising: 一反射层,位于该半导体发光叠层的另一侧。A reflective layer is located on the other side of the semiconductor light emitting stack. 4.如权利要求1所述的半导体发光元件,还包括:4. The semiconductor light emitting element according to claim 1, further comprising: 一金属结构,位于该半导体发光叠层的另一侧。A metal structure is located on the other side of the semiconductor light emitting stack. 5.如权利要求1所述的半导体发光元件,还包括:5. The semiconductor light emitting element according to claim 1, further comprising: 一基板,位于该半导体发光叠层的另一侧。A substrate is located on the other side of the semiconductor light emitting stack. 6.如权利要求1所述的半导体发光元件,还包括:6. The semiconductor light emitting element according to claim 1, further comprising: 一透明基板,位于该半导体发光叠层的另一侧。A transparent substrate is located on the other side of the semiconductor light emitting stack. 7.如权利要求1所述的半导体发光元件,还包括:7. The semiconductor light emitting element according to claim 1, further comprising: 一基板,位于该半导体发光叠层的另一侧;及a substrate located on the other side of the semiconductor light emitting stack; and 一结合结构,位于该半导体发光叠层及该基板之间。A combination structure is located between the semiconductor light emitting stack and the substrate. 8.如权利要求1所述的半导体发光元件,其中,该荧光材料结构大体上符合该半导体发光叠层的形状。8. The semiconductor light emitting device as claimed in claim 1, wherein the fluorescent material structure substantially conforms to the shape of the semiconductor light emitting stack. 9.如权利要求1所述的半导体发光元件,其中,该萤光材料结构覆盖该半导体发光叠层的一个表面的一部分。9. The semiconductor light emitting device as claimed in claim 1, wherein the fluorescent material structure covers a part of a surface of the semiconductor light emitting stack. 10.一种半导体发光元件的制造方法,包括:10. A method for manufacturing a semiconductor light emitting element, comprising: 形成一半导体发光叠层于一基板;forming a semiconductor light emitting stack on a substrate; 形成一荧光材料结构于该半导体发光叠层上方;及forming a fluorescent material structure over the semiconductor light emitting stack; and 形成一电接点位于该萤光材料结构的一空缺中,并与该半导体发光叠层电接触。An electrical contact is formed in a vacancy of the fluorescent material structure and is in electrical contact with the semiconductor light emitting stack.
CNB2007101970236A 2004-09-10 2004-09-10 Semiconductor light emitting element and method for manufacturing the same Expired - Lifetime CN100573947C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101970236A CN100573947C (en) 2004-09-10 2004-09-10 Semiconductor light emitting element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101970236A CN100573947C (en) 2004-09-10 2004-09-10 Semiconductor light emitting element and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB200410077053XA Division CN100364121C (en) 2004-09-10 2004-09-10 Semiconductor light emitting element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN101174668A true CN101174668A (en) 2008-05-07
CN100573947C CN100573947C (en) 2009-12-23

Family

ID=39423018

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101970236A Expired - Lifetime CN100573947C (en) 2004-09-10 2004-09-10 Semiconductor light emitting element and method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN100573947C (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207363B2 (en) * 2000-06-08 2009-01-14 日立電線株式会社 Light emitting diode
JP2002164576A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Light emitting diode

Also Published As

Publication number Publication date
CN100573947C (en) 2009-12-23

Similar Documents

Publication Publication Date Title
US9627577B2 (en) Semiconductor light-emitting device and method for forming the same
US12119321B2 (en) Semiconductor device and a method of manufacturing thereof
US10529898B2 (en) Optoelectronic element
CN103688376B (en) Optoelectronic component and method for the production thereof
JP6519311B2 (en) Light emitting device
TWI301331B (en) Light emitting device
TWI404228B (en) Semiconductor light emitting device and method of manufacturing same
US11430925B2 (en) Light-emitting device having package structure with quantum dot material and manufacturing method thereof
TWI613840B (en) Illuminating device
JP6566016B2 (en) Method for manufacturing light emitting device
WO2010119701A1 (en) Light-emitting device
US20130240937A1 (en) Semiconductor light-emitting diode chip, light-emitting device, and manufacturing method thereof
KR101068649B1 (en) Semiconductor light emitting device and method of forming the same
CN100364121C (en) Semiconductor light emitting element and method for manufacturing the same
CN101488542B (en) Semiconductor light emitting device and packaging structure
CN101174668A (en) Semiconductor light emitting element and method for manufacturing the same
CN101488541A (en) Semiconductor light emitting device and method for manufacturing the same
TW202036936A (en) A Light-emitting Module
TWI626769B (en) Light-emitting component package structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20091223

CX01 Expiry of patent term