CN101173610A - Heated wall cooling structure and gas turbine blade using the cooling structure - Google Patents
Heated wall cooling structure and gas turbine blade using the cooling structure Download PDFInfo
- Publication number
- CN101173610A CN101173610A CNA2007101774724A CN200710177472A CN101173610A CN 101173610 A CN101173610 A CN 101173610A CN A2007101774724 A CNA2007101774724 A CN A2007101774724A CN 200710177472 A CN200710177472 A CN 200710177472A CN 101173610 A CN101173610 A CN 101173610A
- Authority
- CN
- China
- Prior art keywords
- discrete
- porous medium
- medium layer
- wall surface
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
受热壁面冷却结构以及使用该冷却结构的燃气轮机叶片,该冷却结构具有致密壁面层,该致密壁面层开有供冷却剂通过的多个离散通孔;致密壁面层的受热一侧覆盖有多孔介质层,使多孔介质层和开有多个离散通孔的致密壁面层构成双层叠置的结构,离散通孔的出口和多孔介质层连通。多孔介质层可以连续地覆盖在致密壁面层上,也可以仅覆盖离散通孔出口的局部区域。本发明综合了气膜冷却和发汗冷却的特点,充分组合了两种冷却方式的优点,可以有效地提高壁面上的冷却效率、降低壁面温度梯度,避免材料热应力持续增加。同时本发明冷却结构的强度还足以用于常见的叶轮机械。
A heated wall surface cooling structure and a gas turbine blade using the cooling structure, the cooling structure has a dense wall surface layer, the dense wall surface layer is opened with a plurality of discrete through holes for coolant to pass through; the heated side of the dense wall surface layer is covered with a porous medium layer , making the porous medium layer and the dense wall surface layer with a plurality of discrete through-holes form a double-layer stacked structure, and the outlets of the discrete through-holes communicate with the porous medium layer. The porous medium layer can cover the dense wall surface layer continuously, or only cover the partial area of the outlet of the discrete through-hole. The invention combines the characteristics of air film cooling and sweat cooling, fully combines the advantages of the two cooling methods, can effectively improve the cooling efficiency on the wall surface, reduce the temperature gradient of the wall surface, and avoid the continuous increase of material thermal stress. At the same time, the strength of the cooling structure of the present invention is sufficient for common impeller machines.
Description
技术领域technical field
本发明涉及一种受热壁表面的冷却结构,以及使用该冷却结构的燃气轮机叶片,属于热工技术领域。The invention relates to a cooling structure for a heated wall surface and a gas turbine blade using the cooling structure, belonging to the technical field of thermal engineering.
背景技术Background technique
对处于高温环境中的机械结构进行必要的冷却,以保证结构的安全运行,一直是生产生活中常见的问题。在涉及到热机的应用领域中,需要冷却的高温表面比比皆是,例如:车用柴油机和汽油机的气缸壁、火箭推力室、燃气轮机叶片、超高速飞行器外壁、超燃发动机的内筒等等。对于燃气轮机而言,提高热效率和功率意味着透平进口温度的提高。逐年上升的透平进口温度已经突破了2000℃,而叶片等金属部件的最高耐热温度一般仅在1000℃左右,因此对燃气轮机叶片进行高效冷却是决定未来燃气轮机发展程度的一个关键因素。Necessary cooling of mechanical structures in high-temperature environments to ensure safe operation of structures has always been a common problem in production and life. In applications involving heat engines, high-temperature surfaces that need to be cooled abound, such as cylinder walls of diesel and gasoline engines for vehicles, thrust chambers of rockets, blades of gas turbines, outer walls of ultra-high-speed aircraft, inner cylinders of super-combustion engines, etc. For gas turbines, increasing thermal efficiency and power means increasing turbine inlet temperature. The turbine inlet temperature, which has been increasing year by year, has exceeded 2000°C, while the maximum heat-resistant temperature of metal parts such as blades is generally only around 1000°C. Therefore, efficient cooling of gas turbine blades is a key factor that determines the future development of gas turbines.
按照施加位置,高温表面的冷却包括内冷却和外冷却两大类。内冷却指在受热壁的内侧(也就是高温环境的相对一侧)采取冷却措施,将高温环境传递到表面的热量迅速带走,例如通过对流换热的再生冷却;外冷却指在受热表面的外侧(也就是和高温环境的相接触的一面)采取冷却措施,将高温燃气和壁面隔开,以减少两者之间的传热,例如气/液膜冷却、发汗冷却、屏蔽冷却、烧蚀冷却。气膜冷却和发汗冷却均利用温度相对较低的流体作为冷却剂,将其从一定形式的壁面开口排出,形成冷却保护层,从而对高温壁面形成有效的主动冷却。但两者有很大程度的区别:气膜冷却一般通过在致密壁面上开设直径在毫米量级的离散通孔,甚至是宽度为毫米量级的直槽;而发汗冷却一般通过具有微米量级孔隙的多孔介质形成,例如孔隙在几十到上百微米的烧结金属颗粒多孔介质、孔隙率在几十到上百PPI的金属丝网。According to the application position, the cooling of high-temperature surfaces includes two types: internal cooling and external cooling. Internal cooling refers to taking cooling measures on the inner side of the heated wall (that is, the opposite side of the high-temperature environment) to quickly take away the heat transferred from the high-temperature environment to the surface, such as regenerative cooling through convective heat exchange; external cooling refers to the cooling of the heated surface. Cooling measures are taken on the outside (that is, the side that is in contact with the high-temperature environment) to separate the high-temperature gas from the wall to reduce heat transfer between the two, such as gas/liquid film cooling, sweating cooling, shielding cooling, ablation cool down. Both air film cooling and sweat cooling use relatively low-temperature fluid as a coolant, which is discharged from a certain form of wall opening to form a cooling protection layer, thereby forming an effective active cooling of the high-temperature wall. But there is a big difference between the two: film cooling is generally done by opening discrete through holes with a diameter of millimeters on the dense wall, or even a straight groove with a width of millimeters; Formation of porous media with pores, such as sintered metal particle porous media with pores ranging from tens to hundreds of microns, and wire mesh with porosities ranging from tens to hundreds of PPI.
常见的受热壁面如燃气轮机叶片、火箭推力室、航空发动机的火焰筒等等,这些受热壁面的一个共同点是一侧受到高温主流的冲刷,因此通常在另一侧采用冷却剂冷却,或者使冷却剂从受热壁面上一定形式的出口中喷入高温主流,直接对被高温主流冲刷一侧的壁面进行强制冷却。图1所示为常规的气膜冷却结构示意图,致密壁面层1的一侧(图中为上侧)收到高温流体5的冲刷,例如对于燃气轮机叶片而言,为燃烧室出口的高温燃气,因而致密壁面层1被该侧的高温环境6所加热。利用激光打孔等方式,在需要冷却的致密壁面层1上形成多个离散通孔3,或称之为气膜孔,该气膜孔的直径一般为数毫米,并在受热的相对一侧构成冷却通道8,从而使冷却剂7从离散通孔3中喷出,在致密壁面层1的受热一侧形成膜状冷却剂保护层,对致密壁面层1进行冷却保护,避免其被烧毁。由该冷却方式的结构特点可知,由于喷出冷却剂的气膜孔为离散分布,因此致密壁面受热一侧上的膜状冷却剂也为离散分布,当高温环境的温度较高时,致密壁面由于存在较大的温度梯度,而产生较大的热应力,会导致致密壁面疲劳失效,这对于利用气膜冷却作为主要冷却方式的燃气轮机叶片而言是非常不利的,因为燃气轮机叶片经常还受到高温主流的热冲击等。Common heated walls such as gas turbine blades, rocket thrust chambers, flame tubes of aeroengines, etc., one of the common points of these heated walls is that one side is washed by the high temperature mainstream, so the other side is usually cooled by coolant, or the cooling The agent is sprayed into the high-temperature main flow from a certain type of outlet on the heated wall surface, and directly cools the wall surface washed by the high-temperature main flow forcibly. Fig. 1 shows a schematic diagram of a conventional film cooling structure. One side of the dense wall surface layer 1 (the upper side in the figure) receives the scour of the high-
图2所示为常规的发汗冷却结构示意图,将致密壁面层1受热强烈的部分替换成多孔介质层2,并在受热的相对一侧构成冷却通道8,从而使冷却剂7从多孔介质层2中的孔隙中喷出,在致密壁面层1的受热一侧形成发汗状冷却剂保护层,对致密壁面层1进行冷却保护,避免其被烧毁。这种冷却方式的优点是可以对整个被冷却区域提供均匀的冷却保护,而且在使用相同流量的冷却剂情况下,冷却效率一般要高于前述的气膜冷却。但是,由于发汗冷却要求整体为多孔材料,且孔隙相对较小,因此,最大的弊端在于其壁面的结构强度不仅大大不如未施加冷却措施的致密壁面,也远远不如带有气膜孔的壁面,同时另一个使其至今仍然无法有效投入复杂情况的实际应用的缺点在于其容易堵塞,并且局部堵塞容易引起局部高温失效,进而使整个冷却壁面很快被烧毁。Fig. 2 is a schematic diagram of a conventional sweat cooling structure. The part of the dense
现有的燃气轮机叶片采用的冷却结构为:叶片内部具有带强化换热措施的对流冷却通道、壁面设有用于气膜冷却的离散通孔。图7所示为现有的燃气轮机叶片的冷却结构,冷却剂在叶片内部冷却剂通道4中流动,并通过叶片表面上开设的离散通孔3喷出,从而在叶片表面上形成冷却气膜层,有效保护被高温燃气冲刷的叶片。图8所示为现有气膜冷却的燃气轮机叶片的横截面图,冷却剂在叶片中央的叶片内部冷却剂通道4中流过,通过开设在叶片致密壁面层1上的离散通孔3喷出,形成为围绕叶片致密壁面的冷却气膜。有学者提出了利用多孔介质构建叶片,以使用发汗冷却,以进一步提高冷却能力。简而言之,现有的燃气轮机气膜冷却存在以下不足:冷却能力有限;采用离散通孔导致冷却不均匀,热应力相应较大,材料容易疲劳失效。发汗冷却存在以下不足:形成发汗冷却的多孔介质强度较差;容易由于局部堵塞导致整体失效。The cooling structure adopted by the existing gas turbine blade is as follows: the inside of the blade has a convective cooling channel with enhanced heat exchange measures, and the wall surface is provided with discrete through holes for film cooling. Fig. 7 shows the cooling structure of the existing gas turbine blade, the coolant flows in the
发明内容Contents of the invention
本发明为克服气膜冷却和发汗冷却所存在的不足和缺陷,提出一种用于受热表面的冷却结构,以及使用该冷却结构的燃气轮机叶片,其目的是对受热壁面,特别是燃气轮机叶片进行有效冷却,保证施加冷却结构的壁面具有一定的强度,尽量使冷却壁面的强度接近原有的致密壁面;进一步提高受热壁面的冷却效率,尽量使受热壁面的冷却效率接近发汗冷却;在具有较高冷却效率的前提下,保证壁面的强度。In order to overcome the deficiencies and defects of air film cooling and sweat cooling, the present invention proposes a cooling structure for the heated surface and a gas turbine blade using the cooling structure. Cooling, to ensure that the wall surface of the cooling structure has a certain strength, try to make the strength of the cooling wall surface close to the original dense wall surface; further improve the cooling efficiency of the heated wall surface, try to make the cooling efficiency of the heated wall surface close to sweat cooling; Under the premise of efficiency, the strength of the wall surface is guaranteed.
为解决上述技术问题,本发明采取如下技术方案:In order to solve the problems of the technologies described above, the present invention takes the following technical solutions:
一种受热壁面的冷却结构,具有致密壁面层,该致密壁面层开有供冷却剂通过的多个离散通孔,其特征在于:该致密壁面层的受热一侧覆盖有多孔介质层,使多孔介质层和开有多个离散通孔的致密壁面层构成双层叠置的结构,所述的多孔介质层覆盖所有离散通孔的出口;所述的多孔介质层是连续分布的一整片,连续地完整覆盖在致密壁面层受热的一侧面,使所有离散通孔的出口被该一整片多孔介质层覆盖;或者所述的多孔介质层由不连续分布的多片组成,离散地局部覆盖在致密壁面层受热的一侧面,使所有离散通孔的出口分别被该多片多孔介质层覆盖。A cooling structure for a heated wall surface, which has a dense wall surface layer, and the dense wall surface layer is provided with a plurality of discrete through holes for coolant to pass through, and is characterized in that: the heated side of the dense wall surface layer is covered with a porous medium layer, making the porous medium layer The medium layer and the dense wall surface layer with a plurality of discrete through-holes form a double-layered structure, and the porous medium layer covers the outlets of all the discrete through-holes; the porous medium layer is a whole piece of continuous distribution, continuous completely cover the heated side of the dense wall surface layer, so that the outlets of all the discrete through holes are covered by the whole porous medium layer; On the heated side of the dense wall surface layer, the outlets of all the discrete through holes are respectively covered by the multi-piece porous medium layer.
本发明的受热壁面的冷却结构,其特征在于:所述的离散通孔的直径为0.1~5mm;离散通孔的排列呈顺排或叉排分布;离散通孔为倾斜孔、圆柱孔或出口带有局部扩散的扩散孔。The cooling structure of the heated wall surface of the present invention is characterized in that: the diameter of the discrete through-holes is 0.1-5mm; the arrangement of the discrete through-holes is arranged in parallel or forked rows; the discrete through-holes are inclined holes, cylindrical holes or outlets Diffusion holes with local diffusion.
本发明的受热壁面的冷却结构,其特征在于:所述的多孔介质层的厚度为0.5~3倍离散通孔的直径或者为0.4~10mm。所述的多孔介质层为青铜、不锈钢或镍基合金颗粒烧结而成,颗粒直径为10~5000微米,孔隙率在0.2~0.5之间;所述的多孔介质层的另一选择是陶瓷多孔结构,陶瓷多孔结构的孔径大小等于5~500微米之间;所述的多孔介质层的又一选择是铜、铜合金、不锈钢或镍基合金材质,结构为编织丝网或者泡沫金属,编织丝网或者泡沫金属的孔径大小等于100~1000微米。The cooling structure of the heated wall surface of the present invention is characterized in that: the thickness of the porous medium layer is 0.5 to 3 times the diameter of the discrete through holes or 0.4 to 10 mm. The porous medium layer is made of sintered bronze, stainless steel or nickel-based alloy particles, the particle diameter is 10-5000 microns, and the porosity is between 0.2-0.5; another option for the porous medium layer is ceramic porous structure , the pore size of the ceramic porous structure is equal to between 5 and 500 microns; another selection of the porous medium layer is copper, copper alloy, stainless steel or nickel-based alloy material, and the structure is woven wire mesh or foam metal, and the woven wire mesh Or the pore size of the metal foam is equal to 100-1000 microns.
本发明的技术特征还在于:所述的不连续分布的多孔介质层的每一片均沿高温主流的上游和下游方向延伸,使多孔介质层的边缘距最近一排离散通孔出口边缘的距离为0.5~10倍的离散通孔的直径;所述的多孔介质层成条状覆盖整排离散通孔的出口。在所述的多孔介质层沿高温主流的下游方向延伸的距离大于沿高温主流的上游方向延伸的距离。The technical feature of the present invention is also: each sheet of the discontinuously distributed porous medium layer extends along the upstream and downstream directions of the high-temperature main flow, so that the distance between the edge of the porous medium layer and the edge of the nearest row of discrete through-hole outlets is 0.5 to 10 times the diameter of the discrete through-holes; the porous medium layer covers the outlets of the entire row of discrete through-holes in strips. The distance that the porous medium layer extends along the downstream direction of the high-temperature main flow is greater than the distance along the upstream direction of the high-temperature main flow.
本发明提供的一种具有受热壁面冷却结构的燃气轮机叶片,含有构成叶片基本结构的致密壁面层,该致密壁面层开有供冷却剂通过的多个离散通孔,其特征在于:该致密壁面层的外侧覆盖有多孔介质层,使多孔介质层和开有多个离散通孔的致密壁面层构成双层叠置的结构,所述的多孔介质层覆盖所有离散通孔的出口;所述的多孔介质层的厚度为0.5~3倍离散通孔的直径或者为0.4~10mm;所述的多孔介质层是连续分布的一整片,连续地完整覆盖在致密壁面层受热的外侧面,使所有离散通孔的出口被该一整片多孔介质层覆盖;或者所述的多孔介质层由不连续分布的多片组成,离散地局部覆盖在致密壁面层受热的外侧面,使所有离散通孔的出口分别被该多片多孔介质层覆盖。The invention provides a gas turbine blade with a heated wall surface cooling structure, which contains a dense wall surface layer that constitutes the basic structure of the blade. The dense wall surface layer is provided with a plurality of discrete through holes for coolant to pass through. It is characterized in that: the dense wall surface layer The outer side is covered with a porous medium layer, so that the porous medium layer and the dense wall surface layer with a plurality of discrete through-holes form a double-layered structure, and the porous medium layer covers the outlets of all the discrete through-holes; the porous medium The thickness of the layer is 0.5 to 3 times the diameter of the discrete through holes or 0.4 to 10mm; the porous medium layer is a whole piece of continuous distribution, which continuously and completely covers the heated outer surface of the dense wall surface layer, so that all the discrete through holes The outlet of the hole is covered by the whole piece of porous medium layer; or the porous medium layer is composed of discontinuously distributed multi-pieces, which are discretely and partially covered on the heated outer surface of the dense wall surface layer, so that the outlets of all discrete through holes are respectively Covered by the multi-piece porous medium layer.
本发明所述的具有受热壁面冷却结构的燃气轮机叶片,其特征在于:所述的离散通孔的直径为0.1~5mm;离散通孔的排列呈顺排或叉排分布;离散通孔是倾斜孔、圆柱孔或出口带有局部扩散的扩散孔。The gas turbine blade with a heated wall surface cooling structure according to the present invention is characterized in that: the diameter of the discrete through holes is 0.1-5mm; the arrangement of the discrete through holes is arranged in parallel or fork; the discrete through holes are inclined holes , Cylindrical holes or diffuser holes with localized diffusion at the exit.
本发明所述的具有受热壁面冷却结构的燃气轮机叶片,其特征还在于:所述的不连续分布的多孔介质层的每一片均沿高温主流的上游和下游方向延伸,使多孔介质层的边缘距最近一排离散通孔出口边缘的距离为0.5~10倍的离散通孔的直径。所述的多孔介质层沿高温主流的下游方向延伸的距离大于沿高温主流的上游方向延伸的距离;所述的多孔介质层成条状覆盖整排离散通孔的出口。所述的多孔介质层为青铜、不锈钢、镍基合金颗粒烧结而成,颗粒直径为10~5000微米,孔隙率在0.2~0.5之间;所述的多孔介质层的另一选择是陶瓷多孔结构,其孔径大小等于5~500微米之间;所述的多孔介质层的又一选择是铜、铜合金、不锈钢或镍基合金材质,结构为编织丝网或者泡沫金属。The gas turbine blade with a heated wall surface cooling structure according to the present invention is also characterized in that: each piece of the discontinuously distributed porous medium layer extends along the upstream and downstream directions of the high-temperature main flow, so that the edge distance of the porous medium layer The distance from the exit edge of the nearest row of discrete through holes is 0.5 to 10 times the diameter of the discrete through holes. The distance that the porous medium layer extends along the downstream direction of the high-temperature main flow is greater than the distance along the upstream direction of the high-temperature main flow; the porous medium layer covers the outlets of the entire row of discrete through holes in strips. The porous medium layer is made of sintered bronze, stainless steel, and nickel-based alloy particles, the particle diameter is 10-5000 microns, and the porosity is between 0.2-0.5; another option for the porous medium layer is ceramic porous structure , the pore size is between 5 and 500 microns; another choice of the porous medium layer is copper, copper alloy, stainless steel or nickel-based alloy, and the structure is woven wire mesh or foam metal.
本发明综合了气膜冷却和发汗冷却的特点,利用在离散通孔出口局部覆盖一多孔介质层的结构,充分组合了两种冷却方式的优点,可以有效地提供壁面上的冷却效率、降低壁面温度梯度,避免材料热应力持续增加,同时本发明冷却结构的强度还足以用于常见的叶轮机械。The present invention combines the characteristics of air film cooling and sweating cooling, uses a structure in which a porous medium layer is partially covered at the outlet of the discrete through hole, fully combines the advantages of the two cooling methods, and can effectively provide cooling efficiency on the wall surface and reduce The temperature gradient of the wall surface avoids continuous increase of material thermal stress, and meanwhile, the strength of the cooling structure of the present invention is sufficient to be used in common impeller machines.
附图说明Description of drawings
图1:常规的气膜冷却示意图。Figure 1: Schematic diagram of conventional film cooling.
图2:常规的发汗冷却示意图。Figure 2: Schematic diagram of conventional sweat cooling.
图3:本发明的冷却结构。Figure 3: The cooling structure of the present invention.
图4:本发明的冷却结构,其中多孔介质层连续分布,完整地覆盖致密壁面层的受热一侧。Fig. 4: The cooling structure of the present invention, wherein the porous medium layer is distributed continuously and completely covers the heated side of the dense wall surface layer.
图5:本发明的冷却结构,其中多孔介质层离散分布,离散地局部覆盖在致密壁面层受热的一侧面。Fig. 5: The cooling structure of the present invention, in which the porous medium layer is discretely distributed and discretely partially covers the heated side of the dense wall surface layer.
图6:本发明的冷却结构,其中多孔介质层沿高温主流的下游方向延伸的距离大于沿高温主流的上游方向延伸的距离。Fig. 6: The cooling structure of the present invention, wherein the distance that the porous medium layer extends along the downstream direction of the high-temperature main flow is greater than the distance along the upstream direction of the high-temperature main flow.
图7:现有的燃气轮机叶片气膜冷却示意图。Figure 7: Schematic diagram of existing gas turbine blade film cooling.
图8:现有的燃气轮机叶片气膜冷却示意图,叶片横截面。Figure 8: Schematic diagram of existing gas turbine blade film cooling, blade cross-section.
图9:应用本发明冷却结构的燃气轮机叶片横截面图。Fig. 9: A cross-sectional view of a gas turbine blade applying the cooling structure of the present invention.
图10:现有的气膜冷却燃气轮机叶片表面气膜孔分布示意图。Figure 10: Schematic diagram of the distribution of film holes on the surface of the existing film-cooled gas turbine blade.
图11:本发明的燃气轮机叶片表面多孔介质层覆盖示意图。Fig. 11: Schematic diagram of the coverage of the porous medium layer on the surface of the gas turbine blade of the present invention.
图12(a):常规气膜冷却表面的温度梯度模拟结果。Fig. 12(a): Simulation results of temperature gradient on a conventional film cooling surface.
图12(b):本发明的表面温度梯度模拟结果。Figure 12(b): Simulation results of the surface temperature gradient of the present invention.
图中:1、致密壁面层;2、离散通孔;3、多孔介质层;4、叶片内部冷却剂通道;5、高温流体;6、高温环境;7、冷却剂;8、冷却流通道。In the figure: 1. Dense wall surface layer; 2. Discrete through holes; 3. Porous medium layer; 4. Coolant channel inside the blade; 5. High temperature fluid; 6. High temperature environment; 7. Coolant; 8. Cooling flow channel.
具体实施方式Detailed ways
下面对本发明的原理和具体结构作进一步的说明。The principle and specific structure of the present invention will be further described below.
本发明提供的受热壁面冷却结构,具有致密壁面层1,该致密壁面层1开有供冷却剂通过的多个离散通孔3,该致密壁面层1的受热一侧覆盖有多孔介质层2,从而多孔介质层2和开有多个离散通孔3的致密壁面层1构成双层叠置的结构,所述的多孔介质层2覆盖所有离散通孔3的出口;所述的多孔介质层2是连续分布的一整片,连续地完整覆盖在致密壁面层1受热的一侧面,从而所有离散通孔3的出口被该一整片多孔介质层2覆盖;或者所述的多孔介质层2由不连续分布的多片组成,离散地局部覆盖在致密壁面层1受热的一侧面,从而所有离散通孔3的出口分别被该多片多孔介质层2覆盖;所述的离散通孔3的直径为0.1~5mm;离散通孔3的排列呈顺排或叉排分布;离散通孔3是倾斜的,为圆柱孔或出口带有局部扩散的扩散孔。The heated wall surface cooling structure provided by the present invention has a dense wall surface layer 1, and the dense wall surface layer 1 is provided with a plurality of discrete through holes 3 for coolant to pass through, and the heated side of the dense wall surface layer 1 is covered with a porous medium layer 2, Thereby the porous medium layer 2 and the dense wall surface layer 1 having a plurality of discrete through-holes 3 form a double-layer stacked structure, and the described porous medium layer 2 covers the outlets of all the discrete through-holes 3; the described porous medium layer 2 is A whole piece of continuous distribution is continuously and completely covered on the heated side of the dense wall surface layer 1, so that the outlets of all the discrete through holes 3 are covered by the whole piece of porous medium layer 2; or the porous medium layer 2 is not composed of Continuously distributed multi-piece composition, discretely partially covered on the heated side of the dense wall surface layer 1, so that the outlets of all discrete through holes 3 are covered by the multi-piece porous medium layer 2 respectively; the diameter of the discrete through holes 3 is 0.1-5mm; the discrete through-holes 3 are arranged in a straight row or a fork row; the discrete through-holes 3 are inclined, and are cylindrical holes or diffusion holes with local diffusion at the outlet.
因而使得冷却剂从离散通孔流过后即进入多孔介质,由于多孔介质对流体的发散作用,使得冷却剂最后在多孔介质的受热一侧形成类似发汗的冷却保护。Therefore, the coolant enters the porous medium after flowing through the discrete through-holes. Due to the divergent effect of the porous medium on the fluid, the coolant finally forms a cooling protection similar to sweating on the heated side of the porous medium.
本发明的受热壁面冷却结构,所述的离散通孔的直径为0.1~5mm、离散通孔3成顺排或叉排分布、离散通孔3可以是是倾斜的,为圆柱孔或出口带有局部扩散的扩散孔。本发明的离散通孔3的直径大小和现有的气膜冷却孔具有相同的数量级,约为数毫米;离散通孔3的排列也可以呈如常规气膜孔的顺排和叉排分布;考虑到受热一侧的高温主流流动方向,将离散通孔3设置成与高温主流的流动方向呈一锐角有助于提高冷却效率;常规的利用机械方式形成的离散通孔一般为圆柱孔,即横截面为圆型的孔,但为了改善出口冷却剂的分布,可在离散通孔的出口设置一个扩散出口,该扩散出口可以呈簸箕状、漏斗状等类似形状,从而形成扩散孔。In the heated wall surface cooling structure of the present invention, the diameter of the discrete through-holes is 0.1-5mm, the discrete through-
本发明的受热壁面冷却结构,所述的多孔介质层为青铜、不锈钢、镍基合金颗粒烧结而成,颗粒直径为10~5000微米,孔隙率在0.2~0.5之间,优选取颗粒直径为80微米和200微米,优选取孔隙率为0.33和0.36;作为另一选择,该多孔介质层也可以为陶瓷多孔结构,其孔径大小等于5~500微米之间,优选取20微米;作为又一选择,该多孔介质层为铜、铜合金、不锈钢或镍基合金丝网结构,其孔径大小等于100~1000微米,优选取孔径为100微米、200微米和500微米。多孔介质层的厚度为0.5~3倍离散通孔的直径或者为0.4~10mm,优选取1倍和1.8倍离散通孔的直径,或者优选取多孔介质层厚度为1.2mm和2mm,从而使得多孔介质层的厚度足以形成有效的发汗冷却,又不至于使冷却结构的厚度有不必要的增加。In the heated wall surface cooling structure of the present invention, the porous medium layer is formed by sintering bronze, stainless steel, and nickel-based alloy particles, the particle diameter is 10-5000 microns, and the porosity is between 0.2-0.5, preferably the particle diameter is 80 Micron and 200 micron, preferably get porosity 0.33 and 0.36; As another option, this porous medium layer also can be ceramic porous structure, and its pore size is equal to between 5~500 micron, preferably gets 20 micron; As another choice , the porous medium layer is a wire mesh structure of copper, copper alloy, stainless steel or nickel-based alloy, and its pore size is equal to 100-1000 microns, preferably 100 microns, 200 microns and 500 microns. The thickness of the porous medium layer is 0.5 to 3 times the diameter of the discrete through hole or 0.4 to 10 mm, preferably 1 and 1.8 times the diameter of the discrete through hole, or preferably the thickness of the porous medium layer is 1.2 mm and 2 mm, so that the porous The dielectric layer is thick enough to provide effective sweat cooling without unnecessarily increasing the thickness of the cooling structure.
本发明的受热壁面的冷却结构,其中的多孔介质层可以是连续分布的、完整地覆盖致密壁面层的受热一侧,这相当于使致密壁面覆盖一层多孔介质层的保护,使得冷却剂可以在多孔介质层中流动到致密壁面的任何需要受保护的区域之上;多孔介质层也可以是不连续分布在致密壁面层的受热一侧,局部覆盖离散通孔区域,考虑到实际情况中,受热壁面各个区域所承受的热流密度并不一样,常常仅需要对一些受热剧烈的区域进行特别的冷却防护,因此可以在这些单独的区域设置离散通孔,并局部地在这些区域的致密壁面之外覆盖多孔介质层,从而可以有的放矢地集中利用冷却剂。In the cooling structure of the heated wall surface of the present invention, the porous medium layer can be continuously distributed and completely cover the heated side of the dense wall surface layer, which is equivalent to the protection of the dense wall surface covered with a layer of porous medium layer, so that the coolant can In the porous medium layer, it flows to any area that needs to be protected on the dense wall surface; the porous medium layer can also be discontinuously distributed on the heated side of the dense wall surface layer, partially covering the discrete through-hole area. Considering the actual situation, The heat flux density of each area of the heated wall is not the same, and usually only need special cooling protection for some intensely heated areas, so discrete through holes can be set in these individual areas, and locally between the dense walls of these areas The outer cover is covered with a porous medium layer, so that the coolant can be used in a targeted manner.
本发明的受热壁面的冷却结构,其中的多孔介质层除了覆盖离散通孔的出口以外,还沿高温主流的上游和下游方向延伸,距最近一排离散通孔出口边缘的距离为0.5~10倍的离散通孔的直径,优选取该距离为5倍和10倍离散通孔的直径,为了使冷却剂从离散通孔流出后在多孔介质层中得到充分的扩散,应使多孔介质层的面积大于离散通孔的出口,并保证一定的裕量,例如如上所述的,覆盖离散通孔的出口后,该多孔介质层的边缘应该离最近一排离散通孔出口边缘大约为0.5~10倍的离散通孔直径的距离。由于冷却剂可在多孔介质层内沿下游方向扩散,因此所述的多孔介质层沿高温主流的下游方向延伸的距离大于沿高温主流的上游方向延伸的距离。In the cooling structure of the heated wall surface of the present invention, in addition to covering the outlets of the discrete through-holes, the porous medium layer also extends along the upstream and downstream directions of the high-temperature main flow, and the distance from the edge of the nearest row of discrete through-hole outlets is 0.5 to 10 times The diameter of the discrete through hole, preferably take this distance as 5 times and 10 times the diameter of the discrete through hole, in order to make the coolant fully diffuse in the porous medium layer after flowing out from the discrete through hole, the area of the porous medium layer should be It is larger than the outlet of the discrete through hole, and a certain margin is guaranteed. For example, as mentioned above, after covering the outlet of the discrete through hole, the edge of the porous medium layer should be about 0.5 to 10 times away from the edge of the nearest row of discrete through hole outlets. The distance of the discrete via diameters. Since the coolant can diffuse in the porous medium layer along the downstream direction, the distance that the porous medium layer extends along the downstream direction of the high-temperature main flow is greater than the distance along the upstream direction of the high-temperature main flow.
本发明的受热壁面冷却结构,所述的多孔介质层呈条状,覆盖整排离散通孔的出口。如上所述,该多孔介质层可以因地制宜设置成不连续分布,而离散通孔可以成排分布,因此覆盖其出口之上的多孔介质层可以呈条状。In the heated wall surface cooling structure of the present invention, the porous medium layer is strip-shaped, covering the outlets of the entire row of discrete through holes. As mentioned above, the porous medium layer can be discontinuously distributed according to local conditions, and the discrete through-holes can be distributed in rows, so the porous medium layer covering the outlets can be strip-shaped.
本发明的受热壁面冷却结构,该受热壁面在不同的区域采用不同的冷却方法,其特征在于:至少有一部分区域采用前述的离散通孔于多孔介质层组合的结构,至少有另一部分区域采用发汗冷却或气膜冷却,从而使多种冷却结构并存于该受热壁面上。In the heating wall cooling structure of the present invention, the heating wall adopts different cooling methods in different areas, and it is characterized in that: at least a part of the area adopts the structure of combining the aforementioned discrete through-holes with the porous medium layer, and at least another part of the area adopts sweating Cooling or film cooling, so that multiple cooling structures coexist on the heated wall.
本发明的燃气轮机叶片的冷却结构,具有构成叶片基本结构的致密壁面层1,该致密壁面层1开有供冷却剂通过的多个离散通孔3,其特征在于:该致密壁面层1的外侧覆盖有多孔介质层2,从而多孔介质层2和开有多个离散通孔3的致密壁面层1构成双层叠置的结构,所述的多孔介质层2覆盖所有离散通孔3的出口;所述的多孔介质层2的厚度为0.5~3倍离散通孔3的直径或者为0.4~10mm;所述的多孔介质层3是连续分布的一整片,连续地完整覆盖在致密壁面层1受热的外侧面,从而所有离散通孔3的出口被该一整片多孔介质层3覆盖;或者所述的多孔介质层3由不连续分布的多片组成,离散地局部覆盖在致密壁面层1受热的外侧面,从而所有离散通孔3的出口分别被该多片多孔介质层2覆盖;所述的离散通孔3的直径为0.1~5mm;离散通孔3的排列呈顺排或叉排分布;离散通孔3是倾斜的,为圆柱孔或出口带有局部扩散的扩散孔。The cooling structure of the gas turbine blade of the present invention has a dense
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的离散通孔的直径为0.1~5mm,优选选取为0.4mm、0.8mm和1.2mm;离散通孔的排列呈顺排或叉排分布,也可以是根据实际需要,采取顺排和叉排并存的方式排列离散通孔;离散通孔为圆柱孔或出口带有局部扩散的扩散孔;所述的多孔介质层的厚度为0.5~3倍离散通孔的直径或者为0.4~10mm,优选取1倍和1.8倍离散通孔的直径,或者优选取多孔介质层厚度为1.2mm和2mm,。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the diameter of the discrete through-holes is 0.1 to 5mm, preferably selected as 0.4mm, 0.8mm and 1.2mm; the discrete through-holes are arranged in a straight row or fork row According to actual needs, the discrete through-holes can be arranged in parallel and fork rows; the discrete through-holes are cylindrical holes or diffusion holes with local diffusion at the outlet; the thickness of the porous medium layer is 0.5- 3 times the diameter of the discrete through holes is either 0.4-10 mm, preferably 1 and 1.8 times the diameter of the discrete through holes, or preferably the thickness of the porous medium layer is 1.2 mm and 2 mm.
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的多孔介质层是连续分布的,完整地包覆致密壁面层的外侧;所述的多孔介质层也可以是不连续分布的,在致密壁面层的受热一侧局部覆盖离散通孔区域。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the porous medium layer is distributed continuously and completely covers the outside of the dense wall surface layer; the porous medium layer can also be distributed discontinuously. The heated side of the dense wall layer partially covers the discrete via regions.
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的多孔介质层沿高温主流的上游和下游方向延伸,从而使冷却剂从离散通孔流出后,可以在多孔介质层内对离散通孔出口上游和下游的区域都形成冷却保护,所述多孔介质层距最近一排离散通孔出口边缘的距离为0.5~10倍的离散通孔的直径,优选取该距离为5倍和10倍离散通孔的直径,从而保证冷却剂可以足够地得到多孔介质层的发散。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the porous medium layer extends along the upstream and downstream directions of the high-temperature main flow, so that after the coolant flows out from the discrete through holes, it can cool the discrete through holes in the porous medium layer. Both the upstream and downstream areas of the hole outlet form cooling protection, and the distance between the porous medium layer and the edge of the nearest row of discrete through-hole outlets is 0.5 to 10 times the diameter of the discrete through-hole, preferably 5 times and 10 times the distance Discrete the diameter of the through hole, so as to ensure that the coolant can be sufficiently diffused by the porous medium layer.
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的多孔介质层沿高温主流的下游方向延伸的距离大于沿高温主流的上游方向延伸的距离,从而考虑到高温主流流动对壁面附近冷却剂的影响,使下游区域得到充分冷却。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the distance that the porous medium layer extends along the downstream direction of the high-temperature main flow is greater than the distance extending along the upstream direction of the high-temperature main flow, thereby considering the cooling of the high-temperature main flow near the wall The influence of the agent, so that the downstream area is fully cooled.
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的多孔介质层成条状覆盖整排离散通孔的出口。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the porous medium layer covers the outlets of the entire row of discrete through holes in strips.
作为本发明的燃气轮机叶片的冷却结构的优选实施例,所述的多孔介质层为青铜、不锈钢或镍基合金颗粒烧结而成,颗粒直径为10~5000微米,孔隙率在0.2~0.5之间,优选取颗粒直径为80微米和200微米,优选取孔隙率为0.33和0.36;所述的多孔介质层也可以为陶瓷多孔结构,其孔径大小在5~500微米之间,优选取20微米;所述的多孔介质层还可以为编织丝网或者泡沫金属结构,其材料为铜、铜合金、不锈钢或镍基合金,其孔径大小等于100~1000微米,优选取孔径为100微米、200微米和500微米。As a preferred embodiment of the cooling structure of the gas turbine blade of the present invention, the porous medium layer is made of sintered bronze, stainless steel or nickel-based alloy particles, the particle diameter is 10-5000 microns, and the porosity is between 0.2-0.5, Preferably, the particle diameter is 80 microns and 200 microns, and the porosity is preferably 0.33 and 0.36; the porous medium layer can also be a ceramic porous structure, and its pore size is between 5 and 500 microns, preferably 20 microns; The porous medium layer described above can also be a woven wire mesh or a metal foam structure, and its material is copper, copper alloy, stainless steel or nickel-based alloy, and its pore size is equal to 100-1000 microns, preferably 100 microns, 200 microns and 500 microns. Microns.
本发明的又一种燃气轮机叶片的冷却结构,该燃气轮机叶片在不同的区域采用不同的冷却方法,其特征在于:至少有一部分区域采用上述离散通孔与多孔介质层覆盖的结构,至少有另一部分区域采用气膜冷却或发汗冷却,从而使多种冷却结构并存于该受热壁面上。Another gas turbine blade cooling structure of the present invention, the gas turbine blade adopts different cooling methods in different areas, characterized in that: at least a part of the area adopts the structure covered by the above-mentioned discrete through holes and porous medium layer, and at least another part Zones are either film cooled or sweat cooled, allowing multiple cooling structures to co-exist on the heated wall.
气膜冷却和发汗冷却均利用温度相对较低的流体作为冷却剂,将其从一定形式的壁面开口排出,形成冷却保护层,从而对高温壁面形成有效的主动冷却,但两者各有特点。通过将压气机空气作为冷却剂从叶型表面的离散通孔喷出,气膜冷却广泛用于保护透平叶片,以保证叶片等高温部件的安全运行。随着进一步提高燃气轮机的功率和热效率的需求,气膜冷却的冷却能力已不能完全满足不断提高的透平进口温度,此外,常规的离散通孔气膜冷却还存在叶片表面温度梯度较大的问题。Both air film cooling and sweat cooling use relatively low temperature fluid as a coolant, which is discharged from a certain form of wall opening to form a cooling protection layer, thereby forming an effective active cooling of the high temperature wall, but both have their own characteristics. Film cooling is widely used to protect turbine blades by injecting compressor air as coolant through discrete through-holes on the surface of the airfoil to ensure safe operation of high-temperature components such as blades. With the need to further increase the power and thermal efficiency of gas turbines, the cooling capacity of film cooling can no longer fully meet the increasing turbine inlet temperature. In addition, conventional discrete through-hole film cooling still has the problem of large temperature gradients on the blade surface .
通过将冷却剂从多孔壁面渗出,发汗冷却可以提供较高的冷却效率。现有的研究表明,获得相同的冷却效果,发汗冷却的吹风比约只为气膜冷却的1/50。利用金属丝网多孔壁面结合蒸汽冷却被认为是今后高效率透平的叶片冷却解决方法之一。然而,由于发汗冷却使用多孔壁面,其材料的强度远不如气膜冷却所要求的打离散通孔的致密壁面,并且极易由于堵塞等局部缺陷引起冷却效果急剧恶化,进而导致整体烧毁,以至于其至今仍不能进入叶片冷却的实用阶段。Sweating cooling can provide high cooling efficiency by expelling coolant from porous walls. Existing studies have shown that to obtain the same cooling effect, the blowing ratio of sweat cooling is only about 1/50 of that of air film cooling. The use of wire mesh porous walls combined with steam cooling is considered to be one of the solutions for blade cooling of high-efficiency turbines in the future. However, since sweat cooling uses a porous wall, the strength of the material is far inferior to the dense wall with discrete through-holes required by film cooling, and the cooling effect is easily deteriorated due to local defects such as blockage, which in turn leads to overall burnout, so that It has not yet entered the practical stage of blade cooling.
下面结合附图对本发明进行说明,以进一步理解本发明。The present invention will be described below in conjunction with the accompanying drawings, so as to further understand the present invention.
图3所示为本发明的受热壁面的冷却结构,具有致密壁面层1,该致密壁面层1开有供冷却剂通过的多个离散通孔3,该致密壁面层1的受热一侧覆盖有多孔介质层2,从而多孔介质层2和开有多个离散通孔3的致密壁面层1构成双层叠置的结构,所述的多孔介质层2完整覆盖所有离散通孔3的出口。由本发明的冷却方式的结构特点可知,由于在离散孔的出口覆盖了多孔介质层,因此从离散孔喷出的冷却剂可以被多孔介质层发散,使其在空间上的分布趋于均匀,从而改善原有气膜冷却的冷却率不均匀和温度梯度较大的问题,同时还由于强度较低的多孔介质层2之下还有一层仅开有离散孔的致密壁面层1,因此整体壁面的强度比单纯多孔介质层有很大的提高,且由于离散孔喷出的冷却剂在局部速度较高,因此还可以减小多孔介质层由于局部缺陷导致整体实效的几率。Fig. 3 shows the cooling structure of the heated wall surface of the present invention, which has a dense
图3所示的本发明的一种受热壁面的冷却结构,所述的离散通孔3的大小与现有燃气轮机叶片气膜冷却的气膜孔大小类似,其直径可以取为0.1~5mm,优选选取为0.4mm、0.8mm和1.2mm,一般大于多孔介质层孔隙的孔径;离散通孔3成顺排或叉排分布,这两种排列方式与现有气膜冷却中气膜孔的典型排列方式相同,也可以是根据实际需要顺排和叉排混合并存的;离散通孔可以是是倾斜的,即与外侧高温流体5的方向成一锐角,为圆柱孔或出口带有局部扩散的扩散孔。A kind of cooling structure of the heated wall surface of the present invention shown in Fig. 3, the size of described discrete through-
对于发汗冷却而言,其形成发汗的多孔介质层2一般为烧结金属颗粒层。本发明的受热壁面冷却结构中,多孔介质层2为青铜、不锈钢、镍基合金颗粒烧结而成,颗粒直径为10~5000微米,孔隙率在0.2~0.5之间;作为另一选择,该多孔介质层2也可以为陶瓷多孔结构,其孔径大小等于5~500微米之间;作为又一选择,该多孔介质层2为铜、铜合金、不锈钢或镍基合金丝网结构,其孔径大小等于100~1000微米。多孔介质层2的厚度为0.5~3倍离散通孔的直径或者为0.4~10mm,从而使得多孔介质层的厚度足以形成有效的发汗冷却,又不至于使冷却结构的厚度有不必要的增加。For sweat cooling, the porous
图4所示为多孔介质层2可以是连续分布的的实施例,多孔介质层2完整地覆盖致密壁面层1的受热一侧,这相当于使致密壁面层1被高温流体5冲刷的一侧覆盖一层多孔介质层2的保护,使得冷却剂7可以在多孔介质层2中流动到致密壁面层1的任何需要受保护的区域之上。Figure 4 shows an embodiment in which the porous
作为图4实施例相对应的实施例,图5所示为多孔介质层2不连续分布在致密壁面层1的受热一侧,局部覆盖离散通孔3区域。考虑到实际情况中,受热壁面各个区域所承受的热流密度并不一样,常常仅需要对一些受热剧烈的区域进行特别的冷却防护,因此可以在这些单独的区域设置离散通孔,并局部地在这些区域的致密壁面之外覆盖多孔介质层2,从而可以有的放矢地集中利用冷却剂。作为多孔介质层2不连续分布的一个实施例,其中的多孔介质层2除了覆盖离散通孔3的出口以外,还沿高温主流的上游和下游方向延伸,距最近一排离散通孔出口边缘的距离为0.5~10倍的离散通孔的直径,这是为了使冷却剂7从离散通孔3流出后在多孔介质层2中得到充分的扩散,设置多孔介质层2的面积大于离散通孔3的出口,并保证一定的裕量。As an embodiment corresponding to the embodiment in FIG. 4 , as shown in FIG. 5 , the porous
图6所示为本发明中多孔介质层2不连续分布的一种优选实施例,以离散通孔3的出口为基准点,多孔介质层2沿高温主流的下游方向延伸的距离大于沿高温流体5的上游方向延伸的距离,由于高温流体5和冷却剂7的流动方向相对统一,因此使多孔介质层2更多地分布在离散通孔3的下游有利于冷却剂7更好地分散。Figure 6 shows a preferred embodiment of the discontinuous distribution of the porous
考虑到加工的方便,一般离散通孔3可以设置为成排分布,因此作为本发明的多孔介质层2不连续分布情况下的受热壁面冷却结构的一种优选实施例,多孔介质层2呈条状,覆盖整排离散通孔3的出口,多孔介质层2可以因地制宜设置成不连续分布,而离散通孔3可以成排分布,因此覆盖其出口之上的多孔介质层2可以呈条状。Considering the convenience of processing, the generally discrete through-
作为本发明的一个优选实施例,考虑到现有的受热壁面的复杂情况,通常壁面上不同区域所收到的热流密度以及其他工况条件相差较大,因此可以因地制宜的采用多种冷却结构并存的冷却方式,例如在某些区域采用本发明的冷却结构,即在致密壁面上开设离散通孔,并在致密壁面的受热一侧覆盖多孔介质层,使多孔介质层完整覆盖离散通孔的出口,而在另一部分区域开设气膜孔,形成气膜冷却,以及可以选择地在另一部分区域将致密壁面层替换成多孔介质层,形成发汗冷却。As a preferred embodiment of the present invention, considering the complex situation of the existing heated wall, usually the heat flux received by different areas on the wall and other working conditions are quite different, so it is possible to adopt multiple cooling structures according to local conditions. For example, in some areas, the cooling structure of the present invention is adopted, that is, discrete through-holes are opened on the dense wall surface, and a porous medium layer is covered on the heated side of the dense wall surface, so that the porous medium layer completely covers the outlet of the discrete through-holes , and open film holes in another part of the area to form film cooling, and optionally replace the dense wall surface layer with a porous medium layer in another part of the area to form sweat cooling.
图9所示为应用本发明冷却结构的燃气轮机叶片的一种实施例,与现有的气膜冷却燃气轮机叶片相比,本发明的燃气轮机叶片冷却结构中,叶片致密壁面层1上开设有离散通孔3,但在致密壁面层1的外侧覆盖有一层多孔介质层2,多孔介质层2完整覆盖这些离散通孔3的出口,从而使冷却剂从叶片内部冷却剂通道4流过时,可以从离散通孔3喷出,并由于多孔介质层2的分散作用,在叶片外表面形成类似发汗冷却的均匀保护层。同时,相对于原有的气膜冷却,本发明的冷却结构可以有效克服叶片致密壁面温度梯度大、冷却效率不足的缺点,并且同已经提出来的整体多孔介质叶片相比,其结构强度有很大的提高。Fig. 9 shows an embodiment of a gas turbine blade applying the cooling structure of the present invention. Compared with the existing film cooling gas turbine blade, in the gas turbine blade cooling structure of the present invention, discrete channels are provided on the dense
图10所示为现有燃气轮机叶片气膜冷却示意图,离散通孔成排地分布在叶片的致密壁面层上,从而可以在不同的位置形成连成片的气膜冷却保护层。Fig. 10 is a schematic diagram of film cooling of an existing gas turbine blade. Discrete through-holes are distributed in rows on the dense wall layer of the blade, so that film cooling protection layers connected in sheets can be formed at different positions.
图11为本发明的燃气轮机叶片的冷却结构,类似于图10所示的气膜冷却,叶片致密壁面层上的离散通孔成排分布,而在叶片的外侧不连续地覆盖多孔介质层,呈条状的多孔介质层覆盖离散通孔的出口。并且作为一个优选实施例,对于不同的区域,可以选择不同的多孔介质层,例如不同的孔隙率,甚至不同类型的多孔介质层。在一些热流密度较小的区域,或者一些气膜冷却已经可以胜任的区域,例如叶片尾缘区域,离散通孔可以不被多孔介质层覆盖,从而形成了多种冷却结构并存的燃气轮机叶片。Fig. 11 is the cooling structure of the gas turbine blade of the present invention, similar to the film cooling shown in Fig. 10, the discrete through-holes on the dense wall surface layer of the blade are distributed in rows, and the outer side of the blade is discontinuously covered with a porous medium layer, in the form of A strip-shaped layer of porous medium covers the outlets of the discrete through-holes. And as a preferred embodiment, for different regions, different porous medium layers can be selected, such as different porosity, or even different types of porous medium layers. In some areas with low heat flux density, or some areas where film cooling is already competent, such as the blade trailing edge area, the discrete through-holes may not be covered by the porous medium layer, thus forming a gas turbine blade with multiple cooling structures.
计算机数值模拟的结果表明,本发明的冷却效果要好于常规的气膜冷却,且冷却时壁面温度梯度要小很多。图12(a)和图12(b)分别表示了在某一冷却量下常规气膜冷却和本申请冷却结构的表面温度梯度分布,从图中可以得到,采用本发明的冷却结构可以缩小表面温度梯度较高的区域。并且,计算机模拟结构表明:1)在吹风比为0.6的情况下,常规气膜冷却的表面温度梯度最大值为329007 K/m、局部冷却区域的表面温度梯度平均值为3293 K/m,本发明的冷却结构的表面温度梯度最大值为16046 K/m、局部冷却区域的表面温度梯度平均值为1373 K/m;2)在吹风比为0.9的情况下,常规气膜冷却的表面温度梯度最大值为351654K/m、局部冷却区域的表面温度梯度平均值为1790 K/m,本发明的冷却结构的表面温度梯度最大值为16816 K/m、局部冷却区域的表面温度梯度平均值为1301 K/m。可见,在相同吹风比(即相同冷却剂流量)的情况下,采用本发明的冷却结构可以大大降低表面的温度梯度,从而避免产生太高的热应力。The results of computer numerical simulation show that the cooling effect of the invention is better than that of conventional air film cooling, and the temperature gradient of the wall surface is much smaller during cooling. Fig. 12 (a) and Fig. 12 (b) respectively have represented the surface temperature gradient distribution of conventional film cooling and the cooling structure of the present application under a certain cooling capacity, can obtain from the figure, adopt the cooling structure of the present invention to reduce the surface temperature Areas with high temperature gradients. Moreover, the computer simulation structure shows that: 1) when the blowing ratio is 0.6, the maximum surface temperature gradient of conventional air film cooling is 329007 K/m, and the average surface temperature gradient of the local cooling area is 3293 K/m. The maximum surface temperature gradient of the invented cooling structure is 16046 K/m, and the average surface temperature gradient of the local cooling area is 1373 K/m; 2) When the blowing ratio is 0.9, the surface temperature gradient of conventional air film cooling The maximum value is 351654K/m, the average value of the surface temperature gradient of the local cooling area is 1790 K/m, the maximum value of the surface temperature gradient of the cooling structure of the present invention is 16816 K/m, and the average value of the surface temperature gradient of the local cooling area is 1301 K/m. It can be seen that under the same blowing ratio (ie, the same coolant flow rate), the cooling structure of the present invention can greatly reduce the temperature gradient on the surface, thereby avoiding too high thermal stress.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101774724A CN100552189C (en) | 2007-11-16 | 2007-11-16 | Heated wall cooling structure and gas turbine blade using the cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101774724A CN100552189C (en) | 2007-11-16 | 2007-11-16 | Heated wall cooling structure and gas turbine blade using the cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101173610A true CN101173610A (en) | 2008-05-07 |
CN100552189C CN100552189C (en) | 2009-10-21 |
Family
ID=39422328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101774724A Active CN100552189C (en) | 2007-11-16 | 2007-11-16 | Heated wall cooling structure and gas turbine blade using the cooling structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100552189C (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102140964B (en) * | 2010-02-03 | 2013-07-03 | 中国科学院工程热物理研究所 | Structure for improving cooling efficiency of gas film of discrete hole |
CN103221640A (en) * | 2010-09-21 | 2013-07-24 | 帕尔默实验室有限责任公司 | High efficiency power production methods, assemblies, and systems |
CN103672966A (en) * | 2013-11-12 | 2014-03-26 | 清华大学 | Thermal protection method for scramjet engine fuel injection supporting plate by utilization of transpiration cooling |
CN103807844A (en) * | 2014-01-24 | 2014-05-21 | 华东理工大学 | Method for cooling metal wall in contact with high-temperature gas |
CN104074556A (en) * | 2013-03-29 | 2014-10-01 | 通用电气公司 | Hot gas path component for turbine system |
CN104279006A (en) * | 2013-07-12 | 2015-01-14 | 通用电气公司 | Turbine component and methods of assembling the same |
JP2015048847A (en) * | 2013-08-30 | 2015-03-16 | ゼネラル・エレクトリック・カンパニイ | Gas turbine components with porous cooling features |
CN104564164A (en) * | 2013-10-22 | 2015-04-29 | 通用电气公司 | Cooled article and method of forming a cooled article |
CN105736062A (en) * | 2014-12-29 | 2016-07-06 | 通用电气公司 | Hot gas path component and methods of manufacture |
CN107762563A (en) * | 2016-08-16 | 2018-03-06 | 通用电气公司 | With polycolporate engine component |
CN107914862A (en) * | 2017-11-20 | 2018-04-17 | 北京临近空间飞行器系统工程研究所 | A kind of full active cooling hypersonic aircraft |
CN106516072B (en) * | 2016-11-10 | 2018-06-29 | 清华大学 | A kind of thermal protection structure at the leading edge position of hypersonic vehicle |
CN108223021A (en) * | 2017-12-28 | 2018-06-29 | 吴谦 | A kind of air air film and the method for water diverging composite blading cooling |
KR20190029839A (en) * | 2017-09-12 | 2019-03-21 | 한국기계연구원 | Gas turbin blade |
CN110566290A (en) * | 2019-07-23 | 2019-12-13 | 华南理工大学 | Application of metal wire metallurgical bonding porous material in manufacturing high-temperature-resistant mechanical parts |
CN110696440A (en) * | 2019-10-08 | 2020-01-17 | 西安电子科技大学 | Excessive thermal protection flexible skin for high-speed aircraft based on porous foam and its method |
CN113059287A (en) * | 2021-03-15 | 2021-07-02 | 华东师范大学 | Laser inner and outer hole machining method for aero-engine flame tube with thermal barrier coating |
CN113217949A (en) * | 2021-05-20 | 2021-08-06 | 西安航天动力研究所 | Combustion chamber diverging and cooling structure and ramjet combustion chamber |
WO2022051912A1 (en) * | 2020-09-08 | 2022-03-17 | 西门子股份公司 | Laval nozzle and manufacturing method therefor |
CN116085118A (en) * | 2023-04-10 | 2023-05-09 | 清华大学 | Guiding structure |
CN116398254A (en) * | 2023-03-24 | 2023-07-07 | 清华大学 | Blade-type pre-swirl nozzle system with adjustable outlet angle and gas turbine with it |
CN117128537A (en) * | 2023-10-25 | 2023-11-28 | 中国科学技术大学 | Cooling structure of combustion chamber of scramjet engine and scramjet engine |
-
2007
- 2007-11-16 CN CNB2007101774724A patent/CN100552189C/en active Active
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102140964B (en) * | 2010-02-03 | 2013-07-03 | 中国科学院工程热物理研究所 | Structure for improving cooling efficiency of gas film of discrete hole |
CN103221640A (en) * | 2010-09-21 | 2013-07-24 | 帕尔默实验室有限责任公司 | High efficiency power production methods, assemblies, and systems |
US12264596B2 (en) | 2010-09-21 | 2025-04-01 | 8 Rivers Capital, Llc | High efficiency power production methods, assemblies, and systems |
US11859496B2 (en) | 2010-09-21 | 2024-01-02 | 8 Rivers Capital, Llc | High efficiency power production methods, assemblies, and systems |
US10927679B2 (en) | 2010-09-21 | 2021-02-23 | 8 Rivers Capital, Llc | High efficiency power production methods, assemblies, and systems |
US11459896B2 (en) | 2010-09-21 | 2022-10-04 | 8 Rivers Capital, Llc | High efficiency power production methods, assemblies, and systems |
CN103221640B (en) * | 2010-09-21 | 2015-11-25 | 帕尔默实验室有限责任公司 | Effectively power generates methods, devices and systems |
CN104074556A (en) * | 2013-03-29 | 2014-10-01 | 通用电气公司 | Hot gas path component for turbine system |
US20140321994A1 (en) * | 2013-03-29 | 2014-10-30 | General Electric Company | Hot gas path component for turbine system |
CN104074556B (en) * | 2013-03-29 | 2017-09-15 | 通用电气公司 | Hot gas path part for turbine system |
US10100666B2 (en) * | 2013-03-29 | 2018-10-16 | General Electric Company | Hot gas path component for turbine system |
CN104279006A (en) * | 2013-07-12 | 2015-01-14 | 通用电气公司 | Turbine component and methods of assembling the same |
CN104279006B (en) * | 2013-07-12 | 2018-05-15 | 通用电气公司 | Turbine component and its assemble method |
CN104420893A (en) * | 2013-08-30 | 2015-03-18 | 通用电气公司 | Gas Turbine Components with Porous Cooling Features |
JP2015048847A (en) * | 2013-08-30 | 2015-03-16 | ゼネラル・エレクトリック・カンパニイ | Gas turbine components with porous cooling features |
CN104564164A (en) * | 2013-10-22 | 2015-04-29 | 通用电气公司 | Cooled article and method of forming a cooled article |
US10539041B2 (en) | 2013-10-22 | 2020-01-21 | General Electric Company | Cooled article and method of forming a cooled article |
CN103672966B (en) * | 2013-11-12 | 2015-06-24 | 清华大学 | Thermal protection method for scramjet engine fuel injection supporting plate by utilization of transpiration cooling |
CN103672966A (en) * | 2013-11-12 | 2014-03-26 | 清华大学 | Thermal protection method for scramjet engine fuel injection supporting plate by utilization of transpiration cooling |
CN103807844A (en) * | 2014-01-24 | 2014-05-21 | 华东理工大学 | Method for cooling metal wall in contact with high-temperature gas |
CN103807844B (en) * | 2014-01-24 | 2016-01-20 | 华东理工大学 | A kind of metallic walls cooling means contacted with high-temperature gas |
CN105736062A (en) * | 2014-12-29 | 2016-07-06 | 通用电气公司 | Hot gas path component and methods of manufacture |
CN105736062B (en) * | 2014-12-29 | 2019-08-06 | 通用电气公司 | Turbine component and method of manufacture |
CN107762563A (en) * | 2016-08-16 | 2018-03-06 | 通用电气公司 | With polycolporate engine component |
US10508551B2 (en) | 2016-08-16 | 2019-12-17 | General Electric Company | Engine component with porous trench |
CN106516072B (en) * | 2016-11-10 | 2018-06-29 | 清华大学 | A kind of thermal protection structure at the leading edge position of hypersonic vehicle |
KR20190029839A (en) * | 2017-09-12 | 2019-03-21 | 한국기계연구원 | Gas turbin blade |
KR102230700B1 (en) * | 2017-09-12 | 2021-03-23 | 한국기계연구원 | Gas turbin blade |
US11313234B2 (en) | 2017-09-12 | 2022-04-26 | Korea Institute Of Machinery & Materials | Blade for gas turbine |
CN107914862A (en) * | 2017-11-20 | 2018-04-17 | 北京临近空间飞行器系统工程研究所 | A kind of full active cooling hypersonic aircraft |
CN108223021A (en) * | 2017-12-28 | 2018-06-29 | 吴谦 | A kind of air air film and the method for water diverging composite blading cooling |
CN110566290A (en) * | 2019-07-23 | 2019-12-13 | 华南理工大学 | Application of metal wire metallurgical bonding porous material in manufacturing high-temperature-resistant mechanical parts |
CN110696440A (en) * | 2019-10-08 | 2020-01-17 | 西安电子科技大学 | Excessive thermal protection flexible skin for high-speed aircraft based on porous foam and its method |
CN110696440B (en) * | 2019-10-08 | 2020-12-18 | 西安电子科技大学 | Excessive thermal protection flexible skin for high-speed aircraft based on porous foam and its method |
WO2022051912A1 (en) * | 2020-09-08 | 2022-03-17 | 西门子股份公司 | Laval nozzle and manufacturing method therefor |
CN113059287A (en) * | 2021-03-15 | 2021-07-02 | 华东师范大学 | Laser inner and outer hole machining method for aero-engine flame tube with thermal barrier coating |
CN113059287B (en) * | 2021-03-15 | 2022-10-25 | 星控激光科技(上海)有限公司 | Laser inner and outer hole machining method for aero-engine flame tube with thermal barrier coating |
CN113217949A (en) * | 2021-05-20 | 2021-08-06 | 西安航天动力研究所 | Combustion chamber diverging and cooling structure and ramjet combustion chamber |
CN116398254A (en) * | 2023-03-24 | 2023-07-07 | 清华大学 | Blade-type pre-swirl nozzle system with adjustable outlet angle and gas turbine with it |
CN116398254B (en) * | 2023-03-24 | 2025-06-27 | 清华大学 | Blade-type pre-rotation nozzle system with adjustable outlet angle and gas turbine with same |
CN116085118A (en) * | 2023-04-10 | 2023-05-09 | 清华大学 | Guiding structure |
CN117128537A (en) * | 2023-10-25 | 2023-11-28 | 中国科学技术大学 | Cooling structure of combustion chamber of scramjet engine and scramjet engine |
Also Published As
Publication number | Publication date |
---|---|
CN100552189C (en) | 2009-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100552189C (en) | Heated wall cooling structure and gas turbine blade using the cooling structure | |
Bunker | Gas turbine cooling: moving from macro to micro cooling | |
US7670675B2 (en) | High-temperature layered system for dissipating heat and method for producing said system | |
CN101526228B (en) | Reentry type compound cooling structure | |
JP2004534178A (en) | Coolable segments for turbomachinery and combustion turbines | |
JP2015048847A (en) | Gas turbine components with porous cooling features | |
CN107687350A (en) | A kind of double-deck liquid-sucking core efficiently cools down turbine guide vane device without perforate | |
EP3168535B1 (en) | Aerodynamically shaped body and method for cooling a body provided in a hot fluid flow | |
US9316104B2 (en) | Film cooling channel array having anti-vortex properties | |
CN106247407A (en) | A kind of fuel support plate ejector filler | |
CN110925791A (en) | Double-wall impact/Y-shaped multi-inclined-hole-wall composite cooling type combustion chamber flame tube wall surface structure | |
CN206600840U (en) | A kind of burner inner liner of combustion chamber | |
CN111207412A (en) | Combustor flame tube adopting floating tile | |
CN108291449B (en) | Component and method for a fluid flow engine | |
CN115163204B (en) | An aircraft engine high pressure turbine blade cascade end wall cooling structure | |
CN105422188A (en) | Turbine blade with heat shield type composite cooling structure | |
CN112211676A (en) | A turbine blade and its double wall | |
CN209990561U (en) | Thermal protection structure of TRRE ejection rocket and ejection rocket thereof | |
CN112178693B (en) | Offset hole row and cylindrical hole row combined cooling structure for corrugated heat shield | |
CN113217949A (en) | Combustion chamber diverging and cooling structure and ramjet combustion chamber | |
CN111237087B (en) | Micro-pore plate active and passive composite cooling structure for aerospace power and cooling method | |
CN209013233U (en) | A combustion chamber with a composite special-shaped groove gas film cooling structure | |
WO2007096957A1 (en) | Method of controlling pore configuration of porous metal | |
CN115434756B (en) | Turbine blade double wall cooling structure | |
CN213627696U (en) | Turbine blade and double-layer wall thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |