CN101172617A - The method for synthesizing nanometer type A molecular sieve - Google Patents
The method for synthesizing nanometer type A molecular sieve Download PDFInfo
- Publication number
- CN101172617A CN101172617A CNA2007100312677A CN200710031267A CN101172617A CN 101172617 A CN101172617 A CN 101172617A CN A2007100312677 A CNA2007100312677 A CN A2007100312677A CN 200710031267 A CN200710031267 A CN 200710031267A CN 101172617 A CN101172617 A CN 101172617A
- Authority
- CN
- China
- Prior art keywords
- type
- nano
- molecular sieve
- ultrasonic
- molecular sieves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 34
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 238000002425 crystallisation Methods 0.000 claims abstract description 9
- 230000008025 crystallization Effects 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 8
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 6
- 238000001308 synthesis method Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- 235000019353 potassium silicate Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical group [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 238000010189 synthetic method Methods 0.000 claims 3
- 239000000243 solution Substances 0.000 claims 2
- 239000012670 alkaline solution Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
本发明公开了一种合成纳米A型分子筛的方法,尤其涉及一种无模板剂,低温条件下超声波晶化法快速合成纳米A型分子筛的方法;该方法是先将NaOH溶于水,再加入铝源,搅拌溶解,得到溶液A;然后慢慢向A中滴加硅源,剧烈搅拌数小时,得到溶液B,把溶液B放到20~60℃的低温水浴中超声波晶化10~60min,经超声波晶化的产物经洗涤,过滤,干燥,最后得到纳米A型分子筛;该方法操作十分简单易行,合成温度低,合成时间短,所得纳米A型分子筛的颗粒均匀。The invention discloses a method for synthesizing nano-type A molecular sieves, in particular to a method for rapidly synthesizing nano-type A molecular sieves by ultrasonic crystallization under low temperature conditions without a template agent; the method is to dissolve NaOH in water first, and then add Aluminum source, stir and dissolve to obtain solution A; then slowly add silicon source dropwise to A, stir vigorously for several hours to obtain solution B, put solution B in a low-temperature water bath at 20-60°C for ultrasonic crystallization for 10-60min, The product crystallized by ultrasonic waves is washed, filtered and dried to finally obtain nano-type A molecular sieve; the method is very simple to operate, the synthesis temperature is low, the synthesis time is short, and the particles of the obtained nano-type A molecular sieve are uniform.
Description
技术领域technical field
本发明涉及一种A型分子筛的合成方法,尤其涉及一种低温条件下快速合成较均匀的球型纳米A型分子筛的方法。The invention relates to a method for synthesizing A-type molecular sieves, in particular to a method for rapidly synthesizing relatively uniform spherical nano-type A molecular sieves under low temperature conditions.
背景技术Background technique
纳米级分子筛具有常规分子筛不可比拟的优异性能,用途广泛,因而纳米分子筛的合成及其应用是当前研究的热点之一。目前,国内外制备分子筛的方法主要有常规水热法(无模板剂与有机模板)(石油化工,2005,34:1099~1102),微波法(Catal.Today,1998,44:301~308),空间限制法(Chemical Communication,1999,673~674),蒸汽相法(日用化学工业,2003,33:295~297)等。常规无模板剂水热法耗能,反应时间长,而且得到的晶粒既大又不均匀(1~10μm),这种方法不适合制备纳米级分子筛。Nano-scale molecular sieves have excellent properties unmatched by conventional molecular sieves and are widely used. Therefore, the synthesis and application of nano-molecular sieves is one of the current research hotspots. At present, the methods for preparing molecular sieves at home and abroad mainly include conventional hydrothermal method (no template agent and organic template) (Petrochemical Industry, 2005, 34: 1099-1102), microwave method (Catal.Today, 1998, 44: 301-308) , Space Confinement Method (Chemical Communication, 1999, 673~674), Vapor Phase Method (Daily Chemical Industry, 2003, 33: 295~297), etc. The conventional template-free hydrothermal method consumes energy, takes a long time to react, and the crystal grains obtained are large and uneven (1-10 μm). This method is not suitable for the preparation of nano-sized molecular sieves.
微波合成法也是近几年兴起的一种快速合成分子筛的方法,它合成产物的粒径也比较小。SlangenPM(Microp.Mater.,1997,9:259~265)等在不同的室温陈化后,在100℃下用微波法快速合成了几百纳米的4A分子筛。Microwave synthesis is also a method for rapid synthesis of molecular sieves that has emerged in recent years, and the particle size of its synthesized products is also relatively small. SlangenPM (Microp. Mater., 1997, 9: 259-265) et al. rapidly synthesized several hundred nanometers of 4A molecular sieves at 100°C by microwave method after aging at different room temperatures.
空间限制法是通过一种晶化惰性介质来限制晶粒的继续长大,这种方法就是要在高温下去除限制晶粒生长的惰性介质(如碳黑和淀粉),同时会造成纳米晶的团聚。Iver Schmidt(Inorg.Chem.2000,39:2279~2283)等用此法合成了几十纳米的沸石分子筛。The space limitation method is to restrict the continued growth of grains through a crystallization inert medium. This method is to remove the inert medium (such as carbon black and starch) that restricts grain growth at high temperature, and at the same time, it will cause the growth of nanocrystals. reunion. Iver Schmidt (Inorg.Chem.2000, 39: 2279-2283) and others synthesized tens of nanometer zeolite molecular sieves by this method.
蒸汽相法是把制备的前驱体做成饼状,放在一个底部可以放溶剂并能密封的带支架上的体系中,在一定温度下反应。这种方法合成比较耗能耗时,产物的晶粒在几个微米。杨效益等利用此法在100℃合成了样品粒度分布<4μm的4A分子筛。另外在室温下可以合成纳米分子筛,Svetlana(Science,1999,183:958~960)等合成了纳米级4A分子筛,但反应周期很长,还需加入一定量的有机模板剂。The vapor phase method is to make the prepared precursor into a cake, put it in a system with a support at the bottom that can put a solvent and can be sealed, and react at a certain temperature. The synthesis of this method consumes more energy and time, and the crystal grains of the product are several microns. Yang Yili et al. used this method to synthesize 4A molecular sieves with sample particle size distribution <4 μm at 100 °C. In addition, nano-sized molecular sieves can be synthesized at room temperature. Svetlana (Science, 1999, 183: 958-960) and others have synthesized nano-sized 4A molecular sieves, but the reaction cycle is very long, and a certain amount of organic templates need to be added.
超声波法也是近几年兴起的一种快速合成法,它是利用声空化能加速和控制化学反应,提高反应产率和引发新的化学反应的一门新的交叉学科。声空化是指液体中的微小泡核在声波作用下被激活,表现为泡核的振荡、生长、收缩乃至崩溃等一系列动力学过程。在空化泡崩溃的极短时间内,会在其周围的极小空间范围内产生出1900~5200 K的高温和超过50MPa的高压,温度变化率高达109K/s,并伴有强烈的冲击波和时速高达400km/h的射流。这些条件足以打开结合力强的化学键(376.8~418.6kJ/mol),并且促进“水相燃烧”(aqueouscombustion)反应。附着在固体杂质、微尘或容器表面上及细缝中微气泡或气泡,因结构不均匀造成液体内强度减弱的微小区域中析出气体等均可形成这种微小泡核。采用超声波制备粉体材料国内外报道的比较多(有色金属,2001,53:81~83),但采用超声波合成分子筛国内外报道极少。钟声亮(高等学校化学学报,2005,26:1603~1606)等利用超声波快速合成了平均粒径为280nm的4A分子筛,粒径比水热法合成的要小很多,反应时间是水热法的1/24。Ultrasonic method is also a rapid synthesis method that has emerged in recent years. It is a new interdisciplinary subject that uses acoustic cavitation energy to accelerate and control chemical reactions, increase reaction yields, and initiate new chemical reactions. Acoustic cavitation refers to the activation of micro-bubble nuclei in a liquid under the action of sound waves, which manifests as a series of dynamic processes such as oscillation, growth, shrinkage and even collapse of the nuclei. In a very short time when the cavitation bubble collapses, a high temperature of 1900-5200 K and a high pressure of more than 50 MPa will be generated in the small space around it, and the temperature change rate is as high as 10 9 K/s, accompanied by strong Shock waves and jets with speeds up to 400km/h. These conditions are sufficient to open the strong chemical bonds (376.8 ~ 418.6kJ/mol), and promote the "aqueous combustion" (aqueouscombustion) reaction. Such micro-bubble nuclei can be formed by attaching to solid impurities, fine dust or the surface of the container and micro-bubbles or bubbles in the crevices, and the precipitation of gas in the micro-area where the strength of the liquid is weakened due to uneven structure. There are many domestic and foreign reports on the preparation of powder materials by ultrasonic waves (Nonferrous Metals, 2001, 53:81-83), but there are very few domestic and foreign reports on the use of ultrasonic waves to synthesize molecular sieves. Zhong Shengliang (Acta Chemical Journal of Chinese Universities, 2005, 26: 1603-1606) and others used ultrasonic waves to quickly synthesize 4A molecular sieves with an average particle size of 280nm. /twenty four.
已有的合成法都有各自不同的缺点:或反应温度高,晶化时间长,或加入有机模板剂,或加入惰性空间限制介质,或延长陈化时间。鉴于此,本专利采用超声法合成了纳米A型分子筛。The existing synthesis methods all have their own disadvantages: either high reaction temperature, long crystallization time, or adding an organic template agent, or adding an inert space-limited medium, or prolonging the aging time. In view of this, this patent adopts ultrasonic method to synthesize nano-type A molecular sieve.
发明内容Contents of the invention
本发明提供一种纳米A型分子筛的合成方法,尤其涉及一种无模板剂,低温条件下超声波晶化法快速合成纳米A型分子筛的方法。用NaOH溶于水,再加入铝源,搅拌溶解,得到溶液A;然后慢慢加入硅源到A中,剧烈搅拌数小时,得到溶液B,其摩尔比为Na2O∶SiO2∶Al2O3∶H2O=5~10∶2.0~3.0∶1∶90~220,把溶液B放到20~60℃的低温水浴中超声波晶化10~60min,超声波晶化的产物经洗涤,过滤,干燥,最后得到纳米A型分子筛。The invention provides a method for synthesizing nano-type A molecular sieves, in particular to a method for rapidly synthesizing nano-type A molecular sieves without a template agent by ultrasonic crystallization under low temperature conditions. Dissolve NaOH in water, then add aluminum source, stir and dissolve to obtain solution A; then slowly add silicon source to A, and stir vigorously for several hours to obtain solution B, the molar ratio of which is Na 2 O:SiO 2 :Al 2 O 3 : H 2 O=5~10:2.0~3.0:1:90~220, put solution B in a low-temperature water bath at 20~60°C for ultrasonic crystallization for 10~60min, wash the product of ultrasonic crystallization, and filter , and dried to obtain nano-type A molecular sieves.
所述的NaOH碱溶液的pH>14。所述的铝源为硫酸铝、硝酸铝、异丙醇铝、偏铝酸钠或铝酸钠。所述的硅源为水玻璃、正硅酸乙酯、硅酸、二氧化硅或硅溶胶。超声波的功率为120W。合成的纳米A型分子筛颗粒均匀20~100nm。该法操作十分简单易行,合成温度低,合成时间短,所得球型纳米A型分子筛的颗粒均匀。The pH of the NaOH alkali solution is >14. The aluminum source is aluminum sulfate, aluminum nitrate, aluminum isopropoxide, sodium metaaluminate or sodium aluminate. The silicon source is water glass, tetraethyl orthosilicate, silicic acid, silicon dioxide or silica sol. The power of the ultrasound is 120W. The particle size of the synthesized nano-type A molecular sieve is evenly 20-100nm. The operation of the method is very simple and easy, the synthesis temperature is low, the synthesis time is short, and the particles of the obtained spherical nano-type A molecular sieve are uniform.
本发明的有益效果是::本发明的合成方法不需添加有机模板剂或空间限制剂,不要陈化,反应温度低,晶化时间短,操作十分简单快速。The beneficial effects of the present invention are: the synthesis method of the present invention does not need to add organic templates or space-limiting agents, does not require aging, has low reaction temperature, short crystallization time, and is very simple and quick to operate.
附图说明Description of drawings
图1是A型分子筛的X射线衍射(XRD)图。Figure 1 is an X-ray diffraction (XRD) pattern of type A molecular sieve.
图2是A型分子筛的透射电镜(TEM)照片。Fig. 2 is a transmission electron microscope (TEM) photograph of type A molecular sieve.
具体实施方式Detailed ways
实例1Example 1
称取氢氧化钠21.0g,溶于80.0g水中,再加入11.0g铝酸钠,使之溶解至澄清,再滴加硅溶胶30.0g,剧烈搅拌6~18h,在20~60℃水浴中超声波晶化10~60min,最后用0.01mol/L的氢氧化钠溶液反复洗涤,过滤,再干燥即可得到纳米A型分子筛。Weigh 21.0g of sodium hydroxide, dissolve it in 80.0g of water, then add 11.0g of sodium aluminate to dissolve until clear, then add dropwise 30.0g of silica sol, stir vigorously for 6-18 hours, and ultrasonically in a water bath at 20-60°C Crystallize for 10-60 minutes, and finally wash repeatedly with 0.01mol/L sodium hydroxide solution, filter, and dry to obtain nano-type A molecular sieve.
实例2Example 2
称取氢氧化钠30.5g,溶于200.0g水中,再加入16.0g铝酸钠,使之溶解至澄清,再滴加硅溶胶38.0g,剧烈搅拌6~18h,在20~60℃水浴中超声波晶化10~60min,最后用0.01mol/L的氢氧化钠溶液反复洗涤,过滤,再干燥即可得到纳米A型分子筛。Weigh 30.5g of sodium hydroxide, dissolve it in 200.0g of water, then add 16.0g of sodium aluminate to dissolve until clear, then add dropwise 38.0g of silica sol, stir vigorously for 6-18 hours, and ultrasonically in a water bath at 20-60°C Crystallize for 10-60 minutes, and finally wash repeatedly with 0.01mol/L sodium hydroxide solution, filter, and dry to obtain nano-type A molecular sieve.
实例3Example 3
称取氢氧化钠40.0g,溶于200.0g水中,再加入18.0g铝酸钠,使之溶解至澄清,再滴加硅溶胶49.0g,剧烈搅拌6~18h,在20~60℃水浴中超声波晶化10~60min,最后用0.01mol/L的氢氧化钠溶液反复洗涤,过滤,再干燥即可得到纳米A型分子筛。Weigh 40.0g of sodium hydroxide, dissolve it in 200.0g of water, then add 18.0g of sodium aluminate to dissolve until clear, then add dropwise 49.0g of silica sol, stir vigorously for 6-18h, and ultrasonically in a water bath at 20-60°C Crystallize for 10-60 minutes, and finally wash repeatedly with 0.01mol/L sodium hydroxide solution, filter, and dry to obtain nano-type A molecular sieve.
实例4Example 4
称取氢氧化钠35.6g,溶于160.0g水中,再加入14.0g铝酸钠,使之溶解至澄清,再滴加硅溶胶31.5g,剧烈搅拌6~18h,在20~60℃水浴中超声波晶化10~60min,最后用0.01mol/L的氢氧化钠溶液反复洗涤,过滤,再干燥即可得到纳米A型分子筛。Weigh 35.6g of sodium hydroxide, dissolve it in 160.0g of water, then add 14.0g of sodium aluminate to dissolve until clear, then add dropwise 31.5g of silica sol, stir vigorously for 6-18 hours, and ultrasonically in a water bath at 20-60°C Crystallize for 10-60 minutes, and finally wash repeatedly with 0.01mol/L sodium hydroxide solution, filter, and dry to obtain nano-type A molecular sieve.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100312677A CN101172617A (en) | 2007-11-06 | 2007-11-06 | The method for synthesizing nanometer type A molecular sieve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100312677A CN101172617A (en) | 2007-11-06 | 2007-11-06 | The method for synthesizing nanometer type A molecular sieve |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101172617A true CN101172617A (en) | 2008-05-07 |
Family
ID=39421405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100312677A Pending CN101172617A (en) | 2007-11-06 | 2007-11-06 | The method for synthesizing nanometer type A molecular sieve |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101172617A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103894121A (en) * | 2014-03-12 | 2014-07-02 | 上海交通大学 | Preparation and application of nano zeolite reinforced xanthan gum composite hydrogel functional microspheres |
CN104045095A (en) * | 2014-01-16 | 2014-09-17 | 常州大学 | Preparation method of porous 5A molecular sieve for straight-chain alkane adsorption |
CN104071816A (en) * | 2013-03-29 | 2014-10-01 | 中国科学院过程工程研究所 | Method for improving crystallization of sodium aluminate by ultrasonic field |
CN107961759A (en) * | 2016-10-19 | 2018-04-27 | 中国石油化工股份有限公司 | A kind of 5A adsorbent of molecular sieve and its preparation method and application |
CN110467196A (en) * | 2019-09-20 | 2019-11-19 | 苏州立昂新材料有限公司 | The preparation method of the A type molecular sieve of Template-free method |
CN116119679A (en) * | 2023-01-17 | 2023-05-16 | 西南科技大学 | A kind of high-purity 4A zeolite and its synthesis method at room temperature and normal pressure |
-
2007
- 2007-11-06 CN CNA2007100312677A patent/CN101172617A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104071816A (en) * | 2013-03-29 | 2014-10-01 | 中国科学院过程工程研究所 | Method for improving crystallization of sodium aluminate by ultrasonic field |
CN104045095A (en) * | 2014-01-16 | 2014-09-17 | 常州大学 | Preparation method of porous 5A molecular sieve for straight-chain alkane adsorption |
CN103894121A (en) * | 2014-03-12 | 2014-07-02 | 上海交通大学 | Preparation and application of nano zeolite reinforced xanthan gum composite hydrogel functional microspheres |
CN103894121B (en) * | 2014-03-12 | 2016-02-10 | 上海交通大学 | The preparations and applicatio of nano zeolite strengthening xanthans composite aquogel functional microsphere |
CN107961759A (en) * | 2016-10-19 | 2018-04-27 | 中国石油化工股份有限公司 | A kind of 5A adsorbent of molecular sieve and its preparation method and application |
CN107961759B (en) * | 2016-10-19 | 2020-08-11 | 中国石油化工股份有限公司 | 5A molecular sieve adsorbent and preparation method and application thereof |
CN110467196A (en) * | 2019-09-20 | 2019-11-19 | 苏州立昂新材料有限公司 | The preparation method of the A type molecular sieve of Template-free method |
CN116119679A (en) * | 2023-01-17 | 2023-05-16 | 西南科技大学 | A kind of high-purity 4A zeolite and its synthesis method at room temperature and normal pressure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104843731B (en) | Preparation method of nanometer stepped hole mordenite molecular sieve | |
CN107915234B (en) | Preparation method of hierarchical porous TS-1 nano zeolite aggregate molecular sieve | |
CN102452666B (en) | A kind of method of synthesizing IM-5 molecular sieve | |
CN101172617A (en) | The method for synthesizing nanometer type A molecular sieve | |
CN104030314A (en) | ZSM-5-based hierarchical porous molecular sieve material and preparation method thereof | |
CN105000573B (en) | Large block porous zeolite composed of nano-crystal grains and preparation method thereof | |
CN106673008A (en) | Multilevel structure ZSM-5 zeolite molecular sieve, as well as synthetic method and application thereof | |
CN100567151C (en) | A Method for Rapidly Synthesizing Nano X-type Molecular Sieves by Ultrasonic Crystallization at Low Temperature | |
CN111229243A (en) | Surfactant-assisted synthesis of cobalt tungstate nanoparticles and preparation method and application thereof | |
CN113736094B (en) | Synthesis method of hierarchical porous ZIF-9 | |
CN104925826A (en) | Method for preparing DD3R molecular sieve | |
CN108383136A (en) | The preparation method of nucleocapsid SSZ-13@Nano SSZ-13 molecular sieves | |
CN106268926A (en) | A kind of MCM-22 molecular sieve with multistage pore canal and its preparation method and application | |
CN108786767B (en) | A kind of preparation method of nanoscale molecular sieve@graphene oxide coupling material | |
CN110467198A (en) | A kind of multi-stage porous ZSM-5 Micelle-like Nano-structure of Two microballoon and preparation method | |
CN112010342A (en) | Gamma-Ga2O3Preparation method of nanosheet | |
CN115321556A (en) | MFI type sheet molecular sieve and preparation method thereof | |
CN102826568B (en) | The preparation method of nanocrystalline ZSM-5 zeolite cluster and nanocrystalline ZSM-5 zeolite cluster obtained by this method | |
CN104941451A (en) | Method for synthesizing NaA molecular sieve membrane by employing mesoporous zeolite crystal | |
CN102180478A (en) | Method for synthesizing Beta molecular sieve by using silica gel under the condition without organic template | |
CN113135578A (en) | Preparation method of silicon-germanium ISV zeolite molecular sieve | |
CN111957311A (en) | Preparation method of mesoporous-micro composite titanium-silicon material loaded Au-Pd nano catalyst | |
CN1879952B (en) | Method for preparing zeolite film by grinding and coating crystal seed layer | |
CN101913612A (en) | Preparation method of micron-scale monodisperse silica microspheres | |
CN115010146B (en) | Multistage hole ZSM-5 nano aggregate molecular sieve and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |