CN101169937A - A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films - Google Patents
A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films Download PDFInfo
- Publication number
- CN101169937A CN101169937A CNA2007101787048A CN200710178704A CN101169937A CN 101169937 A CN101169937 A CN 101169937A CN A2007101787048 A CNA2007101787048 A CN A2007101787048A CN 200710178704 A CN200710178704 A CN 200710178704A CN 101169937 A CN101169937 A CN 101169937A
- Authority
- CN
- China
- Prior art keywords
- layer
- platinum
- femn
- ptfemn
- ferromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000005316 antiferromagnetic exchange Effects 0.000 title claims 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229910015136 FeMn Inorganic materials 0.000 claims abstract description 29
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 28
- 238000009830 intercalation Methods 0.000 claims abstract description 12
- 230000002687 intercalation Effects 0.000 claims abstract description 12
- 230000005291 magnetic effect Effects 0.000 claims abstract description 12
- 238000004544 sputter deposition Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 abstract description 18
- 230000005290 antiferromagnetic effect Effects 0.000 abstract description 7
- GIMWDLLVKMZDMJ-UHFFFAOYSA-N [Mn].[Fe].[Pt] Chemical compound [Mn].[Fe].[Pt] GIMWDLLVKMZDMJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002885 antiferromagnetic material Substances 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 28
- 239000011572 manganese Substances 0.000 description 19
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- CMHKGULXIWIGBU-UHFFFAOYSA-N [Fe].[Pt] Chemical compound [Fe].[Pt] CMHKGULXIWIGBU-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
Images
Landscapes
- Thin Magnetic Films (AREA)
Abstract
本发明提供了一种提高FM/FeMn双层膜交换偏置性能的方法,属于磁记录介质领域。其特征在于,在交换偏置多层膜中,在铁磁层和铁锰FeMn反铁磁层之间引入一个铂铁锰PtFeMn插层。铂铁锰PtFeMn层通过共溅射铂Pt和铁锰FeMn的方式得到。本发明的优点在于,在铁锰FeMn作为反铁磁材料的交换偏置双层膜的被钉扎铁磁层与FeMn层的界面插入PtFeMn薄层,在FM/AFM界面制造一个铁磁性的缓冲层,在不改变现有反铁磁层材料的基础上,通过界面改性提高交换偏置多层膜的交换偏置场Hex以及热稳定性。
The invention provides a method for improving the exchange bias performance of an FM/FeMn double-layer film, which belongs to the field of magnetic recording media. It is characterized in that a platinum iron manganese PtFeMn intercalation layer is introduced between the ferromagnetic layer and the iron manganese FeMn antiferromagnetic layer in the exchange bias multilayer film. The platinum iron manganese PtFeMn layer is obtained by co-sputtering platinum Pt and iron manganese FeMn. The advantage of the present invention is that a PtFeMn thin layer is inserted at the interface between the pinned ferromagnetic layer and the FeMn layer of the exchange-biased double-layer film of iron-manganese FeMn as an antiferromagnetic material, and a ferromagnetic buffer is produced at the FM/AFM interface. Layer, on the basis of not changing the material of the existing antiferromagnetic layer, the exchange bias field He ex and the thermal stability of the exchange bias multilayer film are improved through interface modification.
Description
技术领域technical field
本发明属于磁记录介质领域金属磁性多层膜的制备方法,特别涉及交换偏置多层膜的改性。The invention belongs to the preparation method of a metal magnetic multilayer film in the field of magnetic recording media, in particular to the modification of an exchange bias multilayer film.
背景技术Background technique
近十几年来,交换偏置自旋阀在磁传感器、计算机硬盘读头和磁电阻随机存储器(MRAM)等方面得到了广泛应用,大大提高了磁记录密度。在交换偏置自旋阀中,包含一个自由铁磁层和一个被钉扎的铁磁层,此处利用了一个反铁磁层,通过铁磁/反铁磁(FM/AFM)界面的交换耦合作用,使被钉扎铁磁层的磁矩保持在一个固定的方向上,不随外场反转。FM/AFM体系的交换偏置场Hex是衡量反铁磁层钉扎能力的基本指标。实际应用中需要其中的AFM材料能够提供足够高的交换耦合场并且具有较好的热稳定性。在研究交换偏置双层膜的过程中,人们一直在寻求提高交换耦合场的办法。In the past ten years, the exchange bias spin valve has been widely used in magnetic sensors, computer hard disk read heads and magnetoresistive random access memory (MRAM), which greatly improves the magnetic recording density. In exchange-biased spin valves, which contain a free ferromagnetic layer and a pinned ferromagnetic layer, an antiferromagnetic layer is utilized here through the exchange of the ferromagnetic/antiferromagnetic (FM/AFM) interface The coupling effect keeps the magnetic moment of the pinned ferromagnetic layer in a fixed direction and does not reverse with the external field. The exchange bias field H ex of the FM/AFM system is the basic index to measure the pinning ability of the antiferromagnetic layer. In practical applications, it is required that the AFM material can provide a sufficiently high exchange coupling field and have good thermal stability. In the process of studying exchange-biased bilayers, people have been looking for ways to increase the exchange coupling field.
目前在交换偏置体系中应用最为广泛的反铁磁材料是IrMn,IrMn具有265℃左右的截止温度TB,一般通过在器件制备过程中250~300℃带场退火来诱导交换偏置。相比之下,Fe50Mn50具有无需退火就可生成反铁磁相的独特优点,但是交换耦合能较低,热稳定性不好(TB只有~150℃),限制了它在实际中的应用。文献[Mutsuko Jimbo,Shingo Yokochi,Koji Yamagishi,and Junichi Kurita,J Appl.Phys.,89(11),7622(2001)]报道了在250℃条件下退火时,FeMn中的Mn原子的扩散十分剧烈,大量的Mn原子穿越界面进入到铁磁层内部,严重破坏了FM/AFM界面的交换耦合。但是如果通过对其改性,例如在FeMn内部掺入少量的Pt,阻止Mn原子的扩散[Mutsuko Jimbo,ShingoYokochi,Koji Yamagishi,and Junichi Kurita,J.Appl.Phys.89(11),7622(2001)],同时提高交换耦合能Jex,FeMn将具有十分重要的应用价值。At present, the most widely used antiferromagnetic material in the exchange bias system is IrMn. IrMn has a cut-off temperature T B of about 265°C. Generally, the exchange bias is induced by band-field annealing at 250-300°C during the device preparation process. In contrast, Fe 50 Mn 50 has the unique advantage of forming an antiferromagnetic phase without annealing, but its low exchange coupling energy and poor thermal stability (T B is only ~150°C) limit its practical application. Applications. The literature [Mutsuko Jimbo, Shingo Yokochi, Koji Yamagishi, and Junichi Kurita, J Appl.Phys., 89(11), 7622(2001)] reported that the diffusion of Mn atoms in FeMn is very violent when annealed at 250°C , a large number of Mn atoms cross the interface into the ferromagnetic layer, seriously destroying the exchange coupling of the FM/AFM interface. However, if it is modified, such as doping a small amount of Pt inside FeMn, the diffusion of Mn atoms can be prevented [Mutsuko Jimbo, ShingoYokochi, Koji Yamagishi, and Junichi Kurita, J.Appl.Phys.89(11), 7622(2001 )], while improving the exchange coupling energy J ex , FeMn will have very important application value.
目前用来提高FeMn性能的方法有:(i)在NiFe/FeMn体系中将少量Pt掺入FeMn层[Mutsuko Jimbo,Shingo Yokochi,Koji Yamagishi,and Junichi Kurita,J.Appl.Phys.89(11),7622(2001)];(ii)在(Pt/Co)n/FeMn的Co/FeMn界面插入2~4的Pt插层[F.Garcia,J.Sort,B.Rodmacq,S.Auffret,and B.Dieny,Appl.Phys.Lett.83(17),3537(2003)]。不过方法(ii)只适用于铁磁层具有垂直各向异性的(Pt/Co)n体系,并且只有在Co层非常薄(一般为1~3个原子层)的情况下才能起到提高交换偏置的作用。如果在NiFe/FeMn界面插入Pt层,则只能导致该体系的交换偏置随插层厚度增加而单调下降。The methods currently used to improve the performance of FeMn are: (i) incorporation of a small amount of Pt into the FeMn layer in the NiFe/FeMn system [Mutsuko Jimbo, Shingo Yokochi, Koji Yamagishi, and Junichi Kurita, J.Appl.Phys.89(11) , 7622(2001)]; (ii) inserting 2-4 Ȧ of Pt intercalation at the Co/FeMn interface of (Pt/Co) n /FeMn [F.Garcia, J.Sort, B.Rodmacq, S.Auffret, and B. Dieny, Appl. Phys. Lett. 83(17), 3537 (2003)]. However, method (ii) is only applicable to the (Pt/Co) n system with perpendicular anisotropy in the ferromagnetic layer, and it can only improve the exchange rate when the Co layer is very thin (generally 1-3 atomic layers). The role of bias. If a Pt layer is inserted at the NiFe/FeMn interface, the exchange bias of the system can only decrease monotonically with the increase of the intercalation thickness.
发明内容Contents of the invention
本发明提供了一种提高FM/FeMn双层膜交换耦合场的方法。提出在FM/FeMn界面引入PtFeMn插层,阻止Mn原子向铁磁层的扩散,改善FM/FeMn双层膜体系的热稳定性,提高体系的交换耦合能Jex,从而提高交换偏置场Hex。The invention provides a method for improving the exchange coupling field of the FM/FeMn bilayer film. It is proposed to introduce a PtFeMn intercalation layer at the FM/FeMn interface to prevent the diffusion of Mn atoms to the ferromagnetic layer, improve the thermal stability of the FM/FeMn double-layer film system, and increase the exchange coupling energy J ex of the system, thereby increasing the exchange bias field H ex .
本发明在铁磁层和铁锰反铁磁层之间沉积连续完整的铂铁锰PtFeMn插层,在FM/AFM界面制造一个铁磁性的缓冲层,以容纳更多的交换耦合能。制备过程在磁控溅射仪中进行。在清洗干净的玻璃基片或单晶硅基片上依次沉积铂Pt(180~240)/镍铁NiFe(40~200)/铂铁锰Pt1-xFex/2Mnx/2(2~14)/铁锰FeMn(70~250)/铂Pt(20~180)和铂Pt(180~240)/[铂Pt(15~20)/钴Co(2~4)]n/铂铁锰Pt1-xFex/2Mnx/2(2~14)/铁锰FeMn(70~250)/铂Pt(20~180)。Pt1-xFex/2Mnx/2中x=5%~60%,[铂Pt(15~20)/钴Co(2~4)]n中n≥3。多层膜中最下方的铂层和最上方的铂层分别为种子层和保护层。溅射室本底真空度优于1×10-4Pa,溅射时氩气(99.99%)压强为0.3~0.8Pa。溅射时分别对面内各向异性的镍铁铁磁层在平行于基片方向和对垂直各向异性的(Pt/Co)n周期膜铁磁层在垂直于基片方向加有约700~1000Oe的磁场,以诱发交换偏置。铂铁锰PtFeMn层采用铂Pt和铁锰Fe50Mn50共溅射制得。The invention deposits a continuous and complete platinum-iron-manganese PtFeMn intercalation layer between the ferromagnetic layer and the ferromanganese antiferromagnetic layer, and manufactures a ferromagnetic buffer layer at the FM/AFM interface to accommodate more exchange coupling energy. The preparation process is carried out in a magnetron sputtering apparatus. Platinum Pt (180-240 Ȧ)/nickel-iron NiFe (40-200 Ȧ)/platinum-iron-manganese Pt 1-x Fe x/2 Mn x/2 ( 2~14 Ȧ)/iron manganese FeMn (70~250 Ȧ)/platinum Pt (20~180 Ȧ) and platinum Pt (180~240 Ȧ)/[platinum Pt (15~20 Ȧ)/cobalt Co (2~4 Ȧ)] n /platinum iron manganese Pt 1-x Fe x/2 Mn x/2 (2-14 Ȧ)/iron manganese FeMn (70-250 Ȧ)/platinum Pt (20-180 Ȧ). x=5%~60% in Pt 1-x Fe x/2 Mn x/2 , n≥3 in [platinum Pt (15~20 Ȧ)/cobalt Co (2~4 Ȧ)] n . The lowermost platinum layer and the uppermost platinum layer in the multilayer film are respectively a seed layer and a protective layer. The background vacuum of the sputtering chamber is better than 1×10 -4 Pa, and the pressure of argon (99.99%) is 0.3-0.8 Pa during sputtering. During sputtering, about 700 ~ 1000Oe magnetic field to induce exchange bias. The platinum iron manganese PtFeMn layer is prepared by co-sputtering platinum Pt and iron manganese Fe 50 Mn 50 .
本发明是针对FM/AFM界面AFM一侧进行的改性,使FM/AFM界面AFM一侧的成分由铁锰Fe50Mn50变成了铂铁锰PtFeMn。由于Mn的比例下降,铂铁Pt1-xFex/2Mnx/2对外显示铁磁性。当铂铁锰层厚度只有几个原子层时,一方面提供了更多的可反转磁矩,另一方面使PtFeMn/FeMn界面的钉扎态未补偿磁矩增加,从而同时提高矫顽力Hc和交换偏置场Hex,对于整个体系来说,交换耦合能Jex提高了,而且由于Pt与Mn有离子结合的倾向,PtFeMn的热稳定性要优于FeMn,在退火时可以阻止Mn原子向铁磁层的扩散。利用这种办法可以在现有反铁磁材料(FeMn)不变的基础上使FM/FeMn体系的交换偏置场Hex以及热稳定性得到明显提高。The present invention is aimed at the modification on the AFM side of the FM/AFM interface, so that the composition on the AFM side of the FM/AFM interface changes from iron manganese Fe 50 Mn 50 to platinum iron manganese PtFeMn. Due to the decrease of the proportion of Mn, platinum-iron Pt 1-x Fe x/2 Mn x/2 shows ferromagnetism to the outside. When the thickness of the PtFeMn layer is only a few atomic layers, on the one hand, it provides more reversible magnetic moments, and on the other hand, it increases the uncompensated magnetic moment of the pinned state at the PtFeMn/FeMn interface, thereby improving the coercive force at the same time. H c and the exchange bias field H ex , for the whole system, the exchange coupling energy J ex increases, and because Pt and Mn have a tendency to combine ions, the thermal stability of PtFeMn is better than that of FeMn, which can prevent Diffusion of Mn atoms into the ferromagnetic layer. Using this approach, the exchange bias field He ex and thermal stability of the FM/FeMn system can be significantly improved on the basis of the existing antiferromagnetic material (FeMn).
附图说明Description of drawings
图1为在(a)镍铁NiFe(40)/铂铁锰PtFeMn(t)/铁锰FeMn(250-t)和(b)[铂Pt(20)/钴Co(4)]4/铂铁锰PtFeMn(t’)/铁锰FeMn(250-t’)中,Hex随PtFeMn共溅射层厚度t和t’的变化。Fig. 1 is in (a) nickel iron NiFe (40 Ȧ)/platinum iron manganese PtFeMn (t)/iron manganese FeMn (250 Ȧ-t) and (b) [platinum Pt (20 Ȧ)/cobalt Co (4 Ȧ) ] 4 / Platinum iron manganese PtFeMn (t') / iron manganese FeMn (250 Ȧ-t'), H ex changes with the thickness t and t' of the co-sputtered layer of PtFeMn.
具体实施方式Detailed ways
实施例1:Example 1:
首先将玻璃基片用有机化学溶剂和去离子水超声清洗,然后装入磁控溅射仪中的溅射室样品基座上,再制备NiFe/PtFeMn/FeMn多层膜。制备时平行于基片方向加有约800 Oe的磁场。溅射室本底真空4×10-5Pa,在溅射时氩气(纯度为99.99%)压为0.3Pa的条件下依次沉积铂Pt(200)/镍铁Ni81Fe19(40)/铂铁锰Pt10Fe45Mn45(t)/铁锰Fe50Mn50(250-t)/铂Pt(80)(t=4.2,5.9)。从图1(a)交换耦合场Hex同PtFeMn共溅射层厚度t的关系曲线中可以看出,在镍铁NiFe/铁锰FeMn界面插入PtFeMn插层会导致交换耦合场Hex在插层厚度为6左右出现极大值,此时体系的交换耦合场Hex和交换耦合能Jex均高于无插层的样品。First, the glass substrate is ultrasonically cleaned with an organic chemical solvent and deionized water, and then placed on a sample base of a sputtering chamber in a magnetron sputtering apparatus, and then a NiFe/PtFeMn/FeMn multilayer film is prepared. During preparation, a magnetic field of about 800 Oe is applied parallel to the direction of the substrate. The background vacuum of the sputtering chamber is 4×10 -5 Pa, and platinum Pt (200 Ȧ)/nickel-iron Ni 81 Fe 19 (40 Ȧ )/platinum iron manganese Pt 10 Fe 45 Mn 45 (t)/iron manganese Fe 50 Mn 50 (250 Ȧ-t)/platinum Pt (80 Ȧ) (t=4.2, 5.9 Ȧ). It can be seen from the relationship curve of the exchange coupling field H ex and the thickness t of the PtFeMn co-sputtered layer in Fig. The maximum value appears when the thickness is around 6 Ȧ, and the exchange coupling field He ex and the exchange coupling energy J ex of the system are higher than those of the sample without intercalation.
实施例2:Example 2:
首先将玻璃基片用有机化学溶剂和去离子水超声清洗,然后装入磁控溅射仪中的溅射室样品基座上,再制备(Pt/Co)4/PtFeMn/FeMn多层膜。制备时在垂直于基片方向加有约800 Oe的磁场。溅射室本底真空4×10-5Pa,在溅射时氩气(纯度为99.99%)压为0.5Pa的条件下依次沉积铂Pt(200)/[铂Pt(20)/钴Co(4)]4/铂铁锰Pt50Fe25Mn25(t’)/铁锰Fe50Mn50(250-t’)/铂Pt(80)(t’=4.0,6.0,8.5,13.6)。从图1(b)交换耦合场Hex同PtFeMn共溅射层厚度t’的关系曲线中可以看出,在(铂Pt/钴Co)4/铁锰FeMn界面插入PtFeMn插层会导致交换耦合场Hex在插层厚度为8时出现最大值。(铂Pt/钴Co)4/铂铁锰Pt50Fe25Mn25(8)/铁锰FeMn的交换耦合场Hex比无插层的样品提高了约90%。First, the glass substrate is ultrasonically cleaned with an organic chemical solvent and deionized water, and then placed on a sample base of a sputtering chamber in a magnetron sputtering apparatus, and then a (Pt/Co) 4 /PtFeMn/FeMn multilayer film is prepared. During preparation, a magnetic field of about 800 Oe is applied in the direction perpendicular to the substrate. The background vacuum of the sputtering chamber is 4×10 -5 Pa, and the platinum Pt (200 Å)/[platinum Pt (20 Å)/cobalt Co(4 Ȧ)] 4 /platinum iron manganese Pt 50 Fe 25 Mn 25 (t')/iron manganese Fe 50 Mn 50 (250 Ȧ-t')/platinum Pt (80 Ȧ) (t'=4.0, 6.0, 8.5, 13.6 A). It can be seen from the relationship curve of the exchange coupling field H ex and the thickness t ' of the PtFeMn co-sputtered layer in Fig. The maximum field H ex occurs when the intercalation thickness is 8 Ȧ. The exchange coupling field H ex of (platinum Pt/cobalt Co) 4 /platinum iron manganese Pt 50 Fe 25 Mn 25 (8 Ȧ)/iron manganese FeMn is about 90% higher than that of the sample without intercalation.
Claims (4)
- A raising ferromagnetic/method of antiferromagnetic exchange biasing duplicature performance; adopt magnetic control sputtering device; on glass substrate that cleans up or monocrystalline silicon substrate, deposit Seed Layer, ferromagnetic layer, ferrimanganic inverse ferric magnetosphere, protective seam successively; it is characterized in that the platinum ferrimanganic PtFeMn intercalation of deposition continuous whole between ferromagnetic layer and ferrimanganic inverse ferric magnetosphere.
- 2. the method for claim 1 is characterized in that, the component of platinum ferrimanganic intercalation is Pt 1-xFe X/2Mn X/2, x=5%~60% wherein.
- 3. the method for claim 1 is characterized in that, the thickness of platinum ferrimanganic PtFeMn intercalation is 2~14 .
- 4. the method for claim 1 is characterized in that, platinum ferrimanganic PtFeMn intercalation is obtained by platinum Pt and ferrimanganic FeMn cosputtering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101787048A CN101169937A (en) | 2007-12-04 | 2007-12-04 | A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101787048A CN101169937A (en) | 2007-12-04 | 2007-12-04 | A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101169937A true CN101169937A (en) | 2008-04-30 |
Family
ID=39390542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101787048A Pending CN101169937A (en) | 2007-12-04 | 2007-12-04 | A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101169937A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101853732A (en) * | 2010-06-01 | 2010-10-06 | 王建国 | Multi-layer film structure producing magnetic bias field |
CN101944365A (en) * | 2010-09-08 | 2011-01-12 | 北京科技大学 | Method for improving magnetism and heat stability of exchange bias membrane |
CN103620435A (en) * | 2011-06-24 | 2014-03-05 | 克里斯蒂安-阿尔伯特-基尔大学 | Magnetostrictive layer system |
CN110311033A (en) * | 2019-07-17 | 2019-10-08 | 浙江驰拓科技有限公司 | A kind of electrically controlled exchange bias method, device and preparation method thereof |
-
2007
- 2007-12-04 CN CNA2007101787048A patent/CN101169937A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101853732A (en) * | 2010-06-01 | 2010-10-06 | 王建国 | Multi-layer film structure producing magnetic bias field |
CN101853732B (en) * | 2010-06-01 | 2012-12-05 | 王建国 | Multi-layer film structure producing magnetic bias field |
CN101944365A (en) * | 2010-09-08 | 2011-01-12 | 北京科技大学 | Method for improving magnetism and heat stability of exchange bias membrane |
CN101944365B (en) * | 2010-09-08 | 2012-05-23 | 北京科技大学 | Method for improving magnetism and heat stability of exchange bias membrane |
CN103620435A (en) * | 2011-06-24 | 2014-03-05 | 克里斯蒂安-阿尔伯特-基尔大学 | Magnetostrictive layer system |
CN103620435B (en) * | 2011-06-24 | 2015-11-25 | 克里斯蒂安-阿尔伯特-基尔大学 | Magnetostrictive layer system |
CN110311033A (en) * | 2019-07-17 | 2019-10-08 | 浙江驰拓科技有限公司 | A kind of electrically controlled exchange bias method, device and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7443639B2 (en) | Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials | |
US9466789B2 (en) | Method of making a high thermal stability reference structure with out-of-plane anisotropy for magnetic device applications | |
US8513944B2 (en) | Three-layer magnetic element, magnetic field sensor, magnetic memory and magnetic logic gate using such an element | |
KR102658922B1 (en) | Semiconductor device and method of making the same | |
US20040070890A1 (en) | Magnetic devices with a ferromagnetic layer having perpendicular magnetic asisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer | |
JP5429480B2 (en) | Magnetoresistive element, MRAM, and magnetic sensor | |
CN100435372C (en) | Magnetoresistive element deposited with oxide magnetic layer and metal magnetic film | |
US20100033878A1 (en) | Tunnel magnetoresistive thin film and magnetic multilayer formation apparatus | |
JPH06220609A (en) | Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head | |
US8932667B2 (en) | Hard magnet with cap and seed layers and data storage device read/write head incorporating the same | |
CN101710525A (en) | Ultra-high sensitive magneto-resistance film material and preparation method thereof | |
Hasegawa et al. | Spin-valves with antiferromagnetic/spl alpha/-Fe/sub 2/O/sub 3/layers | |
CN101169937A (en) | A method to improve the performance of ferromagnetic/antiferromagnetic exchange biased bilayer films | |
CN101692374B (en) | Perpendicularly easy-axis orientated artificially synthetic antiferromagnet and pseudo-spin valve film structure | |
EP1039490B1 (en) | Pinning layer for magnetic devices | |
CN101148754A (en) | A method for improving the magnetoresistance change rate of permalloy thin film | |
JP2000500292A (en) | Magnetic field sensor and method of manufacturing magnetic field sensor | |
CN101944365B (en) | Method for improving magnetism and heat stability of exchange bias membrane | |
US8632897B2 (en) | Multilayer hard magnet and data storage device read/write head incorporating the same | |
He et al. | [Co/Ni] N-based synthetic antiferromagnet with perpendicular anisotropy and its application in pseudo spin valves | |
CN102568743A (en) | Vertical magnetic anisotropy film and preparation method thereof | |
CN101017669A (en) | Perpendicular magnetic recording media comprising soft magnetic underlayer with diffusion barrier layer | |
CN101158029A (en) | A method of improving thermal stability of iridium manganese spin valve | |
Maat et al. | 90° coupling induced by exchange biasing in PtMn/CoFe 10/CoFe 2 O 4/CoFe 10 films | |
Kitade et al. | Giant magnetoresistance effect in CoNiFe/Cu spin valves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080430 |