CN101169323A - Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor - Google Patents
Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor Download PDFInfo
- Publication number
- CN101169323A CN101169323A CNA2006101632470A CN200610163247A CN101169323A CN 101169323 A CN101169323 A CN 101169323A CN A2006101632470 A CNA2006101632470 A CN A2006101632470A CN 200610163247 A CN200610163247 A CN 200610163247A CN 101169323 A CN101169323 A CN 101169323A
- Authority
- CN
- China
- Prior art keywords
- target
- theodolite
- rotating
- angle
- measurement accuracy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
在室内用旋转靶标测量电视经纬仪动态测角精度的方法,属于光电测量技术领域中涉及的一种检测方法。要解决的技术问题是:提供一种在室内用旋转靶标测量电视经纬仪动态测角精度的方法。技术方案是:首先,选择一种旋转靶标,旋转靶标在旋转臂的转轴上必须装测角编码器,旋转臂上的光学系统通过旋转要形成光锥,带有光锥顶点;其次,将旋转靶标与被测电视跟踪经纬仪的光路对接,形成测量系统;第三,实施对电视跟踪经纬仪动态测角精度的测量;第四,进行数据处理:将靶标编码器的值代入坐标变换公式得到靶标的空间指向值,根据贝塞尔公式计算经纬仪的动态测角精度。该方法解决了在室内对电视经纬仪动态测角精度的检测。The invention discloses a method for measuring the dynamic angle measurement accuracy of a TV theodolite indoors with a rotating target, belonging to a detection method involved in the technical field of photoelectric measurement. The technical problem to be solved is to provide a method for measuring the dynamic angle measurement accuracy of a TV theodolite with a rotating target indoors. The technical solution is: first, select a rotating target, the rotating target must be equipped with an angle encoder on the rotating shaft of the rotating arm, and the optical system on the rotating arm will form a light cone through rotation, with the apex of the light cone; secondly, the rotating The target is docked with the optical path of the measured TV tracking theodolite to form a measurement system; third, implement the measurement of the dynamic angle measurement accuracy of the TV tracking theodolite; fourth, perform data processing: substitute the value of the target encoder into the coordinate transformation formula to obtain the target Space pointing value, calculate the dynamic angle measurement accuracy of the theodolite according to the Bessel formula. This method solves the detection of the dynamic angle measurement accuracy of the TV theodolite indoors.
Description
一、技术领域 1. Technical field
本发明属于光电测量技术领域中涉及的一种在室内用旋转靶标对电视跟踪经纬仪进行动态测角精度检测的方法。The invention belongs to the technical field of photoelectric measurement and relates to a method for detecting the accuracy of dynamic angle measurement of a TV tracking theodolite indoors with a rotating target.
二、背景技术 2. Background technology
电视跟踪经纬仪是采用电视测量技术,具有自动跟踪和实施测量功能的大型光电测量设备,主要用于飞机、轮船、星体和其他运动物体的运动轨迹的测量。电视跟踪经纬仪动态测角精度是指经纬仪在规定的角速度和角加速度运动状态下,实时测量的目标空间指向值与理论值或真值的误差,通常用空间指向值的均方根误差表示,应用中常将其投影到水平面和垂直面上,分别称为动态方位角均方根误差和动态俯仰角均方根误差。TV tracking theodolite is a large-scale photoelectric measuring equipment with automatic tracking and measurement functions using TV measurement technology. It is mainly used for the measurement of the trajectory of aircraft, ships, stars and other moving objects. The dynamic angle measurement accuracy of the TV tracking theodolite refers to the error between the real-time measured target space pointing value and the theoretical value or the true value of the theodolite under the specified angular velocity and angular acceleration motion state, usually expressed by the root mean square error of the space pointing value, applied It is often projected onto the horizontal plane and the vertical plane, which are called the root mean square error of the dynamic azimuth angle and the root mean square error of the dynamic pitch angle, respectively.
动态测角精度是衡量电视经纬仪整机性能的重要技术指标之一,长期以来,该项指标的检测工作一直在外场进行,经纬仪实测某一飞行目标获得的数据与其它高精度测量设备测得的数据进行比对,来评估电视跟踪经纬仪的动态测角精度。目前,我们还没有查到在室内能检测电视跟踪经纬仪动态测角精度的相关检测设备或方法。The accuracy of dynamic angle measurement is one of the important technical indicators to measure the performance of the TV theodolite. For a long time, the detection of this indicator has been carried out in the field. The data are compared to evaluate the dynamic angle measurement accuracy of the TV tracking theodolite. At present, we haven't found any relevant detection equipment or method that can detect the dynamic angle measurement accuracy of TV tracking theodolite indoors.
三、发明内容 3. Contents of the invention
为了弥补现有技术的不足,本发明的目的在于建立一种能在室内对电视跟踪经纬仪动态测角精度进行检测的方法,以使电视跟踪经纬仪的生产厂家,在出厂之前,在室内能对电视跟踪经纬仪动态测角精度进行检测,从而能对电视跟踪经纬仪的整机性能做出有价值的评价。In order to make up for the deficiencies in the prior art, the purpose of the present invention is to establish a method that can detect the dynamic angle measurement accuracy of the TV tracking theodolite indoors, so that the manufacturer of the TV tracking theodolite can monitor the TV indoors before leaving the factory. The dynamic angle measurement accuracy of the tracking theodolite is detected, so that a valuable evaluation can be made on the overall performance of the TV tracking theodolite.
本发明要解决的技术问题是:提供一种在室内用旋转靶标测量电视经纬仪动态测角精度的方法。解决技术问题的技术方案是:The technical problem to be solved by the invention is to provide a method for measuring the dynamic angle measurement accuracy of a TV theodolite indoors with a rotating target. The technical solution to the technical problem is:
首先,选择一种适合的旋转靶标,这种旋转靶标在旋转臂的转轴上必须装有能实时测角的编码器,旋转臂上的光学系统通过旋转要形成圆形光锥,带有光锥顶点。旋转靶标的结构如图1所示:包括靶标支撑架1、电机2、编码器3、旋转臂4、反射镜5、平行光管6、靶标控制柜8。电机2安装在靶标支撑架1上,电机2的轴与编码器3的轴同轴且固连安装。旋转臂4固定在电机2旋转轴上,旋转臂4的一端安装有平行光管6,另一端安装有反射镜5,反射镜5的法线与平行光管6的光轴成一定夹角。当电机2带动旋转臂4旋转时,平行光管6发出的光经反射镜5反射后,形成了以一定角速度和角加速度旋转的锥形空间模拟目标;First, choose a suitable rotating target, which must be equipped with an encoder capable of real-time angle measurement on the rotating shaft of the rotating arm, and the optical system on the rotating arm should form a circular light cone through rotation, with a light cone vertex. The structure of the rotating target is shown in Figure 1: it includes a target support frame 1, a motor 2, an encoder 3, a rotating arm 4, a mirror 5, a collimator 6, and a target control cabinet 8. The motor 2 is installed on the target support frame 1, and the shaft of the motor 2 is coaxial with the shaft of the encoder 3 and fixedly connected. Rotating arm 4 is fixed on the rotating shaft of motor 2, and one end of rotating arm 4 is equipped with collimator 6, and the other end is equipped with reflector 5, and the normal line of reflector 5 forms a certain angle with the optical axis of collimator 6. When the motor 2 drives the rotating arm 4 to rotate, the light emitted by the collimator 6 is reflected by the mirror 5 to form a conical space simulation target rotating at a certain angular velocity and angular acceleration;
其次,将旋转靶标与被测电视跟踪经纬仪7的光路对接,形成测量系统,调整电视经纬仪横轴、竖轴、视轴三轴的交点与靶标旋转光锥的顶点重合,该点定义为测量坐标原点O,将靶标的时统和经纬仪的时统对接,使两者具有相同的绝对时和同步采样信号;Secondly, dock the rotating target with the optical path of the measured TV tracking theodolite 7 to form a measurement system, and adjust the intersection point of the TV theodolite’s horizontal axis, vertical axis, and visual axis to coincide with the apex of the target’s rotating light cone. This point is defined as the measurement coordinate Origin O, connect the time system of the target with the time system of the theodolite, so that both have the same absolute time and synchronous sampling signals;
第三,实施对电视跟踪经纬仪7动态测角精度的测量:启动电机2,让电机2带动靶标旋转臂4旋转,控制电视跟踪经纬仪7自动跟踪靶标光锥目标,实时记录目标的方位角、俯仰角和脱靶量,同时靶标控制柜8的计算机记录靶标编码器3的角度值;The 3rd, implement the measurement to TV tracking theodolite 7 dynamic angle measuring accuracy: start motor 2, allow motor 2 to drive target rotating arm 4 to rotate, control TV tracking theodolite 7 to automatically track target light cone target, record the azimuth angle, pitch of target in real time Angle and miss amount, and the computer of target control cabinet 8 records the angle value of target encoder 3 simultaneously;
第四,进行数据处理:将记录的靶标编码器3的值代入根据球面三角定理得到的公式:Fourth, data processing: Substituting the recorded value of the target encoder 3 into the formula obtained according to the spherical trigonometry theorem:
E=arcsin(cosasinb+sinacosbcosθ)E=arcsin(cosasinb+sinacosbcosθ)
A=arcsin(sinasintθ/cosE)A=arcsin(sinasintθ/cosE)
式中:a为靶标旋转光锥与旋转轴之间的夹角,b为靶标旋转轴与水平面的夹角,A为经纬仪7的方位角,E为经纬仪7的俯仰角,θ为靶标编码器3的角度;(该公式可在国防工业出版社2002年10月出版的《光电测量》一书中第251页查到,该公式用于靶标和经纬仪间的数据坐标变换,利用该公式完成了靶标空间指向值的换算,该空间指向值是计算测角精度的依据)。In the formula: a is the angle between the target rotation light cone and the rotation axis, b is the angle between the target rotation axis and the horizontal plane, A is the azimuth angle of the theodolite 7, E is the elevation angle of the theodolite 7, and θ is the target encoder 3; (this formula can be found on page 251 of the book "Photoelectric Measurement" published by National Defense Industry Press in October, 2002. This formula is used for the data coordinate transformation between the target and the theodolite. The conversion of the pointing value of the target space, which is the basis for calculating the angle measurement accuracy).
通过以上计算得到靶标的空间指向值,以此作为靶标目标的空间指向真值,将经纬仪测量的目标指向值与指向真值以时间为基准对齐数据,根据贝塞尔公式计算经纬仪的动态测角精度,以方位角均方根误差和俯仰角均方根误差表示:Through the above calculations, the space pointing value of the target is obtained, and this is used as the true value of the space pointing of the target target. The target pointing value measured by the theodolite and the pointing value are aligned with the data based on time, and the dynamic angle measurement of the theodolite is calculated according to the Bessel formula. Accuracy, represented by root mean square error of azimuth angle and root mean square error of pitch angle:
式中:σA为经纬仪方位动态测角精度,σE为经纬仪俯仰动态测角精度,n为一个周期的数据总数,Ai0为靶标在i点处的方位指向值,Ei0为靶标在i点处的俯仰指向值,Ai′为经纬仪在i点处测量的方位角,Ei′为经纬仪在i点处测量的俯仰角。In the formula: σ A is the azimuth dynamic angle measurement accuracy of the theodolite, σ E is the theodolite pitch dynamic angle measurement accuracy, n is the total number of data in one cycle, A i0 is the azimuth pointing value of the target at point i, E i0 is the target at i The pitch pointing value at the point, A i ′ is the azimuth angle measured by theodolite at point i, and E i ′ is the pitch angle measured by theodolite at point i.
工作原理说明:见图2,a为靶标旋转光锥与旋转轴之间的夹角,b为靶标旋转轴与水平面的夹角,A为经纬仪的方位角,E为经纬仪的俯仰角,ω为靶标旋转角速度,t为目标从S0点转到S1点所用的时间,θ=ωt为靶标编码器的旋转角度,OR为靶标的旋转轴。根据球面三角定理可得:Description of working principle: see Figure 2, a is the angle between the target rotating light cone and the rotation axis, b is the angle between the target rotation axis and the horizontal plane, A is the azimuth angle of the theodolite, E is the elevation angle of the theodolite, ω is The rotational angular velocity of the target, t is the time taken for the target to turn from S0 to S1, θ=ωt is the rotational angle of the target encoder, and OR is the rotational axis of the target. According to the spherical trigonometry theorem:
E=arcsin(cosasinb+sinacosbcosθ)E=arcsin(cosasinb+sinacosbcosθ)
A=arcsin(sinasintθ/cosE)A=arcsin(sinasintθ/cosE)
设靶标在空间某一点的编码器角度为θi,代入上述公式中,得到对应该点的目标指向(Ai0、Ei0)。设经纬仪测量的该点目标指向(Ai′,Ei′),则经纬仪的动态测角精度:Assuming that the encoder angle of the target at a certain point in space is θ i , and substituting it into the above formula, the target orientation (A i0 , E i0 ) corresponding to the point is obtained. Assuming that the point measured by the theodolite points to (A i ′, E i ′), then the dynamic angle measurement accuracy of the theodolite is:
式中:σA为方位动态测角精度,σE为俯仰动态测角精度,n为一个周期的数据总数。In the formula: σ A is the azimuth dynamic angle measurement accuracy, σ E is the pitch dynamic angle measurement accuracy, and n is the total number of data in one cycle.
本发明的积极效果:本发明解决了电视跟踪经纬仪动态测角精度室内检测的问题,该方法在国内是首创,用该方法成功地检测了多台电视跟踪设备的动态测角精度,效果良好,填补了光电测量领域的一项空白,得到了有关专家的认可。Positive effects of the present invention: the present invention solves the problem of indoor detection of the dynamic angle measurement accuracy of TV tracking theodolite, and this method is the first in China, and successfully detected the dynamic angle measurement accuracy of multiple TV tracking devices with this method, and the effect is good. It fills a gap in the field of photoelectric measurement and has been recognized by relevant experts.
四、附图说明 4. Description of drawings
图1是靶标与电视经纬仪光路对接示意图。Figure 1 is a schematic diagram of the connection between the target and the optical path of the TV theodolite.
图2是靶标与经纬仪坐标变换关系图。Figure 2 is a diagram of the transformation relationship between the target and theodolite coordinates.
五、具体实施方式 5. Specific implementation
本发明按技术方案中提出的步骤进行实施。靶标编码器精度的选取可根据被测设备的精度要求而定,一般情况下,可选取高精度的23位绝对式编码器;靶标的基座应稳定和旋转臂工作应稳定,最好控制在2″以内;靶标与被测设备应具有同一时间基准和相同的采样频率,可以在靶标和被测设备中分别加装时统终端,通过时统同步的方法将这一问题解决;为了使设备跟踪稳定,并获得高精度数据,靶标应具有稳速控制系统;靶标的平行光管焦距可选择1m;靶标的a角可选择20°~30°,b角可选择20°~40°;靶标和被测设备应在同一独立地基上进行测试。The present invention is implemented according to the steps proposed in the technical solution. The accuracy of the target encoder can be selected according to the accuracy requirements of the equipment under test. In general, a high-precision 23-bit absolute encoder can be selected; the base of the target should be stable and the rotation arm should be stable, preferably controlled within Within 2″; the target and the device under test should have the same time reference and the same sampling frequency, and a time system terminal can be installed in the target and the device under test respectively, and this problem can be solved through the method of time system synchronization; in order to make the device For stable tracking and high-precision data, the target should have a stable speed control system; the focal length of the collimator of the target can be selected as 1m; the a angle of the target can be selected from 20° to 30°, and the b angle can be selected from 20° to 40°; It should be tested on the same independent ground as the equipment under test.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101632470A CN101169323A (en) | 2006-12-14 | 2006-12-14 | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101632470A CN101169323A (en) | 2006-12-14 | 2006-12-14 | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101169323A true CN101169323A (en) | 2008-04-30 |
Family
ID=39390019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101632470A Pending CN101169323A (en) | 2006-12-14 | 2006-12-14 | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101169323A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101949711A (en) * | 2010-08-25 | 2011-01-19 | 中国科学院长春光学精密机械与物理研究所 | Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite |
CN102023082A (en) * | 2010-09-29 | 2011-04-20 | 中国科学院上海光学精密机械研究所 | Two-dimensional pointing mirror dynamic performance detection device and detection method |
CN101526420B (en) * | 2009-03-25 | 2011-04-27 | 中国科学院上海技术物理研究所 | A device for simulating a small-angle moving laser target |
CN102207380A (en) * | 2011-06-09 | 2011-10-05 | 中国人民解放军第二炮兵工程学院 | High-precision horizontal axis tilt error compensation method |
CN101738202B (en) * | 2009-12-22 | 2011-12-28 | 中国科学院长春光学精密机械与物理研究所 | Detection method for admission time consistency of image sampling by measurement television of photoelectric theodolite |
CN102645319A (en) * | 2012-05-04 | 2012-08-22 | 中国科学院长春光学精密机械与物理研究所 | Rotary target for simulating space target separation and application method thereof |
CN103017793A (en) * | 2012-12-21 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | Method for stabilizing visual axis of ship-bone theodolite during ship swing |
CN103063227A (en) * | 2012-12-25 | 2013-04-24 | 中国科学院长春光学精密机械与物理研究所 | Pointing device assisting in light path butt joint of theodolite and target and light path butt joint method |
CN103323024A (en) * | 2013-05-20 | 2013-09-25 | 南京市计量监督检测院 | Tunnel profiler angle error calibrating device and angle error calibration method |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
CN103471620A (en) * | 2013-09-29 | 2013-12-25 | 四川九洲电器集团有限责任公司 | Angular accuracy computing and tracking accuracy assessing system and method |
CN106871926A (en) * | 2016-12-30 | 2017-06-20 | 中国科学院西安光学精密机械研究所 | Measuring device and measuring method for angle measurement precision of large-caliber photoelectric theodolite |
CN107664509A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of a wide range of dynamic testing angle precision detection means of spaceborne sweep mechanism and method |
CN108871374A (en) * | 2018-03-26 | 2018-11-23 | 中国科学院西安光学精密机械研究所 | Method for improving miss distance delay measurement precision in photoelectric tracking system |
CN111380563A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system |
CN112764012A (en) * | 2020-12-23 | 2021-05-07 | 武汉高德红外股份有限公司 | Photoelectric pod tracking simulation test and system |
CN115900755A (en) * | 2022-08-30 | 2023-04-04 | 中国科学院上海天文台 | A target pointing automatic correction method and a target for realizing the method |
CN116817872A (en) * | 2023-06-14 | 2023-09-29 | 中国科学院上海天文台 | An unattended fully automatic high-precision centering measurement method |
-
2006
- 2006-12-14 CN CNA2006101632470A patent/CN101169323A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101526420B (en) * | 2009-03-25 | 2011-04-27 | 中国科学院上海技术物理研究所 | A device for simulating a small-angle moving laser target |
CN101738202B (en) * | 2009-12-22 | 2011-12-28 | 中国科学院长春光学精密机械与物理研究所 | Detection method for admission time consistency of image sampling by measurement television of photoelectric theodolite |
CN101949711A (en) * | 2010-08-25 | 2011-01-19 | 中国科学院长春光学精密机械与物理研究所 | Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite |
CN102023082A (en) * | 2010-09-29 | 2011-04-20 | 中国科学院上海光学精密机械研究所 | Two-dimensional pointing mirror dynamic performance detection device and detection method |
CN102207380A (en) * | 2011-06-09 | 2011-10-05 | 中国人民解放军第二炮兵工程学院 | High-precision horizontal axis tilt error compensation method |
CN102207380B (en) * | 2011-06-09 | 2013-12-04 | 中国人民解放军第二炮兵工程学院 | High-precision horizontal axis tilt error compensation method |
CN102645319A (en) * | 2012-05-04 | 2012-08-22 | 中国科学院长春光学精密机械与物理研究所 | Rotary target for simulating space target separation and application method thereof |
CN103017793B (en) * | 2012-12-21 | 2015-09-30 | 中国科学院长春光学精密机械与物理研究所 | A kind of ship of theodolite shakes the method for optic central extract |
CN103017793A (en) * | 2012-12-21 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | Method for stabilizing visual axis of ship-bone theodolite during ship swing |
CN103063227A (en) * | 2012-12-25 | 2013-04-24 | 中国科学院长春光学精密机械与物理研究所 | Pointing device assisting in light path butt joint of theodolite and target and light path butt joint method |
CN103063227B (en) * | 2012-12-25 | 2016-01-13 | 中国科学院长春光学精密机械与物理研究所 | The indicator device that auxiliary transit docks with target light path and light path butt joint |
CN103323024A (en) * | 2013-05-20 | 2013-09-25 | 南京市计量监督检测院 | Tunnel profiler angle error calibrating device and angle error calibration method |
CN103344258B (en) * | 2013-07-04 | 2016-06-15 | 中国科学院长春光学精密机械与物理研究所 | Servo system of electro-optic theodolite performance testing device and method of testing |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
CN103471620A (en) * | 2013-09-29 | 2013-12-25 | 四川九洲电器集团有限责任公司 | Angular accuracy computing and tracking accuracy assessing system and method |
CN106871926A (en) * | 2016-12-30 | 2017-06-20 | 中国科学院西安光学精密机械研究所 | Measuring device and measuring method for angle measurement precision of large-caliber photoelectric theodolite |
CN106871926B (en) * | 2016-12-30 | 2019-08-06 | 中国科学院西安光学精密机械研究所 | Measuring device and method for angle measurement accuracy of large-diameter photoelectric theodolite |
CN107664509B (en) * | 2017-08-30 | 2024-01-05 | 中国科学院上海技术物理研究所 | Device and method for detecting large-range dynamic angle measurement precision of spaceborne scanning mechanism |
CN107664509A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of a wide range of dynamic testing angle precision detection means of spaceborne sweep mechanism and method |
CN108871374A (en) * | 2018-03-26 | 2018-11-23 | 中国科学院西安光学精密机械研究所 | Method for improving miss distance delay measurement precision in photoelectric tracking system |
CN108871374B (en) * | 2018-03-26 | 2021-01-15 | 中国科学院西安光学精密机械研究所 | A method for improving the accuracy of missed target time delay measurement in photoelectric tracking system |
CN111380563A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system |
CN112764012A (en) * | 2020-12-23 | 2021-05-07 | 武汉高德红外股份有限公司 | Photoelectric pod tracking simulation test and system |
CN112764012B (en) * | 2020-12-23 | 2024-04-26 | 武汉高德红外股份有限公司 | Photoelectric pod tracking simulation test device and system |
CN115900755A (en) * | 2022-08-30 | 2023-04-04 | 中国科学院上海天文台 | A target pointing automatic correction method and a target for realizing the method |
CN115900755B (en) * | 2022-08-30 | 2024-04-02 | 中国科学院上海天文台 | Target pointing automatic correction method and target for realizing same |
CN116817872A (en) * | 2023-06-14 | 2023-09-29 | 中国科学院上海天文台 | An unattended fully automatic high-precision centering measurement method |
CN116817872B (en) * | 2023-06-14 | 2024-02-23 | 中国科学院上海天文台 | Unmanned full-automatic high-precision homing measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101169323A (en) | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor | |
CN104535079B (en) | Airborne optoelectronic inertial stabilization platform isolation testing system and method | |
CN109764806B (en) | Dynamic and static calibration device and dynamic and static calibration method for laser tracker | |
CN103017690A (en) | Method for measuring straightness of super-long guide rail | |
CN102128645A (en) | Dynamic angle measurement error detector for photoelectric shaft angle encoder | |
CN102023082A (en) | Two-dimensional pointing mirror dynamic performance detection device and detection method | |
WO2013044677A1 (en) | Large-scale, three-dimensional coordinate measuring method and apparatus with laser tracking | |
CN103344253B (en) | A kind of multiaxial motion simulating turntable | |
CN103743338B (en) | There is sphere revolution runout error and compensate laser tracking measurement system and the compensation method thereof of function | |
CN108519103A (en) | Device and method for synchronous evaluation of multi-attitude accuracy of stable platform using autocollimator | |
CN101750022B (en) | Sintering paving material thickness online detection method | |
CN109813526B (en) | Astronomical positioning-based optical telescope external field tracking precision detection method | |
CN101586965A (en) | Angular tracking error testing method for photoelectric tracker | |
CN106767548A (en) | Directive property device and method under the coordinate method detection gun barrel shooting state of space three | |
CN103983189A (en) | Horizontal position measuring method based on secondary platform linear array CCDs | |
CN103925938B (en) | Inverted pendulum formula simulated target source for the detection of photoelectric measurement equipment performance indications | |
CN103604562A (en) | Two-dimensional rotating mechanism and testing device and method for rotational inertia of complex parts of two-dimensional rotating mechanism | |
CN105466320B (en) | Industrial robot track and position detecting device | |
CN105000486B (en) | Two dimension tower crane verticality measurement devices and its method of testing | |
CN102778510A (en) | Detection method for variable wall thickness parts through ultrasonic transmission | |
CN105180940A (en) | Determination method of indoor target astronomical coordinates, based on wMPS | |
CN104567919A (en) | Device for calibrating dynamic measurement errors of photogrammetric system and application method thereof | |
CN203365388U (en) | Spherical rotary adjusting device for ultrasonic probe | |
CN104932541A (en) | Detection method for orientation tracking precision of photoelectric tracker | |
CN101726317A (en) | Method of Detecting Memory Tracking Ability of TV Tracking Theodolite Using Arc Guide Rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |