CN101159253A - Under bump metallurgy structure, wafer structure and method for forming the wafer structure - Google Patents
Under bump metallurgy structure, wafer structure and method for forming the wafer structure Download PDFInfo
- Publication number
- CN101159253A CN101159253A CN 200710167276 CN200710167276A CN101159253A CN 101159253 A CN101159253 A CN 101159253A CN 200710167276 CN200710167276 CN 200710167276 CN 200710167276 A CN200710167276 A CN 200710167276A CN 101159253 A CN101159253 A CN 101159253A
- Authority
- CN
- China
- Prior art keywords
- layer
- wafer
- wetting
- barrier layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005272 metallurgy Methods 0.000 title abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 65
- 230000004888 barrier function Effects 0.000 claims abstract description 60
- 238000009736 wetting Methods 0.000 claims abstract description 47
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 32
- 239000010931 gold Substances 0.000 claims abstract description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 15
- 239000010941 cobalt Substances 0.000 claims abstract description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052737 gold Inorganic materials 0.000 claims abstract description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 215
- 239000000463 material Substances 0.000 claims description 44
- 238000007772 electroless plating Methods 0.000 claims description 22
- 229910000679 solder Inorganic materials 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 15
- 238000007747 plating Methods 0.000 claims description 13
- 239000012790 adhesive layer Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000009713 electroplating Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910001453 nickel ion Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012536 packaging technology Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- SKYGTJFKXUWZMD-UHFFFAOYSA-N ac1l2n4h Chemical compound [Co].[Co] SKYGTJFKXUWZMD-UHFFFAOYSA-N 0.000 description 1
- 238000005844 autocatalytic reaction Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002815 nickel Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- NQXGLOVMOABDLI-UHFFFAOYSA-N sodium oxido(oxo)phosphanium Chemical compound [Na+].[O-][PH+]=O NQXGLOVMOABDLI-UHFFFAOYSA-N 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Chemically Coating (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明是有关于一种凸块下金属层结构、晶圆结构以及该晶圆结构的形成方法,且特别是有关于一种利用无电电镀技术形成的凸块下金属层结构、晶圆结构以及该晶圆结构的形成方法。The present invention relates to an under-bump metal layer structure, a wafer structure and a method for forming the wafer structure, and in particular to an under-bump metal layer structure and a wafer structure formed by electroless plating technology And a method for forming the wafer structure.
【背景技术】【Background technique】
在半导体封装技术中,常见的芯片连接技术包括倒装接合(flip chip)、打线接合(wire bonding)以及卷带自动接合(tape automated bonding)等方式,以将芯片与基板电性连接。其中倒装接合技术利用焊料凸块(solder bump)作为芯片与基板间电性连接的媒介,相较于打线接合以及卷带自动接合的方式,倒装接合技术具有较短的电性连接路径,并且具有较佳的电性连接品质,使得凸块愈来愈广泛地应用在半导体封装技术中。In semiconductor packaging technology, common chip connection technologies include flip chip, wire bonding, and tape automated bonding to electrically connect the chip to the substrate. Among them, the flip chip bonding technology uses solder bumps as the medium for the electrical connection between the chip and the substrate. Compared with the wire bonding and automatic tape bonding methods, the flip chip bonding technology has a shorter electrical connection path. , and has better electrical connection quality, so that bumps are more and more widely used in semiconductor packaging technology.
传统的凸块形成方法中,将一凸块下金属层(Under Bump Metallurgy,UBM)形成在芯片表面上,并且覆盖芯片表面的铜焊垫上,一般利用溅镀(sputtering)或电镀(electroplating)的方式形成凸块下金属层。接着进行涂布光阻层、黄光蚀刻等步骤,使得凸块下金属层的尺寸大约对应于铜焊垫的尺寸。而后,将光阻层剥离,并且在凸块下金属层上印刷锡膏。最后,回焊锡膏,使得锡膏内的锡颗粒熔化成锡汤,并冷却固化成凸块。In the traditional bump forming method, an Under Bump Metallurgy (UBM) is formed on the surface of the chip and covers the copper pads on the surface of the chip, usually by sputtering or electroplating. way to form the under bump metal layer. Steps such as coating a photoresist layer and photolithography are then carried out, so that the size of the UBM layer approximately corresponds to the size of the copper pad. Then, the photoresist layer is peeled off, and solder paste is printed on the UBM layer. Finally, the solder paste is reflowed, so that the tin particles in the solder paste are melted into tin soup, and cooled and solidified into bumps.
传统凸块的形成方法具有繁复的制程步骤,无法有效地降低制程成本,因此业界发展出一种不需进行黄光蚀刻的凸块形成方法。这种不需黄光蚀刻步骤地凸块形成方法,包括在铜焊垫上无电电镀(electroless plating)镍(nickel)层,以及在镍层上无电电镀钯(palladium)层的步骤,并且接着形成例如是金材料的湿润层。而后,通过印刷及回焊的步骤形成凸块。无电镀镍是一种化学还原反应,利用溶液中的还原剂(如次磷酸钠)将镍离子还原沉积在催化表面上。在界面反应方面,由于无电镀镍对于铜的扩散阻绝效果良好,因此被广泛采用于电子封装中,以在焊锡凸块中扮演一个扩散屏障的角色。在无电电镀镍层的步骤中,一般将晶圆(wafer)浸入镀液中,镀液中由硫酸镍(NiSO4)提供镍离子,并且由次磷酸钠(NaH2PO2)作为还原剂以使镍离子还原为镍金属,并且以镍金属做为催化剂进行自催化反应(autocatalytic reaction),从而在铝或铜焊垫上析镀一含磷的镍层(Ni-P)。这种无电电镀的方式具有镀层厚度均匀、孔隙率低、结晶细致、硬度高、可焊性良好等优点。然而,由于这种无电电镀制程受到镀液组成成分及其浓度、操作温度以及酸碱值等参数条件影响,当进行例如回焊锡膏等高温制程步骤时,容易因为高温影响,在锡膏以及镍层间的接口形成一富磷的结晶状介金属相(Inter-Metallic Compound,IMC)。在无电电镀的置换反应中,当一个尺寸较小的镍原子溶走(氧化)的同时,会有两个相对尺寸很大的金原子沉积(还原),这样在晶格成长时会造成全面推挤性的差排(Misalignment),因而使得镍与金的界面中出现很多的空隙疏孔,甚至藏有溶液等,容易造成镍层的继续钝化及氧化,使得界面品质受到影响。此外,当镍层中磷量较高时,容易造成焊性降低,因此一般的作法是将含磷量控制在7~9%之间。以下以凸块与含磷的镍层的接口为例来进行说明,请同时图1及图4,图1绘示传统的凸块与无电电镀镍层之间接口的示意图,图4是图1的电子扫瞄摄影照片。通过电子扫瞄摄影(Scanning Electron Microscopy,SEM)以及成分分析可知,凸块103以及含磷镍层101间形成富磷的结晶状介金属相102。由于富磷的结晶状介金属相102具有易脆的特性,使得凸块103与芯片间接点强度降低。当进行芯片焊接、封胶或者产品测试时,容易在此结晶状介金属相102发生断裂,降低了产品的良率以及可靠度。The traditional bump forming method has complicated process steps, which cannot effectively reduce the process cost. Therefore, the industry has developed a bump forming method that does not require photolithography. This method of bump formation without a photolithography step includes the steps of electroless plating a nickel layer on the copper pad, and electroless plating a palladium layer on the nickel layer, and then A wetting layer of eg gold material is formed. Then, bumps are formed through the steps of printing and reflow. Electroless nickel plating is a chemical reduction reaction in which nickel ions are reduced and deposited on a catalytic surface using a reducing agent (such as sodium hypophosphite) in solution. In terms of interfacial reactions, electroless nickel plating is widely used in electronic packaging to act as a diffusion barrier in solder bumps due to its good barrier effect on copper diffusion. In the step of electroless nickel plating, the wafer (wafer) is generally immersed in the plating solution, nickel ions are provided by nickel sulfate (NiSO4) in the plating solution, and sodium hypophosphite (NaH2PO2) is used as a reducing agent to make nickel ions It is reduced to nickel metal, and the nickel metal is used as a catalyst to carry out an autocatalytic reaction, thereby depositing a phosphorus-containing nickel layer (Ni-P) on the aluminum or copper pad. This electroless plating method has the advantages of uniform coating thickness, low porosity, fine crystallization, high hardness, and good solderability. However, since this electroless plating process is affected by parameters such as the composition of the plating solution and its concentration, operating temperature, and pH value, when performing high-temperature process steps such as reflowing solder paste, it is easy to be affected by high temperature. The interface between nickel layers forms a phosphorus-rich crystalline intermetallic phase (Inter-Metallic Compound, IMC). In the displacement reaction of electroless plating, when a nickel atom with a small size dissolves away (oxidizes), two relatively large gold atoms deposit (reduce), which will cause a comprehensive Pushing misalignment, thus causing a lot of voids and porosity in the interface between nickel and gold, even containing solution, which is likely to cause continued passivation and oxidation of the nickel layer, affecting the quality of the interface. In addition, when the phosphorus content in the nickel layer is high, it is easy to cause a decrease in weldability, so the general practice is to control the phosphorus content between 7% and 9%. The following is an example of the interface between the bump and the phosphorus-containing nickel layer. Please see Figure 1 and Figure 4 at the same time. Figure 1 shows a schematic diagram of the interface between the traditional bump and the electroless nickel layer. Figure 4 is a diagram 1 electronically scanned photograph. According to scanning electron microscopy (SEM) and component analysis, a phosphorus-rich crystalline
【发明内容】【Content of invention】
本发明的主要目的在于提出一种凸块下金属层结构、晶圆结构及该晶圆结构的形成方法,其可提高接点强度,进一步提升产品的可靠度以及品质。The main purpose of the present invention is to provide an UBM layer structure, a wafer structure and a method for forming the wafer structure, which can improve the strength of the joint, and further improve the reliability and quality of the product.
为达成本发明的前述目的,本发明提出一种凸块下金属层结构,包括一黏附层、一阻障层以及一湿润层。黏附层设置在一晶圆的一接垫上,黏附层的材料为含硼的镍。阻障层设置在黏附层上,阻障层的材料为钴。湿润层设置在阻障层上,湿润层的材料为金。To achieve the foregoing objectives of the present invention, the present invention provides an UBM layer structure, including an adhesion layer, a barrier layer, and a wetting layer. The adhesive layer is arranged on a bonding pad of a wafer, and the material of the adhesive layer is nickel containing boron. The barrier layer is arranged on the adhesion layer, and the material of the barrier layer is cobalt. The wetting layer is arranged on the barrier layer, and the material of the wetting layer is gold.
本发明还提出一种晶圆结构,包括一晶圆、一接垫、一钝化层以及一凸块下金属层。接垫设置在晶圆上,钝化层覆盖晶圆并且暴露出部分接垫。凸块下金属层包括一黏附层、一阻障层及一湿润层。黏附层设置在接垫上,黏附层的材料为含硼的镍。阻障层设置在黏附层上,阻障层的材料为钴。湿润层设置在阻障层上,湿润层的材料为金。The invention also proposes a wafer structure, including a wafer, a pad, a passivation layer and an UBM layer. The pads are disposed on the wafer, and the passivation layer covers the wafer and exposes part of the pads. The UBM layer includes an adhesion layer, a barrier layer and a wetting layer. The adhesive layer is disposed on the pad, and the material of the adhesive layer is nickel containing boron. The barrier layer is arranged on the adhesion layer, and the material of the barrier layer is cobalt. The wetting layer is arranged on the barrier layer, and the material of the wetting layer is gold.
本发明再提出一种晶圆结构的形成方法。首先,提供一晶圆,晶圆的表面设置有一接垫并且覆盖有一钝化层,钝化层暴露出部分接垫。其次,在接垫上无电电镀一黏附层,黏附层的材料为含硼的镍。然后,在黏附层上无电电镀一阻障层,阻障层的材料为钴。然后,在阻障层上形成一湿润层,湿润层的材料为金。The present invention further proposes a method for forming a wafer structure. Firstly, a wafer is provided, the surface of the wafer is provided with a pad and covered with a passivation layer, and the passivation layer exposes a part of the pad. Secondly, an adhesion layer is electrolessly plated on the contact pad, and the material of the adhesion layer is nickel containing boron. Then, a barrier layer is electrolessly plated on the adhesion layer, and the material of the barrier layer is cobalt. Then, a wetting layer is formed on the barrier layer, and the material of the wetting layer is gold.
相较于现有技术,本发明凸块下金属层结构、晶圆结构以及该晶圆结构的形成方法分别利用含硼的镍、钴以及金作为黏附层、阻障层以及湿润层的材料,使得凸块以及晶圆的接垫间经过热循环的步骤后,不会生成易脆的介金属相,提升了接点的机械强度,进一步改善了产品的可靠性。其次,由于黏附层、阻障层以及湿润层是以无电电镀的方式形成,可减少制程步骤,还节省了制造成本。再者,利用钴作为阻障层的材料,相较于传统利用钯作为阻障层材料的方式,可降低成本并且提高电性表现。Compared with the prior art, the UBM layer structure, the wafer structure, and the method for forming the wafer structure in the present invention use boron-containing nickel, cobalt, and gold as materials for the adhesion layer, barrier layer, and wetting layer, respectively. After thermal cycle steps between the bump and the pad of the wafer, no brittle intermetallic phase will be generated, the mechanical strength of the contact is improved, and the reliability of the product is further improved. Secondly, since the adhesion layer, the barrier layer and the wetting layer are formed by electroless plating, the process steps can be reduced and the manufacturing cost can also be saved. Furthermore, using cobalt as the material of the barrier layer can reduce the cost and improve the electrical performance compared with the traditional way of using palladium as the material of the barrier layer.
为让本发明的上述内容能更明显易懂,下文特举较佳的实施例,并配合所附图式,作详细说明如下:In order to make the above content of the present invention more obvious and understandable, the preferred embodiments are specifically cited below, together with the accompanying drawings, and are described in detail as follows:
【附图说明】【Description of drawings】
图1绘示传统的凸块与无电电镀镍层之间接口的示意图;Figure 1 shows a schematic diagram of the interface between a conventional bump and an electroless nickel plating layer;
图2A绘示依照本发明较佳实施例在一硅晶圆(silicon wafer)表面上设置接垫以及钝化层的示意图;2A shows a schematic diagram of disposing pads and passivation layers on the surface of a silicon wafer (silicon wafer) according to a preferred embodiment of the present invention;
图2B绘示在图2A的晶圆上形成黏附层的示意图;FIG. 2B shows a schematic diagram of forming an adhesion layer on the wafer of FIG. 2A;
图2C绘示在图2B的黏附层上形成阻障层的示意图;FIG. 2C shows a schematic diagram of forming a barrier layer on the adhesive layer of FIG. 2B;
图2D绘示在图2C的阻障层上形成湿润层的示意图;FIG. 2D shows a schematic diagram of forming a wetting layer on the barrier layer of FIG. 2C;
图2E绘示在图2D的湿润层上形成焊料层的示意图;2E is a schematic diagram of forming a solder layer on the wetting layer of FIG. 2D;
图3绘示依照本发明较佳实施例的晶圆结构的示意图;FIG. 3 shows a schematic diagram of a wafer structure according to a preferred embodiment of the present invention;
图4是图1的电子扫瞄摄影照片;以及FIG. 4 is an electronic scanning photo of FIG. 1; and
图5是依照本发明较佳实施例的凸块下金属层与凸块间接口的电子扫瞄摄影照片。FIG. 5 is a scanning electron photograph of the interface between the UBM layer and the bump according to a preferred embodiment of the present invention.
【具体实施方式】【Detailed ways】
依照本发明较佳实施例的晶圆结构包括一晶圆、一接垫、一钝化层以及一凸块下金属层。本实施例中接垫设置在晶圆的表面,钝化层覆盖在晶圆表面并且暴露部分的接垫。凸块下金属层设置在接垫上,并且包括一黏附层、一阻障层及一湿润层。依照本实施例的晶圆结构的形成方法详述如下。A wafer structure according to a preferred embodiment of the present invention includes a wafer, a pad, a passivation layer, and an UBM layer. In this embodiment, the pads are disposed on the surface of the wafer, and the passivation layer covers the surface of the wafer and exposes part of the pads. The UBM layer is disposed on the pad and includes an adhesion layer, a barrier layer and a wetting layer. The method for forming the wafer structure according to this embodiment is described in detail as follows.
请同时参照图2A至图2E,图2A绘示依照本发明较佳实施例的晶圆的示意图;图2B绘示在图2A的晶圆上形成黏附层的示意图;图2C绘示在图2B的黏附层上形成阻障层的示意图;图2D绘示在图2C的阻障层上形成湿润层的示意图;图2E绘示在图2D的湿润层上形成焊料层的示意图。依照本发明较佳实施例的晶圆结构的形成方法,首先提供一晶圆12,如图2A所示。本实施例中晶圆12较佳地是一硅晶圆(silicon wafer),其表面设置有一接垫14以及一钝化层(passivation layer)16。接垫14的材料例如是铜(copper)或是铝(aluminum),作为晶圆12上的电性接点。钝化层16覆盖在晶圆12上,并且具有一接触窗(contact windows)16a,以暴露部分的接垫14。Please refer to FIGS. 2A to 2E at the same time. FIG. 2A shows a schematic diagram of a wafer according to a preferred embodiment of the present invention; FIG. 2B shows a schematic diagram of forming an adhesion layer on the wafer of FIG. 2A; FIG. 2C is shown in FIG. 2D is a schematic diagram of forming a wetting layer on the barrier layer of FIG. 2C ; FIG. 2E is a schematic diagram of forming a solder layer on the wetting layer of FIG. 2D . According to the method for forming a wafer structure in a preferred embodiment of the present invention, a
其次,在接垫14上无电电镀(electroless plating)一黏附层22。在无电电镀黏附层22之前,较佳地将接垫14进行表面处理。将接垫14表面的氧化物(例如氧化铜)及有机、无机物质移除,并且利用例如锌(zinc)或钴(cobalt)等材料进行接垫14的表面活化(activation),而后将晶圆12浸入镍硼的镀液中,以进行黏附层22的无电电镀。本实施例中,在无电电镀的镀浴中,利用镍金属的自催化反应,在活化后的接垫14表面析镀含硼的镍(Ni-B)。此处所形成的镍硼材料层即为黏附层22,且其形成的厚度大约为1~15微米(um)。Second, an
接着,如图2C所示,在黏附层22上无电电镀一阻障层24,用以阻挡黏附层22的镍金属向外扩散。本实施例中阻障层24的厚度大约为0.15~7.5微米,并且较佳地以钴(Co)作为阻障层24的材料,相较于利用钯作为阻障层24的材料,钴材料的阻障层24具有较低的材料成本,并且可提高后续制程形成的凸块与接垫14间的电性接触特性。Next, as shown in FIG. 2C , a
如图2D所示,在阻障层24上接着形成一湿润层26。润湿层26用以防止阻障层24被氧化,同时改善对于凸块的湿润性。本实施例中,湿润层26的材料为金(Au),且较佳地以无电电镀的方式形成在阻障层24上,其厚度大约为0.05~0.15微米。然湿润层26也可以例如是利用浸镀(immersionplating)的方式形成在阻障层24上。形成湿润层26之后,黏附层22、阻障层24及湿润层26构成一凸块下金属层(Under Bump Metallurgy,UBM)20。As shown in FIG. 2D , a
再来,形成一焊料层30在湿润层上,如图2E所示。在本实施例中,焊料层30印刷(printing)在湿润层26上,且其材料较佳地为金,然焊料层30的材料也可以是锡(Sn)、铅(Pb)、镍、金、银(Ag)、铜或其组合。Next, a
本实施例的晶圆结构的形成方法接下来进行回焊焊料层30的步骤,焊料层30经过回焊后形成一凸块。本发明所属技术领域的技术人员,可了解形成凸块的方式不限制于上述利用印刷及回焊的方式,凸块也可以利用直接植球的方式形成在凸块下金属层上。植球的步骤可例如是利用植球机台或机械手臂来进行,其直接将凸块对应放置在凸块下金属层上,并且利用助焊剂将凸块接合在凸块下金属层上。或者,也可利用网板进行凸块的对位,将凸块对应放置于凸块下金属层上,然后同样利用助焊剂将凸块接合在凸块下金属层上。然而,其它在此领域中所常用的将凸块接合在凸块下金属层上的方法均可应用于此。The method for forming the wafer structure in this embodiment is followed by a step of reflowing the
形成凸块后完成依照本发明较佳实施例的晶圆结构。请参照图3,其绘示依照本发明较佳实施例的晶圆结构的示意图。晶圆结构1 00包括晶圆12、接垫14、钝化层16、凸块下金属层20以及凸块30’。凸块下金属层20包括黏附层22、阻障层24及湿润层26。After the bumps are formed, the wafer structure according to the preferred embodiment of the present invention is completed. Please refer to FIG. 3 , which shows a schematic diagram of a wafer structure according to a preferred embodiment of the present invention. Wafer structure 100 includes
本实施例中,黏附层22、阻障层24及湿润层26均为无电电镀层,在镀液中进行凸块下金属层20各材料层的无电电镀时,这些材料层具有大约相同的宽度。当凸块下金属层20形成之后,不需再进行涂布光阻、黄光以及蚀刻的步骤。另外,凸块下金属层20中黏附层22的材料是含硼的镍,当晶圆结构100进行热处理相关的制程步骤时,例如回焊焊料层30以形成凸块30’时,可避免在凸块30’以及接点14之间形成富磷的结晶状介金属相。请同时参照图5,其为依照本发明较佳实施例的凸块下金属层与凸块间接口的电子扫瞄摄影照片。通过实验以及成分分析结果得知,凸块下金属层20与凸块30’间并没有生成易脆的富磷结晶状介金属相,且接面结构平整,使得凸块下金属层20与凸块30’间具有良好的接合性质,进一步提升了凸块30’与接垫14接合的稳定性。In this embodiment, the
此外,本实施例中阻障层24的材料为钴,相较于传统利用钯作为阻障层的材料,具有较低的材料成本。再者,通过实验测量结果得知,传统镍/钯/金结构的凸块下金属层的薄层电阻值,相较于镍/钴/金结构的凸块下金属层大约增加8.6%。因此,相较于传统钯材料的阻障层,本实施例中钴材料的阻障层24更具有较佳的电性表现。In addition, the material of the
另一方面,上述依照本发明较佳实施例的晶圆结构的形成方法中,是以一个接垫14以及对应形成一个凸块下金属层20为例做说明。然而,在实际应用中,晶圆12的表面较佳地具有多个数组排列的接垫14,并且在晶圆12进行切单(wafer sawing)前,利用晶圆等级(wafer level)的制程在接垫14上对应形成多个凸块下金属层20。更进一步来说,依照本发明较佳实施例的晶圆结构的形成方法,例如应用于晶圆级芯片封装(Wafer Level Chip SizePackage,WLCSP)技术以及倒装芯片封装(flip chip package)技术中。On the other hand, in the method for forming the wafer structure according to the preferred embodiment of the present invention, one
上述依照本发明较佳实施例的凸块下金属层结构、晶圆结构以及该晶圆结构的形成方法,分别利用含硼的镍、钴以及金作为黏附层、阻障层以及湿润层的材料,使得凸块以及晶圆的接垫间经过热循环的步骤后,不会生成易脆的介金属相,提升了接点的机械强度,进一步改善了产品的可靠性。其次,由于黏附层、阻障层以及湿润层是以无电电镀的方式形成,可减少制程步骤,还节省了制造成本。再者,利用钴作为阻障层的材料,相较于传统利用钯作为阻障层材料的方式,可降低成本并且提高电性表现。The above-mentioned UBM layer structure, the wafer structure and the method for forming the wafer structure according to the preferred embodiment of the present invention respectively use boron-containing nickel, cobalt and gold as materials for the adhesion layer, barrier layer and wetting layer , so that the brittle intermetallic phase will not be generated between the bump and the pad of the wafer after the thermal cycle step, the mechanical strength of the contact is improved, and the reliability of the product is further improved. Secondly, since the adhesion layer, the barrier layer and the wetting layer are formed by electroless plating, the process steps can be reduced and the manufacturing cost can also be saved. Furthermore, using cobalt as the material of the barrier layer can reduce the cost and improve the electrical performance compared with the traditional way of using palladium as the material of the barrier layer.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710167276 CN101159253A (en) | 2007-10-31 | 2007-10-31 | Under bump metallurgy structure, wafer structure and method for forming the wafer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710167276 CN101159253A (en) | 2007-10-31 | 2007-10-31 | Under bump metallurgy structure, wafer structure and method for forming the wafer structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101159253A true CN101159253A (en) | 2008-04-09 |
Family
ID=39307269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710167276 Pending CN101159253A (en) | 2007-10-31 | 2007-10-31 | Under bump metallurgy structure, wafer structure and method for forming the wafer structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101159253A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102132383A (en) * | 2008-08-29 | 2011-07-20 | 应用材料股份有限公司 | Cobalt deposition on barrier surfaces |
US8563424B2 (en) | 2001-07-25 | 2013-10-22 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US8815724B2 (en) | 2001-07-25 | 2014-08-26 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
CN108231728A (en) * | 2016-12-12 | 2018-06-29 | 英飞凌科技奥地利有限公司 | Semiconductor devices, electronic building brick and method |
CN108538735A (en) * | 2017-03-02 | 2018-09-14 | 中芯国际集成电路制造(上海)有限公司 | Metal coupling device and its manufacturing method |
CN114937604A (en) * | 2022-04-12 | 2022-08-23 | 华天科技(南京)有限公司 | Wafer level packaging method and wafer level packaging structure |
-
2007
- 2007-10-31 CN CN 200710167276 patent/CN101159253A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8563424B2 (en) | 2001-07-25 | 2013-10-22 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US8815724B2 (en) | 2001-07-25 | 2014-08-26 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US9209074B2 (en) | 2001-07-25 | 2015-12-08 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
CN102132383A (en) * | 2008-08-29 | 2011-07-20 | 应用材料股份有限公司 | Cobalt deposition on barrier surfaces |
CN108231728A (en) * | 2016-12-12 | 2018-06-29 | 英飞凌科技奥地利有限公司 | Semiconductor devices, electronic building brick and method |
US11380612B2 (en) | 2016-12-12 | 2022-07-05 | Infineon Technologies Austria Ag | Semiconductor device, electronic component and method |
CN108538735A (en) * | 2017-03-02 | 2018-09-14 | 中芯国际集成电路制造(上海)有限公司 | Metal coupling device and its manufacturing method |
CN108538735B (en) * | 2017-03-02 | 2020-05-29 | 中芯国际集成电路制造(上海)有限公司 | Metal bump device and manufacturing method thereof |
CN114937604A (en) * | 2022-04-12 | 2022-08-23 | 华天科技(南京)有限公司 | Wafer level packaging method and wafer level packaging structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7800240B2 (en) | Under bump metallurgy structure and wafer structure using the same and method of manufacturing wafer structure | |
US8378485B2 (en) | Solder interconnect by addition of copper | |
CN101454887B (en) | Electronic component, semiconductor package and electronic device | |
US20080136019A1 (en) | Solder Bump/Under Bump Metallurgy Structure for High Temperature Applications | |
JPH10511226A (en) | Solder bump for flip chip mounting and method of manufacturing the same | |
GB2365622A (en) | A conductive pad for electrical connection of an integrated circuit chip | |
JP2009239278A (en) | Substrate for mounting electronic component, and method of manufacturing the same | |
CN101159253A (en) | Under bump metallurgy structure, wafer structure and method for forming the wafer structure | |
TWI343112B (en) | Package substrate having electrical connection structure and method for fabricating the same | |
US20080008900A1 (en) | Ball Limiting Metallurgy, Interconnection Structure Including the Same, and Method of Forming an Interconnection Structure | |
JP3682758B2 (en) | Semiconductor device and manufacturing method thereof | |
US7855137B2 (en) | Method of making a sidewall-protected metallic pillar on a semiconductor substrate | |
JPH06232136A (en) | Electrode forming method of semiconductor element | |
JP3916850B2 (en) | Semiconductor device | |
JPH07263493A (en) | Chip mounting method | |
US8648466B2 (en) | Method for producing a metallization having two multiple alternating metallization layers for at least one contact pad and semiconductor wafer having said metallization for at least one contact pad | |
JP3748419B2 (en) | Flip chip type IC manufacturing method | |
US20020175424A1 (en) | Process of forming metal surfaces compatible with a wire bonding and semiconductor integrated circuits manufactured by the process | |
Uang et al. | The reliability performance of low cost bumping on aluminum and copper wafer | |
Arshad et al. | The surface characteristics of under bump metallurgy (UBM) in electroless nickel immersion gold (ENIG) deposition | |
Anhöck et al. | Electroless Metal Deposition Used as Underbump Metallization (UBM) for High Temperature Application‐a Comparison to Other Bumping Techniques | |
Yang et al. | The impact of zincation on the electroless nickel UBM for low cost flip chip technology | |
TWI242273B (en) | Bump structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080409 |