CN101158590A - Device and method for fully digital four-quadrant detector detecting laser beam deflection angle - Google Patents
Device and method for fully digital four-quadrant detector detecting laser beam deflection angle Download PDFInfo
- Publication number
- CN101158590A CN101158590A CNA2007100563073A CN200710056307A CN101158590A CN 101158590 A CN101158590 A CN 101158590A CN A2007100563073 A CNA2007100563073 A CN A2007100563073A CN 200710056307 A CN200710056307 A CN 200710056307A CN 101158590 A CN101158590 A CN 101158590A
- Authority
- CN
- China
- Prior art keywords
- quadrant detector
- signal
- module
- laser beam
- quadrant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 230000003044 adaptive effect Effects 0.000 claims abstract description 13
- 230000003321 amplification Effects 0.000 claims description 42
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 42
- 238000003384 imaging method Methods 0.000 claims description 34
- 238000001914 filtration Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 7
- 101100162020 Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099) adc3 gene Proteins 0.000 claims description 3
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 claims description 3
- 101150102866 adc1 gene Proteins 0.000 claims description 3
- 101150042711 adc2 gene Proteins 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 7
- 238000003672 processing method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明涉及全数字化的四象限探测器检测激光光束偏转角的装置及方法。该装置有前置放大电路(12)、滤波电路(13)、AD转换电路(16)、偏移量显示模块(18),还有四象限探测器(1)、次级放大电路模块(14)、可变增益放大电路模块(15)和高速微处理器模块(17)构成;本发明由于采用了全数字处理的方法解决了测量精度降低的问题;采用自适应可变增益放大电路使该方法能够通过根据输入信号强弱自动改变增益大小的方式来维持进入AD采集单元时信号强度的大小,克服了因输入光强变化所带来的信噪比下降而导致解算精度降低的缺点;采用高速微处理器进行光束偏转角解算的方式克服了因采用单片机解算所造成的解算速度不快的缺点。
The invention relates to a device and a method for detecting the deflection angle of a laser beam by a fully digital four-quadrant detector. The device has a preamplifier circuit (12), a filter circuit (13), an AD conversion circuit (16), an offset display module (18), a four-quadrant detector (1), a secondary amplifier circuit module (14 ), a variable gain amplifier circuit module (15) and a high-speed microprocessor module (17); the present invention solves the problem that measurement accuracy decreases due to the adoption of an all-digital processing method; adopts an adaptive variable gain amplifier circuit to make the The method can maintain the signal strength when it enters the AD acquisition unit by automatically changing the gain according to the strength of the input signal, and overcomes the shortcomings of the reduction of the resolution accuracy caused by the decrease of the signal-to-noise ratio caused by the change of the input light intensity; Using a high-speed microprocessor to calculate the beam deflection angle overcomes the disadvantage of slow calculation speed caused by the use of a single-chip computer.
Description
技术领域technical field
本发明属于光电测量技术领域,全数字化的四象限探测器检测激光光束偏转角的装置及方法。The invention belongs to the technical field of photoelectric measurement, and relates to a device and a method for detecting the deflection angle of a laser beam by an all-digital four-quadrant detector.
背景技术Background technique
目前,对激光光束偏转角的测量主要采用的光电探测器有电荷耦合器件(CCD)、位置敏感器(PSD)和四象限探测器(QD)三种光电探测器。由于电荷耦合器件(CCD)输出的数据虽能直接反应光斑在光敏面上的位置,进而根据其相对光敏面中心的偏移量得出激光束的偏转角(相对于光轴),但是电荷耦合器件(CCD)的象素太多,需要处理的数据量太大,不适合高动态范围的激光束偏转角的测量;而位置敏感器(PSD),其数据处理相对电荷耦合器件(CCD)而言要简单得多,但是由于其器件本身的参数特性,它的性能不如QD。同时QD还广泛用于视轴对准、角度测量以及跟踪等领域中。At present, the photodetectors mainly used to measure the deflection angle of the laser beam include charge-coupled device (CCD), position sensor (PSD) and four-quadrant detector (QD). Although the data output by the charge-coupled device (CCD) can directly reflect the position of the light spot on the photosensitive surface, and then obtain the deflection angle of the laser beam (relative to the optical axis) according to its offset relative to the center of the photosensitive surface, but the charge-coupled There are too many pixels in the device (CCD), and the amount of data to be processed is too large, which is not suitable for the measurement of the laser beam deflection angle with a high dynamic range; while the position sensor (PSD), its data processing is relatively low compared to the charge-coupled device (CCD). The language is much simpler, but due to the parametric characteristics of the device itself, its performance is not as good as that of QD. At the same time, QD is also widely used in the fields of boresight alignment, angle measurement and tracking.
在专利“一种平面镜摆动姿态的检测装置及其方法”(中国专利申请,公开号:CN1487264A。)中,采用了四象限探测器作为其光电传感器,其处理电路如图4所示。它由21前置放大电路模块、22和差电路模块、23锁相检测电路模块、24滤波电路模块、25AD转换电路模块、26单片机和27测量结果单元共六部分组成。四象限探测器的四路经前置放大电路后,进行和差解算,然后通过锁相检测的方式,提取信号进行AD转换,并将转换后的数据送往单片机进行偏移量解算,最后由单片机将解算结果通过RS485接口送往上位机显示。由于它采用了和差电路,会引起四象限探测器四路信号间的串扰同时引入了额外的共模噪声,并且不便于通过软件的方式对通道间性能的不均衡进行补偿,降低了解算精度;由于它采用的是单片机,其解算精度和解算速度都受到限制,在该系统中,最快速度为90次/S。In the patent "a device and method for detecting the swing attitude of a plane mirror" (Chinese patent application, publication number: CN1487264A.), a four-quadrant detector is used as its photoelectric sensor, and its processing circuit is shown in Figure 4. It consists of 21 preamplifier circuit modules, 22 sum difference circuit modules, 23 phase lock detection circuit modules, 24 filter circuit modules, 25AD conversion circuit modules, 26 single-chip microcomputers and 27 measurement result units. After the four channels of the four-quadrant detector pass through the preamplifier circuit, the sum and difference are calculated, and then through the phase-locking detection method, the signal is extracted for AD conversion, and the converted data is sent to the single-chip computer for offset calculation. Finally, the single-chip microcomputer sends the calculation result to the upper computer for display through the RS485 interface. Because it uses a sum-difference circuit, it will cause crosstalk between the four-way signals of the four-quadrant detector and introduce additional common-mode noise, and it is not convenient to compensate the unbalanced performance between channels through software, reducing the resolution accuracy ; Because it uses a single-chip microcomputer, its calculation accuracy and calculation speed are limited. In this system, the fastest speed is 90 times/S.
发明内容Contents of the invention
本发明主要是为了解决激光束偏转角QD检测中光斑偏移量解算速度和解算精度的不足,提供全数字化的四象限探测器检测激光光束偏转角的装置及实现方法。The invention mainly aims to solve the deficiency of spot offset calculation speed and calculation accuracy in QD detection of laser beam deflection angle, and provides a fully digital four-quadrant detector for detecting laser beam deflection angle device and implementation method.
本发明的基本构思如下:激光光束经成像物镜单元成像到QD传感器的光敏面上,由QD传感器将光信号转换为电信号,该电信号先经过前置放大电路进行前置放大,然后对信号进行滤波,接着对滤波后的信号进行次级放大以及自适应可变增益放大,然后送往AD转换电路,接着将AD转换后的信号送往高速微处理器进行光斑偏移量解算,最后将解算后的激光束偏移角进行显示。The basic idea of the present invention is as follows: the laser beam is imaged onto the photosensitive surface of the QD sensor through the imaging objective lens unit, and the optical signal is converted into an electrical signal by the QD sensor. Perform filtering, then perform secondary amplification and adaptive variable gain amplification on the filtered signal, and then send it to the AD conversion circuit, then send the AD converted signal to a high-speed microprocessor for spot offset calculation, and finally The calculated laser beam offset angle is displayed.
如图3所示,全数字化的四象限探测器检测激光束偏转角的装置的构成由四象限探测器1、前置放大电路模块12、滤波电路模块13、次级放大电路模块14、可变增益放大电路模块15、AD转换模块16、高速微处理器模块17和偏移量显示模块18构成;As shown in Figure 3, the device for detecting the deflection angle of the laser beam by a fully digital four-quadrant detector consists of a four-
前置放大电路模块12、滤波电路模块13、次级放大电路模块14、可变增益放大电路模块15、AD转换模块16、高速微处理器模块17和偏移量显示模块18依次连接,高速微处理器模块17还与可变增益放大电路模块15连接。
相对于已有技术“一种平面镜摆动姿态的检测装置及其方法”而言,本发明除采用前置放大电路12、滤波电路13、AD转换电路16、偏移量显示模块18外,还采用了:一、自适应可变增益放大电路模块15,用以在入射激光光功率不稳定时,确保较好的信噪比,以提高偏转角的解算精度;二、高速微处理器17,用以替代单片机进行数据解算,在进行数字信号处理的时候能达到更高的解算精度和解算速度;三、没有采用和差电路和锁相检测,同时对于滤波电路的连接位置作了调整,以便能更好地抑制噪声;采用高速微处理器17取代了单片机,以使在进行数字信号处理的时候能达到更高的解算精度和解算速度。Compared with the prior art "A device and method for detecting the swing posture of a plane mirror", the present invention adopts a 1. Adaptive variable gain
提供全数字化的四象限探测器检测激光束偏转角的方法,其步骤和条件如下:Provide a fully digital four-quadrant detector method for detecting the deflection angle of the laser beam, the steps and conditions are as follows:
(1)调整QD光电探测器的光敏面相对于成像物镜单元2的位置,以调整成像光斑在QD光敏面上的大小:(1) Adjust the position of the photosensitive surface of the QD photodetector relative to the imaging
如图1所示,激光光束经成像物镜单元2聚焦到QD光电探测器1上,要调整QD光电探测器的光敏面相对于成像物镜单元2的位置,使QD光电探测器的光敏面上的成像光斑3的大小能够在0.1倍到1倍的QD光电探测器光敏面内接圆直径内调整,这样以达到最佳的探测性能。As shown in Figure 1, the laser beam is focused onto the
(2)测量成像光斑在QD光电探测器四个象限所产生的光电流:(2) Measure the photocurrent generated by the imaging spot in the four quadrants of the QD photodetector:
如图2所示,激光光束经成像物镜单元2后的成像光斑3位于QD光电探测器1的光敏面2的四个象限:第一象限4,第二象限5,第三象限6和第四象限7中,QD光电探测器1将各个象限上的光能转换为相应的电流,由于光电流与入射到对应光敏面上的光功率成正比,而光功率又与成像光斑在QD探测器四个象限内所占的面积及光斑能量分布有关,在光斑能量分布为均匀分布时,象限电流于该象限所占光斑面积成正比,即测量该四个象限产生的电流的大小就可以得到成像光斑相对于四象限探测器四个象限所形成的坐标系的坐标,进而可得到激光光束偏转角。As shown in Figure 2, the
因为激光的谱线宽度很窄,相对于QD光电探测器1的光谱响应曲线来说,可以认为激光源为线光源,即QD光电探测器的响应度在该激光光束波段范围内为常数,则QD光电探测器各象限的响应电流与该象限所得的光功率大小成正比。由于成像光斑3的光能在四个象限上的分布不同,导致由QD光电探测器1转换所得的各个象限的电流的大小也不相同。它们直接反应了光斑能量中心相对于QD光电探测器像敏面四个象限所形成坐标系内的位置,并由该位置即可求的激光束的偏转角。Because the spectral line width of the laser is very narrow, relative to the spectral response curve of the
(3)将四象限光电探测器所产生的电流信号转换为电压信号,并将其放大:(3) Convert the current signal generated by the four-quadrant photodetector into a voltage signal and amplify it:
如图3所示,QD光电探测器1将激光光束经成像物镜单元2后的成像光斑3对应于QD光电探测器四个象限上的光能及光斑的位置信息转换成相应的四路电信号:第一象限所得电流8,令为I1;第二象限所得电流9,令为I2;第三象限所得电流10,令为I3;第四象限所得光电流11,令为I4。这四路电流信号经前置放大电路模块12将电流信号转换为电压信号,并将其放大。As shown in Figure 3, the
前置放大电路模块12有如下3种实现方式:(1)采用零偏放大的方式将由QD光电探测器所得的电流信号:I1,I2,I3,I4直接转换成电压信号,同时使之得到放大;(2)让QD光电探测器工作在反相偏压的工作状态下,采用直流放大的形式将由QD光电探测器所得的电流信号:I1,I2,I3,I4转换为电压信号,并使之放大;(3)让QD光电探测器工作在反相偏压的工作状态下,采用交流放大的形式将由QD光电探测器所得的电流信号:I1、I2、I3、I4转换为电压信号U1、U2、U3、U4,并使之放大。The
(4)采用滤波电路模块13,此为本发明的一发明点。滤波电路模块13加在此处,比“一种平面镜摆动姿态的检测装置及其方法”(中国专利申请,公开号:CN1487264A)中加在锁相检测后能更好地抑制噪声。(4) The
采用滤波电路模块13对步骤(3)得到的前置放大后的电压信号U1、U2、U3、U4进行滤波提高信噪比:Adopt
采用滤波电路模块13对步骤(3)得到的前置放大后的电压信号U1、U2、U3、U4进行滤波,得到信号UL1、UL2、UL3、UL4,提高信噪比,根据光信号的频带以及应用要求可设计具体的滤波电路以达到最好的滤波效果,提高信噪比,提高光斑偏移量的解算精度。Adopt
所以如此,是由于QD光电探测器固有噪声、前置放大电路的固有噪声、背景噪声等噪声的影响,导致前置放大后的信号其信噪比较低所致。Therefore, it is due to the inherent noise of the QD photodetector, the inherent noise of the preamplifier circuit, background noise and other noises, resulting in a low signal-to-noise ratio of the preamplified signal.
(5)采用次级放大电路模块14,对滤波后的信号UL1、UL2、UL3、UL4进行再次放大,增大有效信号的幅度,提高信噪比。此为本发明的一发明点,对信号进行二次放大一是实现与滤波电路模块的阻抗匹配;一是降低对前置放大器的性能要求。(5) The secondary amplifying
由于在进行远距离的激光光束偏转角的测量中,信号通常很微弱,尽管经过前置放大电路后信号得到增强,但仍很小,需要对其进行再一次的放大。本发明采用次级放大电路模块14对滤波后的信号进行再次放大,得到信号US1、US2、US3、US4,增大有效信号的幅度,提高信噪比。Since the signal is usually very weak in the measurement of the long-distance laser beam deflection angle, although the signal is enhanced after passing through the pre-amplification circuit, it is still very small, and it needs to be amplified again. The present invention uses the secondary amplifying
(6)采用自适应可变增益放大电路模块15,此为本发明的一发明点。通过该模块的采用能根据当前信号的强度改变放大倍数,使放大后的信号幅度保持在一个较高的水平,能够提高检测精度。(6) Adaptive variable gain
采用自适应可变增益放大电路以使信噪比保持在一个高的状态,保证光斑偏移量解算精度的稳定性:An adaptive variable gain amplifier circuit is used to keep the signal-to-noise ratio at a high level, ensuring the stability of the accuracy of spot offset calculation:
由于传输距离远,传输过程中难免会受到其它因素的干扰,造成信号强度降低,在放大倍数相同的情况下,降低了信号的信噪比,导致偏移量解算精度的降低。本发明采用自适应可变增益放大电路模块15对信号US1、US2、US3、US4进行处理(在信号较弱的时候提高放大倍数,在信号过强的时候降低放大倍数),得到信号UA1、UA2、UA3、UA4。Due to the long transmission distance, it is inevitable to be interfered by other factors during the transmission process, resulting in a decrease in signal strength. In the case of the same amplification factor, the signal-to-noise ratio of the signal is reduced, resulting in a decrease in the accuracy of offset calculation. The present invention adopts adaptive variable gain
(7)在对信号进行可变增益放大后,采用四路AD转换电路16将模拟信号转变成为数字信号:(7) After carrying out variable gain amplification to the signal, adopt four-way
在对信号进行可变增益放大后,采用AD转换模块16将四路模拟信号UA1、UA2、UA3、UA4转变成为四路串行数字信号ADC1、ADC2、ADC3、ADC4。在四路AD转换电路16中,可根据需要的转换精度、信号电压的范围、通道的数量、通道AD转换的转换方式(同步转换或顺序转换)等选择合适的AD转换器,同时为保证四个通道能够同时采样,并相互独立以减小通道间的相互干扰,选择需要的AD转换器的数量。在该模块中还需要对自适应可变增益放大电路模块15的输出信号进行处理,以满足AD转换器的输入信号性能要求,达到最佳的AD转换性能。After the signals are amplified with variable gain, the
(8)采用高速微处理器17,此为本发明的一发明点。在对四路模拟信号进行模数转换后,将转换后得到的数字信号输出到高速微处理器17进行处理:(8) Adopt high-
在对信号进行模数转换后,将转换后的数字信号输出到高速微处理器17进行处理。在该模块中需要完成四通道数字信号ADC1、ADC2、ADC3、ADC4的数字滤波处理,对QD光电探测器四个象限非均匀性及后续处理电路四个通道间的不均匀性等进行补偿,自适应可变增益放大电路模块15的放大倍数的控制,QD光电传感器上光斑偏移量解算、激光光束偏转角解算,偏移量的传输工作。由于高度微处理器(如:DSP、FPGA等)的运算速度非常快,能达几十兆、上百兆甚至上千兆,同时这类高速微处理器的运算精度也很高,大多都能够大于16位,几乎都大于单片机的处理速度和处理精度,因此能够迅速完成这些工作,得出激光光束偏转角,从而达到很高的光束偏转角解算速度,并同时提高光束偏转角的解算精度。After analog-to-digital conversion is performed on the signal, the converted digital signal is output to the high-
(9)采用了偏移量显示模块18,便于人眼观察。本发明采用了偏移量显示模块18,将激光光束的偏转角信息显示出来。该显示模块可由上位机接收高速微处理器模块解算所得的激光光束偏转角,然后在上位机上显示;也可由另外的MCU通过数码管、液晶显示屏或其它显示装置显示激光光束的偏转角。(9) The offset
本发明的效果:本发明由于采用了全数字处理的方式能够克服由于前级信号调理的模拟电路各通道间性能参数不均衡带来的测量精度降低的缺点;因采用加减法电路所带来的电路共模电压、失调电压等的影响带来的解算精度的下降;以及因采用自适应可变增益放大电路使该方法能够通过根据输入信号强弱自动改变增益大小的方式来维持进入AD采集单元时信号强度的大小,克服了因输入光强变化所带来的信噪比下降而导致解算精度降低的缺点;以及因采用高速微处理器进行光束偏转角解算的方式克服了因采用单片机解算所造成的解算速度不快的缺点。Effect of the present invention: the present invention can overcome the shortcoming that the measurement accuracy reduces due to the unbalanced performance parameters between the channels of the analog circuit of the pre-stage signal conditioning due to the adoption of the full digital processing method; The reduction of the solution accuracy caused by the influence of the circuit common mode voltage, offset voltage, etc.; and because of the use of an adaptive variable gain amplifier circuit, the method can automatically change the gain according to the strength of the input signal to maintain access to AD The size of the signal strength at the time of the acquisition unit overcomes the shortcomings of the reduction of the resolution accuracy caused by the decrease of the signal-to-noise ratio caused by the change of the input light intensity; The disadvantage of slow solution speed caused by single-chip computer solution.
附图说明Description of drawings
图1为激光束偏移角测量光路图。图1的1表示的是QD的光敏面。2是成像物镜单元2。Figure 1 is a diagram of the optical path for measuring the deviation angle of the laser beam. 1 in Figure 1 represents the photosensitive surface of the QD. 2 is the imaging
图2为光斑在QD探测器光敏面上的示意图。在图2中,1是QD光电探测器,2是成像物镜单元2,3是成像光斑3,4是第一象限4,5是第二象限,6是第三象限6,7是第四象限7。Fig. 2 is a schematic diagram of the light spot on the photosensitive surface of the QD detector. In Figure 2, 1 is the QD photodetector, 2 is the imaging
图3为全数字化的四象限探测器检测激光光束偏转角的装置结构框图。此图也是摘要附图。Fig. 3 is a structural block diagram of a fully digital four-quadrant detector for detecting the deflection angle of a laser beam. This figure is also an abstract drawing.
在图3中,2是成像物镜,3是成像光斑3,8是第一象限所得电流8,令为I1,9是第二象限所得电流9,令为I2,10是第三象限所得电流10,令为I3;11是第四象限所得光电流11,令为I4。In Fig. 3, 2 is the imaging objective lens, 3 is the
图4是已有技术的采用四象限探测器作为其光电传感器,其处理电路图。Fig. 4 is a processing circuit diagram of a photoelectric sensor using a four-quadrant detector in the prior art.
图5是四象限探测器前置放大电路其中第一象限的电路图。Fig. 5 is a circuit diagram of the first quadrant of the four-quadrant detector preamplifier circuit.
图6是四象限探测器第一象限滤波电路的电路图。Fig. 6 is a circuit diagram of the first quadrant filter circuit of the four-quadrant detector.
图7是四象限探测器第一象限次级放大电路的电路图。Fig. 7 is a circuit diagram of the secondary amplifier circuit of the first quadrant of the four-quadrant detector.
具体实施方式Detailed ways
实施例1Example 1
将模拟电路的电路图给出来了,由于自适应可变增益放大电路、AD转换电路和微处理器电路可直接在器件的Datasheet里面的应用电路进行设计,模拟电路才是真个电路的核心,所以只给出了模拟部分的电路图。The circuit diagram of the analog circuit is given. Since the adaptive variable gain amplifier circuit, AD conversion circuit and microprocessor circuit can be directly designed in the application circuit in the datasheet of the device, the analog circuit is the core of the real circuit, so Only the circuit diagram of the analog part is given.
如图3所示,一种全数字化的检测激光光束偏转角的装置的构成由:QD光电探测器1、前置放大电路模块12、滤波电路模块13、次级放大电路模块14、自适应可变增益放大电路模块15、四路AD转换电路16、高速微处理器17和偏移量显示模块18构成;As shown in Figure 3, a fully digital device for detecting the deflection angle of a laser beam consists of: a
前置放大电路模块12、滤波电路模块13、次级放大电路模块14、可变增益放大电路模块15、AD转换模块16、高速微处理器模块17和偏移量显示模块18依次连接;高速微处理器模块17还与可变增益放大电路模块15连接。
下面结合附图,提供全数字化的四象限探测器检测激光束偏转角的方法,其步骤和条件如下:Below in conjunction with accompanying drawing, provide the method that fully digitized four-quadrant detector detects the deflection angle of laser beam, its steps and conditions are as follows:
在图1中,激光束经成像物镜单元2聚焦到QD光电探测器的光敏面1上,在这期间,还需要调整QD光电探测器的光敏面相对于成像物镜单元2的位置,使QD光电探测器的光敏面上的成像光斑的大小能够在0.1倍到1倍的QD光电探测器的光敏面内接圆直径范围内调整,这样以达到最佳的探测性能。In Fig. 1, the laser beam is focused on the
在图2中,激光光束经成像物镜2后的成像光斑3位于QD光电探测器1的光敏面2的四个象限:第一象限4,第二象限5,第三象限6和第四象限7中,在QD光电探测器将各个象限上的光能转换为相应的电流的时候,由于成像光斑3的光能在四个象限上的分量不同,导致由QD光电探测器转换所得的各个象限的电流大小也不相同,因为激光的谱线宽度很窄,相对于QD光电探测器的光谱响应曲线来说,可以认为激光源为线光源,即QD光电探测器的响应度在该激光光束波段范围内为常数,则QD光电探测器各象限的响应电流与该象限所得的光功率大小成正比。它们直接反应了光斑能量中心相对于QD光电探测器像敏面四个象限所形成坐标系内的位置,由该位置即可求的激光束的偏转角。In Fig. 2, the
在图3中,QD光电探测器将激光光束经成像物镜2后的成像光斑3对应于QD探测器四个象限上的光能及光斑的位置信息转换成相应的四路电信号:第一象限所得电流8,令为I1;第二象限所得电流9,令为I2;第三象限所得电流10,令为I3;第四象限所得光电流11,令为I4。这四路电流信号经前置放大电路模块将电流信号转换为电压信号,并将其放大。In Figure 3, the QD photodetector converts the
前置放大电路模块12有如下3种实现方式:(1)采用零偏放大的方式将由QD光电探测器所得的电流信号(I1,I2,I3,I4)直接转换成电压信号,同时使之得到放大;(2)让QD光电探测器工作在反相偏压的工作状态下,采用直流放大的形式将由QD光电探测器所得的电流信号(I1,I2,I3,I4)转换为电压信号,并使之放大;(3)让QD光电探测器工作在方向偏压的工作状态下,采用交流放大的形式将由QD光电探测器所得的电流信号(I1,I2,I3,I4)转换为电压信号,并使之放大。如可采用第二种实现方式,前置放大电路以第一象限为例,如图5所示。The
由于QD光电探测器固有噪声、前置放大电路的固有噪声、背景噪声等噪声的影响,导致前置放大后的信号其信噪比较低。本发明中采用滤波电路模块13对其进行滤波,以提高信噪比。根据光信号的频带以及应用要求可设计具体的滤波电路以达到最好的滤波效果,提高信噪比,提高光斑偏移量的解算精度。以第一象限为例,滤波电路可如图6所示进行设计。由于在进行远距离的激光光束偏转角的测量中,信号通常很微弱,尽管经过前置放大电路后信号得到增强,但仍很小,需要对其进行再一次的放大。本发明采用次级放大电路模块14对滤波后的信号进行再次放大,增大有效信号的幅度,提高信噪比。以第一象限为例,次级放大电路可如图7所示。Due to the inherent noise of the QD photodetector, the inherent noise of the pre-amplification circuit, background noise and other noises, the signal-to-noise ratio of the pre-amplified signal is low. In the present invention, the
同时由于传输距离远,传输过程中难免会受到其它因素的干扰,造成信号强度降低,在放大倍数相同的情况下,降低了信号的信噪比,导致偏移量解算精度的降低。本发明采用自适应可变增益放大电路模块15对其进行处理,在信号较弱的时候提高放大倍数,在信号过强的时候降低放大倍数,以使信噪比保持在一个高的状态,保证光斑偏移量解算精度的稳定性。此处电路图可参考所选用的可变增益放大器的Datasheet进行设计。At the same time, due to the long transmission distance, other factors will inevitably be interfered during the transmission process, resulting in a decrease in signal strength. In the case of the same amplification factor, the signal-to-noise ratio of the signal is reduced, resulting in a decrease in the accuracy of offset calculation. The present invention adopts adaptive variable gain
在对信号进行可变增益放大后,采用AD转换模块16将模拟信号转变成为数字信号。在四路AD转换电路16中,可根据需要的转换精度、信号电压的范围、通道的数量、通道AD转换的转换方式(同步转换或顺序转换)等选择合适的AD转换器,同时为保证四个通道能够同时采样,并相互独立以减小通道间的相互干扰,选择需要的AD转换器的数量。在该模块中还需要对自适应可变增益放大电路模块15的输出信号进行处理,以满足AD转换器的输入信号性能要求,达到最佳的AD转换性能。此处AD转换器可选用单通道的,其电路可参考器件的Datasheet进行设计。After the signal is amplified with variable gain, an
在对信号进行模数转换后,将转换后的数字信号输出到高速微处理器17进行偏移量解算。在该模块中需要完成四通到数字信号数字滤波处理,对QD光电探测器四个象限非均匀性及后续处理电路四个通道间的不均匀性等进行补偿,自适应可变增益放大电路模块15的放大倍数的控制,QD光电传感器上光斑偏移量解算、激光光束偏转角解算,偏移量的传输等工作。由于高度微处理器(如:DSP、FPGA等)的运算速度非常快,能达几十兆、上百兆甚至上千兆,同时这类高速微处理器的运算精度也很高,大多都能够大于16位,几乎都大于单片机的处理速度和处理精度,因此能够迅速完成这些工作,得出激光光束偏转角,从而达到很高的光束偏转角解算速度,并同时提高光束偏转角的解算精度。After analog-to-digital conversion is performed on the signal, the converted digital signal is output to the high-
为便于人眼观察,本发明采用了偏移量显示模块18,将激光光束的偏转角信息显示出来。该显示模块可由上位机接收高速微处理器模块解算所得的激光光束偏转角,然后在上位机上显示;也可由另外的MCU通过数码管、液晶或其它显示装置显示激光光束偏转角。In order to facilitate observation by human eyes, the present invention uses an offset
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100563073A CN100476364C (en) | 2007-11-13 | 2007-11-13 | Device and method for fully digital four-quadrant detector detecting laser beam deflection angle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100563073A CN100476364C (en) | 2007-11-13 | 2007-11-13 | Device and method for fully digital four-quadrant detector detecting laser beam deflection angle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101158590A true CN101158590A (en) | 2008-04-09 |
CN100476364C CN100476364C (en) | 2009-04-08 |
Family
ID=39306755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100563073A Expired - Fee Related CN100476364C (en) | 2007-11-13 | 2007-11-13 | Device and method for fully digital four-quadrant detector detecting laser beam deflection angle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100476364C (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323590A (en) * | 2011-05-30 | 2012-01-18 | 北京理工大学 | A Semi-Active Laser Target Position Accurate Identification Device |
CN102507148A (en) * | 2011-10-17 | 2012-06-20 | 南京理工大学 | Detection system of multi-quadrant photoelectric detector |
CN101585111B (en) * | 2008-05-23 | 2012-06-27 | 三菱电机株式会社 | Laser processing control device and laser processing device |
CN103499819A (en) * | 2013-09-22 | 2014-01-08 | 中国科学院光电技术研究所 | Device and method for measuring angular offset and distance of target line of sight |
WO2014067184A1 (en) * | 2012-10-30 | 2014-05-08 | 华中科技大学 | Apparatus based on four-quadrant detector and for measuring flow field in cavity of pulsed gas laser |
CN105004269A (en) * | 2015-07-16 | 2015-10-28 | 北京工业大学 | Four-quadrant sensor light spot deviation measurement method for laser tracker |
CN106153083A (en) * | 2016-06-27 | 2016-11-23 | 北京交通大学 | The method and device of Portable precise test instrunment is made based on electronic equipment |
CN106291579A (en) * | 2016-08-31 | 2017-01-04 | 湖北久之洋红外系统股份有限公司 | A kind of laser detection system having cooperative target |
CN108020121A (en) * | 2017-11-17 | 2018-05-11 | 湖北航天飞行器研究所 | A kind of laser seeker energy management system and method |
CN108180886A (en) * | 2017-12-24 | 2018-06-19 | 安凯 | Array 4 quadrant detector and its angle-measuring method |
CN108709640A (en) * | 2018-04-26 | 2018-10-26 | 西安电子科技大学 | Multispectral complex detection system |
CN108931211A (en) * | 2018-09-13 | 2018-12-04 | 莱赛激光科技股份有限公司 | A kind of High-precision angle measuring instrument and its working method |
CN109839186A (en) * | 2019-02-21 | 2019-06-04 | 中国科学院光电技术研究所 | A kind of system and method improving space optical communication system light-beam position detection accuracy |
CN109974575A (en) * | 2017-12-27 | 2019-07-05 | 海智芯株式会社 | For using the method and its equipment of automatic gain adjustment algorithm detection rotation angle |
CN110530256A (en) * | 2019-09-30 | 2019-12-03 | 长春理工大学 | A kind of laser angle measuring system based on four-quadrant photo detector |
CN111510145A (en) * | 2020-04-24 | 2020-08-07 | 国科天成(北京)科技有限公司 | Direct acquisition circuit applied to laser guidance |
CN112688649A (en) * | 2021-01-08 | 2021-04-20 | 北京轩宇空间科技有限公司 | Control circuit and control method for automatic gain of photoelectric detection system |
CN112904171A (en) * | 2021-01-19 | 2021-06-04 | 中国兵器工业集团第二一四研究所苏州研发中心 | Four-quadrant photoelectric detector test system and test method |
CN113422581A (en) * | 2021-08-24 | 2021-09-21 | 之江实验室 | Four-quadrant detector signal conditioning circuit for displacement feedback system |
CN113514152A (en) * | 2021-06-18 | 2021-10-19 | 中国人民解放军国防科技大学 | A weak light signal detection system that can identify the origin of the signal |
CN114088188A (en) * | 2021-11-19 | 2022-02-25 | 中国计量科学研究院 | A vibration measurement system |
CN114998441A (en) * | 2022-08-08 | 2022-09-02 | 广州成至智能机器科技有限公司 | Adaptive adjustment method and device for tripod head lamp of unmanned aerial vehicle, electronic equipment and storage medium |
CN119984485A (en) * | 2025-04-14 | 2025-05-13 | 天津大学 | Device and method for measuring light beam deflection angle |
-
2007
- 2007-11-13 CN CNB2007100563073A patent/CN100476364C/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585111B (en) * | 2008-05-23 | 2012-06-27 | 三菱电机株式会社 | Laser processing control device and laser processing device |
CN102323590A (en) * | 2011-05-30 | 2012-01-18 | 北京理工大学 | A Semi-Active Laser Target Position Accurate Identification Device |
CN102507148A (en) * | 2011-10-17 | 2012-06-20 | 南京理工大学 | Detection system of multi-quadrant photoelectric detector |
CN102507148B (en) * | 2011-10-17 | 2014-04-02 | 南京理工大学 | Detection system of multi-quadrant photoelectric detector |
WO2014067184A1 (en) * | 2012-10-30 | 2014-05-08 | 华中科技大学 | Apparatus based on four-quadrant detector and for measuring flow field in cavity of pulsed gas laser |
CN103499819A (en) * | 2013-09-22 | 2014-01-08 | 中国科学院光电技术研究所 | Device and method for measuring angular offset and distance of target line of sight |
CN105004269B (en) * | 2015-07-16 | 2017-10-10 | 北京工业大学 | Four-quadrant sensor light spot deviation measurement method for laser tracker |
CN105004269A (en) * | 2015-07-16 | 2015-10-28 | 北京工业大学 | Four-quadrant sensor light spot deviation measurement method for laser tracker |
CN106153083A (en) * | 2016-06-27 | 2016-11-23 | 北京交通大学 | The method and device of Portable precise test instrunment is made based on electronic equipment |
CN106291579A (en) * | 2016-08-31 | 2017-01-04 | 湖北久之洋红外系统股份有限公司 | A kind of laser detection system having cooperative target |
CN108020121A (en) * | 2017-11-17 | 2018-05-11 | 湖北航天飞行器研究所 | A kind of laser seeker energy management system and method |
CN108020121B (en) * | 2017-11-17 | 2019-07-09 | 湖北航天飞行器研究所 | A kind of laser seeker energy management system and method |
CN108180886A (en) * | 2017-12-24 | 2018-06-19 | 安凯 | Array 4 quadrant detector and its angle-measuring method |
CN109974575A (en) * | 2017-12-27 | 2019-07-05 | 海智芯株式会社 | For using the method and its equipment of automatic gain adjustment algorithm detection rotation angle |
CN108709640A (en) * | 2018-04-26 | 2018-10-26 | 西安电子科技大学 | Multispectral complex detection system |
CN108931211A (en) * | 2018-09-13 | 2018-12-04 | 莱赛激光科技股份有限公司 | A kind of High-precision angle measuring instrument and its working method |
CN109839186A (en) * | 2019-02-21 | 2019-06-04 | 中国科学院光电技术研究所 | A kind of system and method improving space optical communication system light-beam position detection accuracy |
CN110530256A (en) * | 2019-09-30 | 2019-12-03 | 长春理工大学 | A kind of laser angle measuring system based on four-quadrant photo detector |
CN111510145A (en) * | 2020-04-24 | 2020-08-07 | 国科天成(北京)科技有限公司 | Direct acquisition circuit applied to laser guidance |
CN111510145B (en) * | 2020-04-24 | 2021-05-25 | 国科天成科技股份有限公司 | Direct acquisition circuit applied to laser guidance |
CN112688649A (en) * | 2021-01-08 | 2021-04-20 | 北京轩宇空间科技有限公司 | Control circuit and control method for automatic gain of photoelectric detection system |
CN112688649B (en) * | 2021-01-08 | 2023-07-14 | 北京轩宇空间科技有限公司 | Automatic gain control circuit and control method for photoelectric detection system |
CN112904171A (en) * | 2021-01-19 | 2021-06-04 | 中国兵器工业集团第二一四研究所苏州研发中心 | Four-quadrant photoelectric detector test system and test method |
CN113514152A (en) * | 2021-06-18 | 2021-10-19 | 中国人民解放军国防科技大学 | A weak light signal detection system that can identify the origin of the signal |
CN113422581B (en) * | 2021-08-24 | 2021-12-07 | 之江实验室 | Four-quadrant detector signal conditioning circuit for displacement feedback system |
CN113422581A (en) * | 2021-08-24 | 2021-09-21 | 之江实验室 | Four-quadrant detector signal conditioning circuit for displacement feedback system |
CN114088188A (en) * | 2021-11-19 | 2022-02-25 | 中国计量科学研究院 | A vibration measurement system |
CN114998441A (en) * | 2022-08-08 | 2022-09-02 | 广州成至智能机器科技有限公司 | Adaptive adjustment method and device for tripod head lamp of unmanned aerial vehicle, electronic equipment and storage medium |
CN119984485A (en) * | 2025-04-14 | 2025-05-13 | 天津大学 | Device and method for measuring light beam deflection angle |
CN119984485B (en) * | 2025-04-14 | 2025-07-25 | 天津大学 | Device and method for measuring light beam deflection angle |
Also Published As
Publication number | Publication date |
---|---|
CN100476364C (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100476364C (en) | Device and method for fully digital four-quadrant detector detecting laser beam deflection angle | |
CN103499819B (en) | Device and method for measuring angular offset and distance of target line of sight | |
CN111473698B (en) | An angle measuring device for the optical system of a laser semi-active seeker | |
CN104748844B (en) | Four-quadrant photo detector signal processing system | |
CN101285692A (en) | A weak signal detection device | |
CN111609918A (en) | Optical Fiber Distributed Vibration Sensing System Based on Envelope Detection Circuit | |
CN104207752A (en) | High-speed frequency sweeping optical coherence tomography system | |
CN102155929A (en) | Displacement measuring device based on position-sensitive detector and application method of displacement measuring device | |
CN108827448A (en) | Vibration and inclination measuring system and method based on plane mirror and photovoltaic array | |
CN101975584B (en) | An open-loop test method for detecting circuit system errors of interferometric fiber optic gyroscopes | |
CN102338664A (en) | Real-time background deduction method for target radiometry | |
CN208350216U (en) | Light quantum Quadrant detector fully differential equilibrium random number generator | |
CN110086442A (en) | A kind of 4 quadrant detector signal amplification circuit | |
CN106840217B (en) | Signal processing method based on PSD | |
CN102866138A (en) | Four-quadrant detector-based auxiliary system and method for atomic fluorescence hollow cathode lamp | |
CN113259014B (en) | QD light spot detection system and detection method based on data judgment correlation | |
CN116233606A (en) | Automatic focus following device and method for light spots | |
CN113783614B (en) | Communication and tracking compounding method and device based on PSD position sensor | |
CN100359290C (en) | A Method of Improving the Angle Measuring Accuracy of Photoelectric Encoder | |
CN109238133A (en) | The collecting method and device of the facula position measurement device of Gao Zhongying laser | |
CN109946676A (en) | Twelve Quadrant Laser Detectors | |
CN108681270A (en) | A kind of signal processing circuit of Linear CCD Detector | |
CN105353115B (en) | The measurement apparatus and method of immuno-chromatographic test paper strip scattered optical field spatial distribution | |
Chen et al. | Implementation of Spot Detection System Based on Four-Quadrant Detector | |
CN115987227B (en) | Design method and circuit structure of optical fiber gyro photoelectric detection preamplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090408 Termination date: 20111113 |