CN101145672A - Fabrication method of micro-hole vertical cavity surface emitting laser - Google Patents
Fabrication method of micro-hole vertical cavity surface emitting laser Download PDFInfo
- Publication number
- CN101145672A CN101145672A CNA2006101129354A CN200610112935A CN101145672A CN 101145672 A CN101145672 A CN 101145672A CN A2006101129354 A CNA2006101129354 A CN A2006101129354A CN 200610112935 A CN200610112935 A CN 200610112935A CN 101145672 A CN101145672 A CN 101145672A
- Authority
- CN
- China
- Prior art keywords
- micro
- vertical cavity
- hole
- preparation
- cavity surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 238000000034 method Methods 0.000 title description 15
- 239000002184 metal Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 238000005530 etching Methods 0.000 claims abstract description 23
- 238000002360 preparation method Methods 0.000 claims abstract description 20
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 13
- 238000005516 engineering process Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims 10
- 238000002164 ion-beam lithography Methods 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 12
- 239000011248 coating agent Substances 0.000 abstract description 7
- 238000000576 coating method Methods 0.000 abstract description 7
- 239000010931 gold Substances 0.000 description 9
- 238000013500 data storage Methods 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005329 nanolithography Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
一种微小孔垂直腔面发射激光器的制备方法,包括以下步骤:步骤1:取一普通垂直腔面发射激光器,该激光器包括,N面电极、出光腔面、出光孔、P面电极;步骤2:在普通垂直腔面发射激光器的出光腔面上制备增透膜;步骤3:利用聚焦离子束刻蚀技术刻蚀掉P面电极上的增透膜;步骤4:在出光腔面上的增透膜上和P面电极上制备金属膜;步骤5:在出光孔上刻蚀出亚波长尺寸的微小孔,完成微小孔垂直腔面发射激光器的制作。
A preparation method of a micro-hole vertical cavity surface emitting laser, comprising the following steps: Step 1: Take an ordinary vertical cavity surface emitting laser, the laser includes an N-surface electrode, an optical cavity surface, an optical hole, and a P-surface electrode; Step 2 : Prepare an antireflection coating on the surface of the optical cavity of a common vertical cavity surface emitting laser; Step 3: use focused ion beam etching technology to etch off the antireflection coating on the P surface electrode; Step 4: Antireflection coating on the surface of the optical cavity Prepare a metal film on the transparent film and the P-surface electrode; Step 5: Etch a sub-wavelength micro-hole on the light exit hole to complete the fabrication of the micro-hole vertical cavity surface emitting laser.
Description
技术领域 technical field
本发明涉及一种半导体激光器的制备方法,具体涉及微小孔垂直腔面发射激光器的制备方法。The invention relates to a preparation method of a semiconductor laser, in particular to a preparation method of a microhole vertical cavity surface emitting laser.
背景技术 Background technique
目前的光学数据存储系统,如CD或者DVD都是远场存储系统,由于受到了衍射极限的限制,所以存储密度有限。利用光源近场处的倏逝波可以很好的突破衍射极限的限制,大大提高存储密度,因此高密度光学数据存储成为近场光学应用一个很大的领域。如果能制造出突破衍射分辨率极限的微小光源,对微区成像、微区探测和纳米光刻等应用领域都将是极大的推动。在这样的背景下,近场光学得到了飞速发展。近场数据存储成为了最有前景的高密度数据存储方法之一。其中制备高质量近场光源是一个重要的研究方向。Current optical data storage systems, such as CD or DVD, are far-field storage systems, and their storage density is limited due to the limitation of diffraction limit. Utilizing the evanescent wave in the near-field of the light source can break through the limitation of the diffraction limit and greatly increase the storage density. Therefore, high-density optical data storage has become a large field of near-field optical applications. If a tiny light source that breaks through the diffraction resolution limit can be manufactured, it will be a great impetus to the application fields such as micro-area imaging, micro-area detection and nano-lithography. In this context, near-field optics has developed rapidly. Near-field data storage has become one of the most promising high-density data storage methods. Among them, the preparation of high-quality near-field light sources is an important research direction.
基于边发射激光器制备的微小孔径激光器(very-small-aperture laser,VSAL),使探针型近场存储取得了突破性进展,通光效率比普通光纤探针有很大的提高,必将极大的提高近场光学显微镜的分辨能力,作为纳米尺度的光源还可用于纳米光刻、纳米加工、纳米光操作及纳米光谱等众多领域。Based on the very-small-aperture laser (VSAL) prepared by the edge-emitting laser, the probe-type near-field storage has made breakthrough progress, and the light transmission efficiency is greatly improved compared with ordinary fiber optic probes. It greatly improves the resolving power of the near-field optical microscope, and as a nanoscale light source, it can also be used in many fields such as nanolithography, nanoprocessing, nanolight manipulation, and nanospectroscopy.
但是,由于制备VASL时要在有源区上刻蚀出微小孔,而有源区的尺寸很小,小孔的准确定位难控制,工艺的可重复性差。从而导致制备工艺复杂、难度大、成品率较低。并且制备出的器件寿命很短,达到的功率密度也还不足以进行数据的存储。However, since the preparation of VASL needs to etch tiny holes on the active area, and the size of the active area is very small, it is difficult to control the precise positioning of the small holes, and the repeatability of the process is poor. As a result, the preparation process is complex, difficult and the yield is low. Moreover, the manufactured devices have a short lifetime, and the achieved power density is not enough for data storage.
基于垂直腔面发射激光器相对于边发射激光器本身的优越性,如有更小的尺寸,更利于实现集成化,阈值电流密度低,具有对称光输出模式等特点。并且相对于基于边发射激光器制备的微小孔激光器来说,基于垂直腔面发射激光器制备微小孔激光器会相对容易。Based on the superiority of the vertical cavity surface emitting laser over the edge emitting laser itself, if it has a smaller size, it is more conducive to the realization of integration, the threshold current density is low, and it has the characteristics of symmetrical light output mode. And compared to the micro-hole laser based on the edge-emitting laser, it is relatively easy to prepare the micro-hole laser based on the vertical cavity surface emitting laser.
发明内容 Contents of the invention
本发明的目的在于,提供一种微小孔垂直腔面发射激光器的制备方法,其具有以下优点:具有更小的尺寸,利于实现集成化,阈值电流密度低,并且具有对称光输出模式;制备工艺简单,工艺可重复性好,刻蚀微小孔16时定位容易。The object of the present invention is to provide a preparation method of a micro-hole vertical cavity surface emitting laser, which has the following advantages: smaller size, favorable for integration, low threshold current density, and symmetrical light output mode; preparation process Simple, good process repeatability, easy positioning when etching
本发明一种微小孔垂直腔面发射激光器的制备方法,其特征在于,包括以下步骤:A preparation method of a micro-hole vertical cavity surface emitting laser of the present invention is characterized in that it comprises the following steps:
步骤1:取一普通垂直腔面发射激光器,该激光器包括,N面电极、出光腔面、出光孔、P面电极;Step 1: Take an ordinary vertical cavity surface emitting laser, which includes N-face electrode, light-emitting cavity surface, light-emitting hole, and P-face electrode;
步骤2:在普通垂直腔面发射激光器的出光腔面上制备增透膜;Step 2: Prepare an anti-reflection coating on the light exit cavity surface of a common vertical cavity surface emitting laser;
步骤3:利用聚焦离子束刻蚀技术刻蚀掉P面电极上的增透膜;Step 3: using focused ion beam etching technology to etch away the anti-reflection coating on the P surface electrode;
步骤4:在出光腔面上的增透膜上和P面电极上制备金属膜;Step 4: Prepare a metal film on the antireflection film on the surface of the light exit cavity and on the P surface electrode;
步骤5:在出光孔上刻蚀出亚波长尺寸的微小孔,完成微小孔垂直腔面发射激光器的制作。Step 5: Etching tiny holes with sub-wavelength dimensions on the light exit hole to complete the fabrication of the micro-hole vertical cavity surface emitting laser.
其中所述增透膜材料为SiO2和SiNx的混合物,或者是Al2O3、MgF材料,厚度为200nm-400nm。Wherein the anti-reflection film material is a mixture of SiO 2 and SiN x , or Al 2 O 3 , MgF material, with a thickness of 200nm-400nm.
其中所述的增透膜为绝缘层,可以避免在下一步中金属和出光腔面直接接触,从而保护出光腔面。The anti-reflection film is an insulating layer, which can avoid direct contact between the metal and the surface of the light-emitting cavity in the next step, thereby protecting the surface of the light-emitting cavity.
其中所述的P面电极和N面电极为电流注入通道。The P-side electrode and the N-side electrode are current injection channels.
其中所述的金属膜材料为Ti/Au、Ti/Ag、Ti/Al或者Ti/Ni,其中Ti的厚度为5nm-30nm,Au、Ag、Al或者Ni层的厚度为60nm-400nm。The metal film material is Ti/Au, Ti/Ag, Ti/Al or Ti/Ni, wherein the thickness of Ti is 5nm-30nm, and the thickness of Au, Ag, Al or Ni layer is 60nm-400nm.
其中所述金属膜中的Ti可以提高器件表面的粘附性。Wherein the Ti in the metal film can improve the adhesion of the device surface.
其中所述金属膜为高反射膜,可以阻挡住普通垂直腔面发射激光器正常的输出光。Wherein the metal film is a high reflection film, which can block the normal output light of a common vertical cavity surface emitting laser.
其中所述在出光孔上刻蚀的微小孔尺寸为亚波长量级,深度和金属膜的厚度相同。Wherein the size of the tiny hole etched on the light exit hole is of sub-wavelength order, and the depth is the same as the thickness of the metal film.
其中所述聚焦离子束刻蚀时,采用最小的离子束流密度和最大的重合距离。Wherein, during the focused ion beam etching, the minimum ion beam current density and the maximum overlap distance are used.
本发明的微小孔垂直腔面发射激光器的制备方法,在普通垂直腔面发射激光器基础上制备得到的。具体制备工艺包括在普通垂直腔面发射激光器出光腔面11上镀增透膜14,去掉P面电极13上的增透膜14后镀金属膜15,然后用聚焦离子束刻蚀的方法在出光孔12上制备亚波长尺寸的微小孔16,将光限制在低损失微小谐振腔中,使光通过微小孔16出射,从而生成高效率的近场光。The preparation method of the microhole vertical cavity surface emitting laser of the present invention is prepared on the basis of the common vertical cavity surface emitting laser. The specific preparation process includes coating an
附图说明 Description of drawings
为进一步说明本发明的技术内容,以下结合附图对本发明详细说明如后,其中:In order to further illustrate the technical contents of the present invention, the present invention is described in detail below in conjunction with accompanying drawing as follows, wherein:
图1为普通垂直腔面发射激光器出光腔面示意图。Fig. 1 is a schematic diagram of the exit cavity surface of a common vertical cavity surface emitting laser.
图2—图5是在普通垂直腔面发射激光器基础上制造本发明微小孔垂直腔面发射激光器的工艺流程图。Fig. 2-Fig. 5 are process flow charts for manufacturing the micro-hole vertical cavity surface emitting laser of the present invention on the basis of common vertical cavity surface emitting lasers.
图中:10为N面电极,11为出光腔面,12为出光孔,13为P面电极,14为增透膜,15为金属膜,16为微小孔,17为侧面,18为激光器。In the figure: 10 is the N surface electrode, 11 is the light exit cavity surface, 12 is the light exit hole, 13 is the P surface electrode, 14 is the antireflection film, 15 is the metal film, 16 is the micro hole, 17 is the side surface, and 18 is the laser.
具体实施方式 Detailed ways
请参阅图1—图5所示,本发明一种微小孔垂直腔面发射激光器,其中包括以下步骤:Please refer to Fig. 1-shown in Fig. 5, a kind of micro hole vertical cavity surface emitting laser of the present invention, comprises the following steps:
(1)在普通VCSEL(图1)的出光腔面11上用电子回旋共振等离子体化学气相沉积法(ECR plasma CVD)淀积增透膜14,如图2所示,材料是SiO2和SiNx混合物,或者为Al2O3、MgF等材料,厚度为200nm-400nm。增透膜14作为绝缘膜可以避免在下一步中金属和出光腔面11直接接触,从而起到保护出光腔面11的作用。(1) Deposit an
(2)利用聚焦离子束系统刻蚀掉P面电极13上的增透膜14,如图3所示,使P面电极13和N面电极10能够形成电流注入通道。刻蚀时间为30s-120s。(2) Etching away the
(3)在增透膜14上面溅射金属膜15,如图4所示,材料为Ti/Au、Ti/Ag、Ti/Al或者Ti/Ni,其中Ti的厚度比较薄,为5nm-30nm,主要是为了提高粘附性,使Au层在腔面上的粘附性较好,不易剥落。Au、Ag、Al或者Ni膜的厚度为60nm-400nm,金属膜15作为反射膜阻挡住激光器正常的输出光,使出光腔面11的反射率在激射波长附近大于90%。制备金属膜15时,把激光器的N面电极10用绝缘材料粘到玻璃片上,同时用绝缘材料对激光器的侧面17进行保护,防止溅射过程中金属蔓延到器件侧面17使N面电极10和出光腔面11短路。溅射完成后,检测激光器的功率-电压-电流特性,确保激光器的电压特性正常,金属膜15完全覆盖住正常的输出光,以提高微小孔垂直腔面发射激光器的成品率。(3)
(4)利用聚焦离子束刻蚀技术在出光孔12上刻蚀出亚波长尺寸的微小孔16,如图5所示,将光限制在低损失微小谐振腔中,使光通过微小孔16出射,以产生高效率的近场光。刻蚀金属膜15时,为了最大程度的减轻刻蚀过程对出光腔面11的损伤,采用最小的离子束流密度,它是决定刻蚀速率的主要因素。对于决定表面粗糙度的主要因素——重合距离,采用了最大的重合距离。刻蚀的微小孔16为亚波长尺寸,本发明涉及的垂直腔面发射激光器波长为650nm-980nm,微小孔16的直径为50nm-450nm,深度和金属膜15的厚度相同。单个微小孔16的刻蚀时间一般为20s-60s,以恰好打掉金属膜15为据。(4) Use focused ion beam etching technology to etch a
所述步骤(1)是这样进行的,在普通VCSEL的出光腔面11上用电子回旋共振等离子体化学气相沉积法(ECR plasmaCVD)淀积材料为SiO2和SiNx混合物的增透膜14,或者是Al2O3、MgF等材料,厚度为200nm-400nm。这种方法真空度高;可在较低温度下淀积;淀积的增透膜14几乎没有针孔致密度高;可用电子回旋共振的Hz/He等离子体对腔面进行去碳去氧的清洁处理,且淀积的薄膜可重复性好。这层增透膜14作为绝缘层在下一步镀金时避免了金属和出光腔面11直接接触,可以起到保护出光腔面11的作用。Described step (1) is carried out like this, use electron cyclotron resonance plasma chemical vapor deposition method (ECR plasmaCVD) deposition material to be the
所述步骤(2)是这样进行的,刻蚀掉P面电极13上的增透膜14,厚度为200nm-400nm,使P面电极13和N面电极10能够形成电流注入通道。刻蚀时间30s-120s。采用的是美国FEI公司生产的双束DualBeamTM DB235-FIB工作站,Ga+离子束的最小聚焦点7nm。整个系统在10-4Pa以上的高真空条件下进行工作。The step (2) is carried out by etching off the
所述步骤(3)是这样进行的,用磁控溅射法镀金属膜15,材料为Ti/Au、Ti/Ag、Ti/Al或者Ti/Ni,其中Ti的厚度比较薄,为5nm-30nm,它的作用是提高粘附性,使Au层在腔面上的粘附性较好,不易剥落。Au、Ag、Al或者Ni层的厚度为60nm-400nm。金属膜15作为反射膜可以阻挡住垂直腔面发射激光器正常的输出光,使出光腔面11的反射率在激射波长附近大于90%。制备金属膜15时,把激光器的N面电极10用绝缘材料粘到玻璃片上,同时用绝缘材料对激光器的侧面17进行保护,防止溅射过程中金属蔓延到器件侧面17使N面电极10和出光腔面11发生短路。溅射完成后,检测激光器的功率-电压-电流特性,确保金属膜15完全覆盖住正常的输出光,器件的电压特性正常,以提高微小孔器件的成品率。Described step (3) is carried out like this, uses the magnetron sputtering method to coat
所述步骤(4)是这样进行的,在出光孔12上刻蚀的微小孔16尺寸为亚波长量级,本发明涉及的垂直腔面发射激光器波长为650nm-980nm,微小孔16的直径为50nm-450nm,形状为单个圆形孔、方形孔或者异形孔,也可以是具有一定周期性环形结构或者一系列微小孔16组成的阵列结构,刻蚀微小孔16的深度和金属膜15的厚度相同。单个微小孔16的刻蚀时间一般为20s-60s,以恰好打掉金属膜15为据。采用的是和步骤(2)中相同的FIB系统,刻蚀过程对金属膜15的刻蚀速率有一定要求,可以通过调节刻蚀时的离子束流密度、驻留时间,束斑重合距离,离子束流扫描时间等工艺条件来做到精确控制,从而刻蚀后得到较好的表面平整度。刻蚀时为了最大程度减轻刻蚀过程对出光腔面11的损伤,采用了最小的离子束流密度,它是决定刻蚀速率的主要因素。同时采用最大的重合距离,它是决定表面粗糙度的主要因素。Described step (4) is carried out like this, the size of the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101129354A CN101145672A (en) | 2006-09-13 | 2006-09-13 | Fabrication method of micro-hole vertical cavity surface emitting laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101129354A CN101145672A (en) | 2006-09-13 | 2006-09-13 | Fabrication method of micro-hole vertical cavity surface emitting laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101145672A true CN101145672A (en) | 2008-03-19 |
Family
ID=39208027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101129354A Pending CN101145672A (en) | 2006-09-13 | 2006-09-13 | Fabrication method of micro-hole vertical cavity surface emitting laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101145672A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101881786A (en) * | 2010-05-26 | 2010-11-10 | 中国科学院半导体研究所 | Scanning near-field optical microscopy system based on micro-hole laser |
CN102403654A (en) * | 2010-09-14 | 2012-04-04 | 光环科技股份有限公司 | Vertical resonant cavity surface emitting laser element and manufacturing method thereof |
CN108879319A (en) * | 2017-05-09 | 2018-11-23 | 晶元光电股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN112987077A (en) * | 2021-03-22 | 2021-06-18 | 中国科学院近代物理研究所 | Low-energy ion beam detection and ion beam current strength self-balancing interlocking control system |
-
2006
- 2006-09-13 CN CNA2006101129354A patent/CN101145672A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101881786A (en) * | 2010-05-26 | 2010-11-10 | 中国科学院半导体研究所 | Scanning near-field optical microscopy system based on micro-hole laser |
CN101881786B (en) * | 2010-05-26 | 2012-11-14 | 中国科学院半导体研究所 | Scanning near-field optical microscopy system based on micro-hole laser |
CN102403654A (en) * | 2010-09-14 | 2012-04-04 | 光环科技股份有限公司 | Vertical resonant cavity surface emitting laser element and manufacturing method thereof |
CN108879319A (en) * | 2017-05-09 | 2018-11-23 | 晶元光电股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN112987077A (en) * | 2021-03-22 | 2021-06-18 | 中国科学院近代物理研究所 | Low-energy ion beam detection and ion beam current strength self-balancing interlocking control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101202419A (en) | A vertical cavity surface emitting nanoscale semiconductor laser light source and its manufacturing method | |
TW200843266A (en) | Semiconductor laser device | |
CN108242763B (en) | Monolithic structure of electro-absorption modulated laser and its fabrication and testing method | |
CN111725700B (en) | A flexible vertical cavity surface emitting laser chip and its manufacturing method | |
CN101471534A (en) | Method for making high brightness semiconductor conical laser/amplifier | |
CN104682195A (en) | Edge emitting semiconductor laser with tunnel junction structure and preparation method thereof | |
CN111496384B (en) | A processing device and method for nanopore array on the surface of brittle material | |
CN101145672A (en) | Fabrication method of micro-hole vertical cavity surface emitting laser | |
CN101888058A (en) | A method of fabricating a vertical cavity surface emitting laser with stable polarization output | |
CN113381293B (en) | Bessel beam emitter and manufacturing method thereof | |
CN102570301A (en) | Biplate integrated adjustable vertical cavity surface emitting laser structure and preparation method thereof | |
CN102637999A (en) | Sub-wavelength self-focusing radial polarization vertical-cavity surface-emitting laser and preparation method thereof | |
CN209561860U (en) | Beam shaping structure and laser chip of edge emitting laser | |
CN116111016A (en) | Ultraviolet LED device, ultraviolet LED device manufacturing method and related equipment | |
US7432132B1 (en) | Integrated diamond carrier method for laser bar arrays | |
WO1997040558A1 (en) | Vertical cavity lasers with monolithically integrated refractive microlenses | |
CN102769079A (en) | Manufacturing method of p-type and n-type semiconductor light-emitting vertical conduction light-emitting diodes | |
CN100380695C (en) | Light emitting diode chip and production thereof | |
CN107863686A (en) | The preparation method and integrated chip that a kind of laser diode integrates with back light detector | |
Chen et al. | Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser | |
Swanson et al. | Electron-cyclotron resonance etching of mirrors for ridge-guided lasers | |
CN117497654A (en) | A mosaic contact Ag reflector red light chip and its manufacturing method | |
CN101682171A (en) | Semiconductor laser device and method for manufacturing the same | |
JP4250257B2 (en) | Semiconductor near-field light source and manufacturing method thereof | |
CN1219346C (en) | Window-isolated minimal-hole semiconductor laser and manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |