Disclosure of Invention
The technical problem is as follows: the invention aims to provide a multi-user single carrier frequency division multiple access wireless transmission method based on frequency domain interleaving, which not only can realize flexible wireless resource allocation among multiple users, but also is used for improving the error rate performance of broadband wireless communication by an iterative detection method.
The technical scheme is as follows: the invention discloses a multi-user single carrier frequency division multiple access wireless transmission method based on frequency domain interleaving, which not only supports an error control coding system, but also supports an error-free control coding system, and symbols after baseband mapping in a transmission scheme carry out multi-user frequency division multiple access modulation according to the following steps:
1.1 By N) signals for each user b For length division into blocks, serial-to-parallel conversion is performed,
1.2 N) the serial-to-parallel converted signal b The fast fourier transform of the point(s),
1.3 The resulting frequency domain signals are interleaved,
1.4 Map the interleaved signals of each user to N in a centralized or distributed manner I On the basis of the number of sub-carriers,
1.5 Subjecting the signal obtained in step 1.4) to N I Performing inverse fast Fourier transform on the points, and inserting cyclic prefix to obtain a baseband sending signal;
wherein N is b For each user's occupied sub-carrier, N I Is the total number of subcarriers in the system.
When the error-free control coding is adopted by the transmitting end, the receiver comprises the following steps:
2.1 Taking the received signal as a block unit, removing the cyclic prefix CP, then performing fast Fourier transform, and extracting the subcarrier signal occupied by the current user to obtain the length N of the current user b The frequency domain of (a) receives a vector of signals,
2.2 ) reconstruct the mean of each signal
And the mean variance of all signals
Initialisation in the initial detection
2.3 Carry out N on a vector formed by signal means
b Point fast Fourier transform to obtain the signal mean value of the frequency domain, and then interweaving to generate the interweaved frequency domain signal
2.4 Performs interference cancellation at each carrier point in the frequency domain, performs frequency domain equalization on the signals obtained by the interference cancellation,
2.5 ) deinterleaves the frequency domain equalized signal,
2.6 N) the deinterleaved signal vector
b Inverse fast Fourier transform of the points to obtain a signal estimate
Equivalent channel coefficient
Wherein
h
k f Denotes the frequency domain channel parameter, σ, of the k-th carrier
z 2 Representing an additive white gaussian noise variance,
2.7 Soft demodulation is performed based on the signal estimation value, the equivalent channel coefficient and the equivalent interference noise variance,
2.8 If the iteration is not finished, the step 2.2) is returned; and if the iteration is finished, the demodulated result is judged to obtain a receiving result.
When the transmitting end employs error control coding, the receiver comprises the steps of:
3.1 The received signal is divided into blocks, the cyclic prefix CP is removed, and then FFT is performed, so that the received signal is processed
Extracting the sub-carrier signal occupied by the current user to obtain the length N of the current user b The frequency domain of (a) receives a vector of signals,
3.2 Based on the detectionOr the decoded result reconstructs the mean value of each signal
And the mean variance of all signals
Initialisation in primary detection
3.3 Carry out N on a vector formed by signal means
b Point fast Fourier transform to obtain the signal mean value of the frequency domain, and then interweaving to generate the interweaved frequency domain signal
3.4 Performs interference cancellation at each carrier point in the frequency domain, performs frequency domain equalization on signals obtained by the interference cancellation,
3.5 ) deinterleaves the frequency domain equalized signal,
3.6 N) the deinterleaved signal vector
b Inverse fast Fourier transform of the points to obtain a signal estimate
Equivalent channel coefficient
Wherein
h
k f Frequency representing the k carrier
Domain channel parameter, σ z 2 Representing an additive white gaussian noise variance,
3.7 Based on the signal estimation value, the equivalent channel coefficient and the equivalent interference noise variance, soft-demodulating, sending the result obtained by soft-demodulation to a soft-input and soft-output decoder,
3.8 The decoder performs soft-input soft-output decoding,
3.9 If the iteration is not finished, the step 3.2) is returned; and if the iteration is finished, the demodulated result is judged to obtain a receiving result.
Has the beneficial effects that: the invention provides a single-carrier frequency division multiple access transmitting and iteration receiving scheme based on frequency domain interleaving, which can support both error control coding and error-free control coding. And the wireless resource management can be realized through flexible subcarrier allocation among multiple users. The single user can obtain better error rate performance by adopting a frequency domain interleaving sending method through an iterative detection/iterative detection decoding receiving method. The realization structure compatible with the traditional single carrier frequency division multiple access is kept, and the frequency domain interleaving or the traditional single carrier frequency division multiple access transmission mode can be selected according to the requirements of the actual system. The frequency domain interference cancellation detection realized by the receiving end in the frequency domain has lower realization complexity.
The specific implementation mode is as follows:
the principle of multi-user FDMA transmission is to sum the total N I N in subcarriers b N assigned to each user b One symbol is transmitted. Fig. 1 shows a transmission scheme of multi-user FDMA transmission based on frequency domain interleaving proposed by the present invention. The transmission information bit is processed by error control coding, bit interleaving and baseband symbol mapping to obtain baseband mapped symbol, and then processed by FDMA modulation and interpolation of frequency domain interleavingAnd obtaining a sending signal after entering a Cyclic Prefix (CP). The FDMA modulation realization process of frequency domain interweaving comprises the following steps: firstly, the signal is according to the length N b Dividing into blocks, serial-to-parallel converting, and performing N on the signal vector b Fast Fourier Transform (FFT) of the points, then the frequency domain signal obtained by the transform is interleaved once according to a predetermined interleaving pattern, and then N is processed according to a centralized or distributed mode b Frequency domain signal mapping of points to N I On each subcarrier, 0 is inserted into the rest subcarriers, and finally N is inserted I Dimension Signal vector as N I And point Inverse Fast Fourier Transform (IFFT) and parallel-serial transformation are carried out to complete FDMA modulation based on frequency domain interleaving. If the error control coding module and the interleaving module are omitted in fig. 1, the transmission scheme is degenerated to error-free control coding.
Figure 2 shows a reception scheme for multi-user FDMA transmission based on frequency domain interleaving. At the receiving end, CP is firstly removed, and N is carried out after serial-parallel conversion I And point FFT, frequency domain interference cancellation equalization, and soft demodulation to obtain the likelihood ratio of the bit. If the transmission scheme adopts error control coding, the result after soft demodulation is interleaved and then sent into a decoder, the result obtained by the decoder is used for reconstructing symbol statistics (including mean value and variance) after interleaving, and then is fed back to frequency domain interference cancellation equalization to carry out iterative detection decoding; if the transmission scheme does not adopt error control coding, the result after soft demodulation is directly used for reconstructing symbol statistics and carrying out iterative detection with frequency domain interference cancellation balance. Error control coding in the transmitter, soft demodulation in the receiver, symbol statistic reconstruction, decoding and the like are used as common modules in the communication system, which are discussed in various documents, and are not described in this specification. In the following, we will describe FDMA modulation and frequency domain interference cancellation equalization algorithm in detail.
1. Multi-user FDMA modulation based on frequency domain interleaving
First, we assume that the total number of subcarriers in the system is N I The number of subcarriers occupied by each user is N b , N b ≤N I . FDMA modulation comprises the steps of
1) Serial-parallel conversion: the symbol after the baseband mapping of a certain user is according to N b Is divided into blocks for a unit.
2)N b Point fast fourier transform.
3) Interweaving: and carrying out interweaving according to a preset interweaving pattern. The interleaving pattern may be generated by any method of pseudo-random interleaving.
4) Subcarrier mapping: n after interweaving b The symbols are mapped to N in a centralized or distributed manner I And (4) a subcarrier. Centralized mapping finger N b Mapping of symbols to N I N consecutive in sub-carriers b 0 is inserted into each subcarrier and other subcarriers; distributed mapping refers to N b Equispaced mapping of symbols to N I N in sub-carriers b 0 is inserted into each subcarrier and other subcarriers;
5)N I point inverse fast fourier transform.
6) And (4) parallel-to-serial conversion.
2. Frequency domain interference cancellation detection
Suppose that the k sub-carrier channel parameter occupied by the current user is h k f The variance of the noise is σ z 2 The channel parameters and the noise variance are generally obtained by a channel estimation method, and are not described in the present invention. Fig. 3 shows a schematic diagram of frequency domain interference cancellation detection, which includes the following specific steps:
1) Subcarrier extraction: the current user N is mapped according to the subcarrier mapping mode determined by the sending end b Received signal of point from N I Extracting the sub-carrier to obtain the frequency domain receiving signal y of the current user 0 ,…,y Nb-1 。
2) N of the reconstructed signal
b Point FFT and interleaving: mean value of the reconstructed signal
Carry out N
b The FFT point interweaves according to the interweaving pattern determined by the sending end to obtain an interweaved frequency domain reconstruction signal,
calculating the mean variance of the signal
v
i The reconstructed variance for the ith signal.
3) Frequency domain interference cancellation: for each subcarrier, according to the formula
And carrying out frequency domain interference cancellation.
4) Frequency domain equalization: for each subcarrier, calculating equalized frequency domain symbol
Wherein b is
k According to the formula
Is calculated, wherein
Is the mean variance of the reconstructed signal.
5) And (3) reverse interleaving: and performing reverse interleaving on the signals after the frequency domain equalization according to the interleaving pattern determined by the sending end.
6)N b Point IFFT: do N to the inversely interleaved signal b And after point IFFT, obtaining a signal after frequency domain interference cancellation equalization.
7) Equivalent channel response ρ and equivalent noise μ: calculating out
Wherein
The equivalent noise variance is μ = ρ (1- ρ).
The invention provides a single carrier frequency division multiple access transmission technical scheme based on frequency domain interleaving, which meets the requirements of reliable multi-user and effective wireless transmission, and the specific implementation mode is as follows:
(1) Determining system parameters: under the given system bandwidth, according to the general rule designed by the orthogonal frequency division multiplexing system, the total subcarrier number N adopted in the system is determined according to the Doppler frequency offset and the implementation complexity I And the number of subcarriers N per user b (ii) a Determining the error control coding mode adopted by the system; determining the iteration times of an iterative receiver according to the requirements of the system on the error rate performance and the complexity; and determining an interleaving pattern and a subcarrier mapping mode.
(2) The sending method comprises the following steps: the transmitting end generates a transmitting baseband signal according to the technical scheme and the method shown in fig. 1, and transmits the transmitting baseband signal after carrier modulation. The method comprises the following specific steps:
and (2.1) coding the bits to be transmitted according to the determined error control coding mode.
And (2.2) carrying out bit interleaving on the coded bits. If the system adopts a no-coding system, the steps (2.1) and (2.2) are omitted.
And (2.3) mapping the interleaved coded bits to baseband symbols.
(2.4) mapping the symbols after baseband mapping according to the length N b And performing serial-to-parallel conversion.
(2.5) performing N on the serial-to-parallel converted symbol b And (6) point FFT.
And (2.6) interleaving the frequency domain symbols after the FFT.
And (2.7) carrying out subcarrier mapping in a centralized or distributed mode.
(2.8)N I A point IFFT.
And (2.9) parallel-to-serial conversion.
And (2.10) inserting a cycle to obtain a transmission baseband signal.
(3) Receiving an overall scheme: when the transmitting end adopts error control coding, the receiver adopts a mode of iterative detection decoding. When the transmitting end does not adopt error control coding, the receiver adopts an iteration detection receiving mode. The concrete steps are shown in figure 2
(3.1) at the receiving end, CP is removed first, and N is performed I And (6) point FFT.
And (3.2) carrying out soft-input soft-output frequency domain interference cancellation equalization.
And (3.3) carrying out likelihood ratio calculation according to the result of the frequency domain interference cancellation equalization in a symbol mapping mode.
And (3.4) if the error control coding is adopted by the sending end, the likelihood ratios obtained by detection are transmitted to a decoder for decoding after being inversely interleaved.
And (3.5) if the iterative detection decoding is not finished, using the decoding result to reconstruct the symbol statistic, feeding back to the detector, and returning to the step (3.2). And if the iteration is finished, judging the decoding result and taking the decoding result as the result of the receiver.
(4) And (3) frequency domain interference cancellation detection: the frequency domain interference cancellation detection calculates the signal estimation after the frequency domain interference cancellation detection, the equivalent channel coefficient rho and the equivalent noise variance mu according to the frequency domain receiving signal and the reconstructed symbol statistic, and the specific steps are as follows:
(4.1) subcarrier extraction: and extracting the received signals of the sub-carriers occupied by the current user according to the sub-carrier mapping mode determined by the sending end.
(4.2) reconstructing N of the signal
b Point FFT and interleaving: mean of the reconstructed signal
Carry out N
b Point FFT, interleaving according to the interleaving pattern determined by the sending end to obtain the interleaved frequency domain reconstruction signal
(4.3) frequency domain interference cancellation: for each subcarrier, according to the formula
And carrying out frequency domain interference cancellation.
(4.4) frequency domain equalization: for each subcarrier, calculating equalized frequency domain symbol
Wherein b is
k According to the formula
Is calculated, wherein
Is the mean variance of the reconstructed signal.
(4.5) reverse-interlacing: and performing reverse interleaving on the signals after the frequency domain equalization according to the interleaving pattern determined by the sending end.
(4.6)N b Point IFFT: do N to the inversely interleaved signal b After point IFFT, a signal with balanced frequency domain interference cancellation is obtained.
(4.7) equivalent channel response ρ and equivalent noise: calculating out
In which
The equivalent noise variance is μ = ρ (1- ρ).