CN101136884B - Channel Estimation Method for TDS-OFDM System - Google Patents
Channel Estimation Method for TDS-OFDM System Download PDFInfo
- Publication number
- CN101136884B CN101136884B CN2007101753018A CN200710175301A CN101136884B CN 101136884 B CN101136884 B CN 101136884B CN 2007101753018 A CN2007101753018 A CN 2007101753018A CN 200710175301 A CN200710175301 A CN 200710175301A CN 101136884 B CN101136884 B CN 101136884B
- Authority
- CN
- China
- Prior art keywords
- result
- impulse response
- random sequence
- data block
- channel impulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
本发明公开了一种用于TDS-OFDM系统的信道估计方法,属于数字信息传输技术领域。所述方法包括:将上一帧最后一次或当前帧上一次迭代得到的信道估计结果作为当前帧本次迭代的初始信道冲激响应,根据初始信道冲激响应去除伪随机序列对数据块的干扰,并进行数据块的循环重建;对循环重建结果进行均衡,并对均衡的结果进行部分判决;根据部分判决的结果和初始信道冲激响应去除数据块对伪随机序列的干扰,并进行伪随机序列的循环重建;根据循环重建结果重新估计信道冲激响应,并将信道冲激响应作为当前帧本次迭代的信道估计。本发明通过对TDS-OFDM系统的数据块进行部分判决以辅助信道估计,提高了信道估计的精度,降低了运算的复杂度。
The invention discloses a channel estimation method used in a TDS-OFDM system, belonging to the technical field of digital information transmission. The method includes: using the channel estimation result obtained in the last iteration of the previous frame or the last iteration of the current frame as the initial channel impulse response of the iteration of the current frame, and removing the interference of the pseudo-random sequence on the data block according to the initial channel impulse response , and perform cyclic reconstruction of the data block; perform equalization on the cyclic reconstruction result, and perform partial judgment on the equalized result; remove the interference of the data block on the pseudo-random sequence according to the partial judgment result and the initial channel impulse The cyclic reconstruction of the sequence; re-estimate the channel impulse response according to the cyclic reconstruction result, and use the channel impulse response as the channel estimate of the current frame iteration. The invention assists the channel estimation by making partial judgment on the data blocks of the TDS-OFDM system, improves the precision of the channel estimation and reduces the complexity of the operation.
Description
技术领域technical field
本发明涉及数字信息传输技术领域,特别涉及一种用于TDS-OFDM系统的信道估计方法。The invention relates to the technical field of digital information transmission, in particular to a channel estimation method for a TDS-OFDM system.
背景技术Background technique
目前无线通信技术主要解决的问题是如何在有限的带宽内可靠地提高传输速率。OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)可以在频率选择性衰落信道中可靠地实现高速率传输,已经广泛应用于如无线局域网、固定无线接入、数字音频和视频广播等无线通信系统中。当前有两种OFDM系统,一种是基于CP(Cyclic Prefix,循环前缀)的CP-OFDM系统,采用CP填充保护间隔,保护间隔位于两个OFDM符号之间,用于抵抗信道中的时延扩展。基于CP的OFDM系统在传输过程中,OFDM符号与信道冲激响应的线性卷积关系被转换为循环卷积关系,从而可以在接收机中采用简单的频域均衡技术对接收信号进行均衡;另一种是基于ZP(Zero Padding,零填充)的ZP-OFDM系统,零符号取代了CP-OFDM系统中的CP,从而在由于信道深衰落造成信道响应频谱零点的情况下,仍然可以保证ZP-OFDM系统实现符号恢复,参见(Muquet B,Wang Z,Giannakis G.B,Courville M.de,and Duhamel P,Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions,IEEETrans.on Communications,2002,50(12):2136-2148)。在相干解调的CP-OFDM和ZP-OFDM系统中,信道冲激响应一般借助于导频符号(对应于连续流传输模式)或者前导序列(对应于突发传输模式)进行估计。The main problem to be solved by wireless communication technology at present is how to increase the transmission rate reliably within a limited bandwidth. OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) can reliably achieve high-speed transmission in frequency-selective fading channels, and has been widely used in wireless communications such as wireless local area networks, fixed wireless access, digital audio and video broadcasting system. There are currently two OFDM systems, one is based on CP (Cyclic Prefix, cyclic prefix) CP-OFDM system, which uses CP to fill the guard interval, and the guard interval is located between two OFDM symbols to resist the delay spread in the channel . During the transmission process of the CP-based OFDM system, the linear convolution relationship between the OFDM symbol and the channel impulse response is converted into a circular convolution relationship, so that the received signal can be equalized by using a simple frequency domain equalization technique in the receiver; One is a ZP-OFDM system based on ZP (Zero Padding, zero padding). The zero symbol replaces the CP in the CP-OFDM system, so that the ZP-OFDM system can still be guaranteed when the channel response spectrum is zero due to deep channel fading. OFDM system realizes symbol recovery, see (Muquet B, Wang Z, Giannakis G.B, Courville M.de, and Duhamel P, Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions, IEEETrans.on Communications, 2002, 50(12): 2136- 2148). In coherently demodulated CP-OFDM and ZP-OFDM systems, the channel impulse response is generally estimated by means of pilot symbols (corresponding to continuous stream transmission mode) or preamble sequences (corresponding to burst transmission mode).
在上述CP-OFDM和ZP-OFDM系统中,CP和ZP符号,再加上导频和前导序列造成了频谱效率的降低。为了更好的利用保护间隔,中国发明专利ZL01124144.6《正交频分复用系统的保护间隔填充方法》中提出了一种基于TDS(Time-Domain Synchronous,时域同步)的OFDM系统,在该TDS-OFDM系统中,用已知的伪随机序列填充了OFDM符号之间的保护间隔,该填充的伪随机序列除了作为保护间隔外,还可以用于接收机的同步和信道估计。参见图1,为TDS-OFDM系统的帧结构图,TDS-OFDM信号帧包括OFDM数据块和填充的伪随机序列,图中传输的第i个长度为N的时域OFDM数据块{xn (i)}n=0 N-1后面跟着长度为v的伪随机序列填充段{cn (i)}n=0 v-1,从而构成第i个长度为N2=N+v的TDS-OFDM发射信号帧{sn (i)}n=0 N-1,假设填充的伪随机序列采用BPSK(Binary Phase Shift Keying,二进制移相键控)调制,并具有如下的自相关特性:In the above-mentioned CP-OFDM and ZP-OFDM systems, the CP and ZP symbols, together with the pilot frequency and preamble sequence, cause the reduction of spectrum efficiency. In order to make better use of the guard interval, a Chinese invention patent ZL01124144.6 "Guard Interval Filling Method for Orthogonal Frequency Division Multiplexing System" proposes an OFDM system based on TDS (Time-Domain Synchronous, time-domain synchronization). In the TDS-OFDM system, the known pseudo-random sequence is used to fill the guard interval between OFDM symbols, and the filled pseudo-random sequence can be used for receiver synchronization and channel estimation in addition to being used as a guard interval. Referring to Fig. 1, it is the frame structure figure of TDS-OFDM system, and TDS-OFDM signal frame comprises the pseudo-random sequence of OFDM data block and padding, the time-domain OFDM data block {x n ( i) } n=0 N-1 is followed by a pseudo-random sequence padding section {c n (i) } n=0 v-1 of length v, thus forming the i-th TDS- with length N 2 =N+v OFDM transmit signal frame {s n (i) } n=0 N-1 , it is assumed that the filled pseudo-random sequence is modulated by BPSK (Binary Phase Shift Keying, Binary Phase Shift Keying) and has the following autocorrelation characteristics:
其中,δ(n)为离散狄拉克函数。假设采用的信道模型为准静态L阶FIR(Finite ImpulseResponse,有限冲激响应)滤波器,并且受到加性高斯白噪声的干扰。则TDS-OFDM接收信号帧{rn (i)}n=0 N-1与TDS-OFDM发射信号帧{sn (i)}n=0 N-1之间满足线性卷积关系:Among them, δ(n) is a discrete Dirac function. It is assumed that the adopted channel model is a quasi-static L-order FIR (Finite Impulse Response, finite impulse response) filter, and is interfered by additive Gaussian white noise. Then the TDS-OFDM received signal frame {r n (i) } n=0 N-1 and the TDS-OFDM transmitted signal frame {s n (i) } n=0 N-1 satisfy the linear convolution relationship:
其中,wn (i)为加性高斯白噪声。如果能在接收机中得到填充的伪随机序列{cn (i)}n=0 v-1与信道冲激响应{hl (i)}l=0 L-1的线性卷积结果pn (i),即Among them, w n (i) is additive Gaussian white noise. If the linear convolution result p n of the filled pseudo-random sequence {c n (i) } n=0 v-1 and the channel impulse response {h l (i) } l=0 L-1 can be obtained in the receiver (i) , namely
那么信道冲激响应可以用时域直接线性相关的方法来估计。对接收信号pn (i)和本地已知序列{cn (i)}n=0 v-1做互相关可以得到Then the channel impulse response can be estimated by direct linear correlation method in time domain. Cross-correlation between the received signal p n (i) and the local known sequence {c n (i) } n=0 v-1 can be obtained
从而信道冲激响应可以用下式进行估计Thus the channel impulse response can be estimated by the following formula
或者,如果能在接收机中得到填充的伪随机序列{cn (i)}n=0 v-1与信道冲激响应{hl (i)}l=0 L-1的循环卷积结果qn (i),即Or, if the circular convolution result of the filled pseudo-random sequence {c n (i) } n=0 v-1 and the channel impulse response {h l (i) } l=0 L-1 can be obtained in the receiver q n (i) , namely
那么信道冲激响应可以用循环卷积的计算来估计。循环卷积的计算方法有两种,一种是时域直接循环相关的方法,另一种是频域FFT辅助的方法。FFT(Fast Fourier Transform,快速傅立叶变换)辅助的循环卷积的计算如下式所示:Then the channel impulse response can be estimated by computation of circular convolution. There are two calculation methods for circular convolution, one is the time-domain direct circular correlation method, and the other is the frequency-domain FFT-assisted method. The calculation of the circular convolution assisted by FFT (Fast Fourier Transform) is as follows:
其中,FFTM[·]和IFFTM[·]分别表示长度为M的FFT和IFFT(Inverse Fast Fourier Transform,快速傅立叶反变换),这里M=v。Wherein, FFT M [·] and IFFT M [·] represent FFT and IFFT (Inverse Fast Fourier Transform, Inverse Fast Fourier Transform) of length M respectively, where M=v.
在TDS-OFDM系统中,伪随机序列填充的保护间隔取代了传统的CP填充或者ZP填充的保护间隔。当TDS-OFDM信号通过频率选择性衰落信道时,在TDS-OFDM帧{sn (i)}n=0 N-1中,OFDM数据块{xn (i)}n=0 N-1会干扰填充的伪随机序列{cn (i)}n=0 N-1,反之亦然,同时TDS-OFDM帧内也存在填充序列和OFDM数据块之间的干扰。定义伪随机序列的理想线性卷积结果为完全去除OFDM数据块影响的线性卷积结果。定义伪随机序列的理想循环卷积结果为完全去除OFDM数据块影响的循环卷积结果。由于填充的伪随机序列对接收机来说是已知的,因此在已知信道冲激响应的情况下,容易消除伪随机序列对OFDM数据块的干扰;相反,由于发射的OFDM数据块是随机的,并可能受到噪声干扰,即使在已知信道冲激响应的情况下,要消除OFDM数据块对填充的伪随机序列的干扰也是困难的,从而在接收机中不能得到发射的伪随机序列与信道冲激响应的理想线性卷积结果或者理想循环卷积结果,即不能得到更精确的信道估计。In the TDS-OFDM system, the guard interval filled with pseudo-random sequence replaces the traditional guard interval filled with CP or ZP. When the TDS-OFDM signal passes through the frequency selective fading channel, in the TDS-OFDM frame {s n (i) } n=0 N-1 , the OFDM data block {x n (i) } n=0 N-1 will Interference filled pseudo-random sequence {c n (i) } n=0 N-1 , and vice versa, and interference between the stuffing sequence and OFDM data blocks also exists in the TDS-OFDM frame. The ideal linear convolution result of the pseudo-random sequence is defined as the linear convolution result that completely removes the influence of the OFDM data block. The ideal circular convolution result of the pseudo-random sequence is defined as the circular convolution result that completely removes the influence of the OFDM data block. Since the filled pseudo-random sequence is known to the receiver, it is easy to eliminate the interference of the pseudo-random sequence to the OFDM data block when the channel impulse response is known; on the contrary, since the transmitted OFDM data block is random , and may be interfered by noise, even in the case of known channel impulse response, it is difficult to eliminate the interference of OFDM data blocks to the filled pseudo-random sequence, so that the transmitted pseudo-random sequence and The ideal linear convolution result or the ideal circular convolution result of the channel impulse response, that is, a more accurate channel estimation cannot be obtained.
中国发明专利200510012127.6《一种OFDM调制系统中伪随机序列填充的迭代消除方法》中提出一种采用迭代消除方法去除填充的伪随机序列的方法,该方法首先计算伪随机序列与信道冲激响应的线性卷积,继而去掉伪随机序列对数据块的影响,然后对数据块进行频域均衡,最后去掉数据块对伪随机序列的影响,从而得到更精确的信道估计。但是采用该方法进行信道估计时需要知道前面连续两个OFDM符号的信道估计,并且对每个OFDM符号均需要多次迭代才能得到较准确的信道估计,运算复杂。Chinese invention patent 200510012127.6 "An Iterative Elimination Method for Pseudo-random Sequence Filling in OFDM Modulation System" proposes a method of removing the filled pseudo-random sequence by using iterative elimination method. The method first calculates the relationship between the pseudo-random sequence and the channel impulse response Linear convolution, and then remove the influence of the pseudo-random sequence on the data block, then perform frequency domain equalization on the data block, and finally remove the influence of the data block on the pseudo-random sequence, so as to obtain more accurate channel estimation. However, when using this method for channel estimation, it is necessary to know the channel estimation of the previous two consecutive OFDM symbols, and multiple iterations are required for each OFDM symbol to obtain a more accurate channel estimation, and the calculation is complicated.
发明内容Contents of the invention
为了降低TDS-OFDM系统中信道估计的运算复杂度,本发明提供了一种用于TDS-OFDM系统的信道估计方法。所述技术方案如下:In order to reduce the computational complexity of channel estimation in the TDS-OFDM system, the present invention provides a channel estimation method for the TDS-OFDM system. Described technical scheme is as follows:
本发明提供了一种用于TDS-OFDM系统的信道估计方法,所述方法包括:The present invention provides a channel estimation method for a TDS-OFDM system, the method comprising:
步骤A:将上一帧最后一次或当前帧上一次迭代得到的信道估计作为当前帧本次迭代的初始信道冲激响应,根据所述初始信道冲激响应去除所述当前帧中伪随机序列对数据块的干扰,并进行所述数据块的循环重建;Step A: The channel estimate obtained in the last iteration of the previous frame or the last iteration of the current frame is used as the initial channel impulse response of the current iteration of the current frame, and the pseudo-random sequence pair in the current frame is removed according to the initial channel impulse response Interference of data blocks, and cyclic reconstruction of said data blocks;
步骤B:对所述循环重建结果进行均衡,并对所述均衡的结果进行部分判决;Step B: Equalize the cyclic reconstruction result, and make a partial judgment on the equalized result;
步骤C:根据所述部分判决的结果和所述初始信道冲激响应去除所述数据块对所述伪随机序列的干扰,并进行所述伪随机序列的循环重建;Step C: removing the interference of the data block on the pseudo-random sequence according to the result of the partial decision and the initial channel impulse response, and performing cyclic reconstruction of the pseudo-random sequence;
步骤D:根据所述去除数据块干扰的伪随机序列的循环重建结果重新估计信道冲激响应,并将所述信道冲激响应作为所述当前帧本次迭代的信道估计。Step D: re-estimate the channel impulse response according to the cyclic reconstruction result of the pseudo-random sequence without data block interference, and use the channel impulse response as the channel estimate of the current frame iteration.
所述步骤A中根据所述初始信道冲激响应去除伪随机序列对数据块的干扰,并进行所述数据块的循环重建的具体步骤如下:In the step A, according to the initial channel impulse response, the interference of the pseudo-random sequence to the data block is removed, and the specific steps of performing the cyclic reconstruction of the data block are as follows:
计算伪随机序列和所述初始信道冲激响应的循环卷积,所述循环卷积的结果为所述伪随机序列对数据块的干扰;calculating the circular convolution of the pseudo-random sequence and the initial channel impulse response, the result of the circular convolution is the interference of the pseudo-random sequence to the data block;
根据所述当前帧和所述当前帧的下一帧构建所述数据块和所述本次迭代的信道冲激响应的循环卷积;Constructing the circular convolution of the data block and the channel impulse response of the current iteration according to the current frame and the next frame of the current frame;
在所述数据块和所述初始信道冲激响应的循环卷积结果中去除所述伪随机序列对所述数据块的干扰,得到所述数据块的循环重建结果。The interference of the pseudo-random sequence on the data block is removed from the circular convolution result of the data block and the initial channel impulse response to obtain a circular reconstruction result of the data block.
所述步骤B中对所述循环重建结果进行均衡的步骤具体包括:The step of equalizing the cyclic reconstruction result in the step B specifically includes:
对所述循环重建结果进行FFT变换;performing FFT transformation on the cyclic reconstruction result;
对所述初始信道冲激响应进行FFT变换,然后按元素进行共轭运算;performing FFT transformation on the initial channel impulse response, and then performing a conjugate operation element by element;
将所述共轭运算的结果和所述对所述循环重建结果进行FFT变换的结果进行点乘,得到均衡的结果。Dot producting the result of the conjugate operation and the result of performing FFT transformation on the cyclic reconstruction result to obtain an equalized result.
所述步骤B中对所述均衡的结果进行部分判决的步骤具体包括:The step of partially judging the equalized result in the step B specifically includes:
对所述初始信道冲激响应进行FFT变换,并求取所述变换结果的绝对值的平方;performing FFT transformation on the initial channel impulse response, and calculating the square of the absolute value of the transformation result;
根据所述平方结果、星座符号和星座图空间的最佳判决区间参数对所述均衡的结果分别进行同相分量和正交分量的部分判决。Part of the in-phase component and the quadrature component are respectively judged on the equalized result according to the square result, the constellation symbol and the optimal decision interval parameter in the constellation diagram space.
所述步骤C具体包括:Described step C specifically comprises:
计算所述数据块和所述初始信道冲激响应的循环卷积,所述循环卷积的结果为所述数据块对所述伪随机序列的干扰;calculating the circular convolution of the data block and the initial channel impulse response, the result of the circular convolution being the interference of the data block to the pseudo-random sequence;
根据所述当前帧和所述当前帧的下一帧构建所述伪随机序列和本次迭代的信道冲激响应的循环卷积;Constructing the circular convolution of the pseudo-random sequence and the channel impulse response of this iteration according to the current frame and the next frame of the current frame;
在所述伪随机序列和所述本次迭代的信道冲激响应的循环卷积结果中去除所述数据块对所述伪随机序列的干扰,得到所述伪随机序列的循环重建结果。The interference of the data block on the pseudo-random sequence is removed from the circular convolution result of the pseudo-random sequence and the channel impulse response of the current iteration, to obtain a circular reconstruction result of the pseudo-random sequence.
所述步骤D具体包括:Described step D specifically comprises:
对所述去除数据块干扰的伪随机序列的循环重建结果进行FFT变换;performing FFT transformation on the cyclic reconstruction result of the pseudo-random sequence from which data block interference has been removed;
对所述伪随机序列进行FFT变换;performing FFT transformation on the pseudo-random sequence;
将所述循环重建结果的FFT变换结果与所述伪随机序列的FFT变换结果相除,将所述相除结果进行IFFT变换得到新的信道冲激响应,并将所述新的信道冲激响应作为所述当前帧本次迭代的信道估计。dividing the FFT transformation result of the cyclic reconstruction result by the FFT transformation result of the pseudo-random sequence, performing IFFT transformation on the division result to obtain a new channel impulse response, and converting the new channel impulse response as the channel estimate of the current iteration of the current frame.
本发明提供的技术方案的有益效果是:The beneficial effects of the technical solution provided by the invention are:
本发明通过构建循环卷积进行干扰去除和信道估计,减小了FFT/IFFT的运算长度;通过部分判决辅助信道估计,加快了迭代的收敛速度;并且通过在信道估计中采用部分判决,降低了算法的复杂度,使得信道估计结果更加精确。The present invention reduces the operation length of FFT/IFFT by constructing circular convolution for interference removal and channel estimation; through partial decision-assisted channel estimation, the convergence speed of iteration is accelerated; and by using partial decision in channel estimation, the reduction of The complexity of the algorithm makes the channel estimation result more accurate.
附图说明Description of drawings
图1是现有技术中TDS-OFDM系统的帧结构图;FIG. 1 is a frame structure diagram of a TDS-OFDM system in the prior art;
图2是本发明实施例提供的TDS-OFDM系统的基带模型图;Fig. 2 is the baseband model figure of the TDS-OFDM system that the embodiment of the present invention provides;
图3是本发明实施例提供的用于TDS-OFDM系统的信道估计方法的迭代流程示意图;FIG. 3 is a schematic diagram of an iterative flow chart of a channel estimation method for a TDS-OFDM system provided by an embodiment of the present invention;
图4是本发明实施例提供的用于TDS-OFDM系统的信道估计方法的流程图;FIG. 4 is a flowchart of a channel estimation method for a TDS-OFDM system provided by an embodiment of the present invention;
图5是本发明实施例提供的QPSK信号的部分判决区间示意图;FIG. 5 is a schematic diagram of a partial decision interval of a QPSK signal provided by an embodiment of the present invention;
图6是本发明实施例提供的16-QAM信号的部分判决区间示意图;FIG. 6 is a schematic diagram of a partial decision interval of a 16-QAM signal provided by an embodiment of the present invention;
图7是本发明实施例提供的在信道I下仿真的信道估计误差随迭代次数的变化情况示意图;Fig. 7 is a schematic diagram of the variation of the channel estimation error simulated under
图8是本发明实施例提供的在信道II下仿真的信道估计误差随迭代次数的变化情况示意图;Fig. 8 is a schematic diagram of the variation of channel estimation error with the number of iterations simulated under channel II provided by an embodiment of the present invention;
图9是本发明实施例提供的采用QPSK星座图的TDS-OFDM系统在多径信道下的BER仿真曲线图;FIG. 9 is a BER simulation curve diagram of a TDS-OFDM system using a QPSK constellation diagram provided by an embodiment of the present invention under a multipath channel;
图10是本发明实施例提供的采用16-QAM星座图的TDS-OFDM系统在多径信道下的BER仿真曲线图。FIG. 10 is a BER simulation graph of a TDS-OFDM system using a 16-QAM constellation diagram provided by an embodiment of the present invention under a multipath channel.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明实施例进行信道估计时,通过构建循环卷积,并且对TDS-OFDM帧的数据块进行部分判决以辅助信道估计,提高了迭代的收敛速度,降低了运算的复杂度。When channel estimation is performed in the embodiment of the present invention, circular convolution is constructed, and partial judgment is performed on data blocks of TDS-OFDM frames to assist channel estimation, thereby improving convergence speed of iterations and reducing computational complexity.
本发明实施例中TDS-OFDM帧泛指TDS-OFDM接收信号帧,且TDS-OFDM信号中每个发射信号帧中填充的伪随机序列是相同的。参见图2,为TDS-OFDM系统的基带模型图,图中S/P和P/S分别表示串/并转换和并/串转换,AWGN(Additive White Gaussian Noise)表示加性高斯白噪声。图中第i个OFDM频域传输数据块{Xk (i)}k=0 N-1首先经过IFFT变换后得到第i个OFDM数据块{xn (i)}n=0 N-1,如式(1)所示,其中N表示IFFT的长度。In the embodiment of the present invention, the TDS-OFDM frame generally refers to the TDS-OFDM received signal frame, and the pseudo-random sequence filled in each transmitted signal frame in the TDS-OFDM signal is the same. Referring to Figure 2, it is a baseband model diagram of a TDS-OFDM system, in which S/P and P/S represent serial/parallel conversion and parallel/serial conversion respectively, and AWGN (Additive White Gaussian Noise) represents additive white Gaussian noise. In the figure, the i-th OFDM frequency-domain transmission data block {X k (i) } k=0 N-1 is first subjected to IFFT transformation to obtain the i-th OFDM data block {x n (i) } n=0 N-1 , As shown in formula (1), where N represents the length of IFFT.
其次,在每个待传输的OFDM数据块{xn (i)}n=0 N-1之后插入一个固定的伪随机序列{cn}n=0 v-1,构成第i个TDS-OFDM发射信号帧如式(2)所示,其中N2=N+v。Secondly, a fixed pseudo-random sequence {c n } n=0 v-1 is inserted after each OFDM data block to be transmitted {x n (i) } n=0 N-1 to form the i-th TDS-OFDM transmit signal frame As shown in formula (2), wherein N 2 =N+v.
假设采用的信道模型为准静态L阶FIR滤波器,并且受到AWGN噪声wn (i)的干扰。设填充的伪随机序列的长度不小于信道长度,即v≥L-1,那么对应于第i个TDS-OFDM发射信号帧的TDS-OFDM接收信号帧为rn (i),如式(3)所示,其中,hl (i)是信道冲激响应,表示l对N2取模。Assume that the adopted channel model is a quasi-static L-order FIR filter and is interfered by AWGN noise w n (i) . Assuming that the length of the filled pseudo-random sequence is not less than the channel length, that is, v≥L-1, then corresponding to the i-th TDS-OFDM transmission signal frame The TDS-OFDM received signal frame is r n (i) , as shown in formula (3), where h l (i) is the channel impulse response, Indicates that l is modulo N2 .
由于每个TDS-OFDM发射信号帧中填充的是固定的伪随机序列,在频率选择性衰落信道中,第i-1个TDS-OFDM帧中的伪随机序列对于第i个TDS-OFDM帧来说,就相当于CP-OFDM系统的CP,从而可以将发射信号与信道冲激响应间的线性卷积关系转换为式(3)描述的循环卷积关系。Since each TDS-OFDM transmit signal frame is filled with a fixed pseudo-random sequence, in a frequency selective fading channel, the pseudo-random sequence in the i-1th TDS-OFDM frame is In other words, it is equivalent to the CP of the CP-OFDM system, so that the linear convolution relationship between the transmitted signal and the channel impulse response can be converted into the circular convolution relationship described by formula (3).
参见图3,本发明实施例提供的用于TDS-OFDM系统的信道估计方法是以迭代的形式进行的,并且采用对数据块的部分判决以辅助信道估计,在上述描述的TDS-OFDM系统的基础上,参见图4,本发明实施例提供了一种用于TDS-OFDM系统的信道估计方法,具体包括以下步骤:Referring to FIG. 3 , the channel estimation method for the TDS-OFDM system provided by the embodiment of the present invention is performed in an iterative form, and uses partial judgment on data blocks to assist channel estimation. In the TDS-OFDM system described above On the basis, referring to FIG. 4, an embodiment of the present invention provides a channel estimation method for a TDS-OFDM system, which specifically includes the following steps:
步骤101:初始化信道冲激响应,设置迭代标号I和迭代次数J。Step 101: Initialize the channel impulse response, set the iteration label I and the number of iterations J.
其中,初始化信道冲激响应具体过程如下:Among them, the specific process of initializing the channel impulse response is as follows:
在初始化第i个TDS-OFDM帧的信道冲激响应时,若信道估计器刚开始工作,即当i=1时,信道冲激响应初始化为全零;否则,将上一帧最后一次或当前帧上一次迭代得到的信道估计结果作为本次迭代的初始信道冲激响应,即或 The channel impulse response of the i-th TDS-OFDM frame at initialization , if the channel estimator just starts to work, that is, when i=1, the channel impulse response is initialized to all zeros; otherwise, the channel estimation result obtained in the last iteration of the previous frame or the last iteration of the current frame is used as the initial channel impulse response of this iteration, that is, or
迭代标号I初始化时设置为0,即I=0;迭代次数J≥1。The iteration label I is set to 0 during initialization, that is, I=0; the number of iterations J≥1.
步骤102:根据初始信道冲激响应去除当前帧中伪随机序列对数据块的干扰,并进行数据块的循环重建。Step 102: Remove the interference of the pseudo-random sequence on the data block in the current frame according to the initial channel impulse response, and perform cyclic reconstruction of the data block.
具体过程如下:The specific process is as follows:
1)计算伪随机序列cn和初始信道冲激响应的循环卷积 即为伪随机序列cn对数据块的干扰。循环卷积的频域计算方法如式(4)所示,其中⊙表示点乘(逐元素相乘)。1) Calculate the pseudo-random sequence c n and the initial channel impulse response circular convolution of That is, the interference of the pseudo-random sequence c n on the data block. circular convolution The frequency domain calculation method of is shown in formula (4), where ⊙ represents dot multiplication (element-by-element multiplication).
2)根据当前帧rn (i)和当前帧的下一帧rn+N (i)构建数据块xn (i)和信道冲激响应hn (i)的循环卷积结果yn (i),如式(5)所示,信道冲激响应hn (i)表示本次迭代的信道冲激响应,循环结果包含了伪随机序列cn对数据块xn (i)的干扰。 2 ) Construct the circular convolution result y n ( i) , as shown in formula (5), the channel impulse response h n (i) represents the channel impulse response of this iteration, and the loop result includes the interference of the pseudo-random sequence c n on the data block x n (i) .
3)在上述循环卷积结果yn (i)中去除伪随机序列cn对数据块xn (i)的干扰如式(6)所示,得到数据块xn (i)的循环重建结果或 3) Remove the interference of the pseudo-random sequence c n on the data block x n ( i) in the above circular convolution result y n (i) As shown in formula (6), the cyclic reconstruction result of data block x n (i) is obtained or
相对于线性卷积来说,循环卷积的FFT/IFFT运算长度小,因此上述步骤中,通过构建伪随机序列和初始信道冲激响应的循环卷积以及重建数据块和信道冲激响应的循环卷积,减小了FFT/IFFT的运算长度,提高了迭代的收敛速度,降低了运算复杂度。Compared with linear convolution, the FFT/IFFT operation length of circular convolution is small, so in the above steps, by constructing the circular convolution of the pseudo-random sequence and the initial channel impulse response and reconstructing the loop of the data block and the channel impulse response Convolution reduces the operation length of FFT/IFFT, improves the convergence speed of iterations, and reduces the operation complexity.
步骤103:对数据块xn (i)的循环重建结果进行均衡,然后对均衡的结果进行部分判决。Step 103: cyclic reconstruction result of data block x n (i) Perform equalization, and then make partial judgments on the result of the equalization.
均衡包括相位均衡和幅度均衡,本实施例中的均衡指对进行相位均衡。对进行相位均衡的过程具体如下:Equalization includes phase equalization and amplitude equalization, and the equalization in this embodiment refers to Perform phase equalization. right The process of phase equalization is as follows:
1)分别对循环重建结果和初始信道冲激响应进行FFT变换,得到和即,
2)对按元素进行共轭运算,将按元素进行共轭运算的结果和进行点乘,得到均衡的结果如式(7)所示,其中(·)*表示按元素进行共轭运算。2 pairs Conjugate element-wise, the The result of the element-wise conjugate operation and Do point multiplication to get balanced result As shown in Equation (7), where (·) * represents the element-wise conjugation operation.
对上述均衡的结果进行部分判决的具体过程如下:The result of the above equilibrium The specific process of making partial judgments is as follows:
按照式(8)对均衡的结果进行部分判决,其中表示部分判决的结果,X表示星座符号,Θ1和Θ2表示星座图空间的划分;可以看出,在区间Θ1对进行硬判决,在区间Θ2对进行零判决。According to formula (8) for the result of equilibrium part of the judgment, of which express the results of part of the judgment, X represents the constellation symbol, and Θ 1 and Θ 2 represent the division of the constellation diagram space; it can be seen that in the interval Θ 1 pair Make a hard decision, in the interval Θ 2 pairs Make zero verdicts.
进一步地,对于QPSK(Quadrature Phase Shift Keying,正交移相键控)星座图,对进行部分判决是通过对的同相分量和正交分量分别进行判决得到的,具体过程如下:假设星座符号X的同相分量与正交分量均取值于符号集合[-1,+1],对的同相分量按照式(9)进行部分判决。Further, for the QPSK (Quadrature Phase Shift Keying, Quadrature Phase Shift Keying) constellation diagram, for Part of the judgment is made by the The in-phase component and the quadrature component of the constellation symbol X are determined separately, and the specific process is as follows: Assume that the in-phase component and the quadrature component of the constellation symbol X both take values from the symbol set [-1, +1], for in-phase component of Part of the judgment is made according to formula (9).
其中,α表示QPSK星座图空间的最佳判决区间参数,0<α<1,表示部分判决的结果,且是的同相分量。参见图5,为QPSK信号的部分判决区间。对的正交分量进行部分判决的方法与同相分量相同。Among them, α represents the best decision interval parameter in the QPSK constellation space, 0<α<1, express the result of a partial judgment, and yes in-phase component of . Referring to FIG. 5 , it is a partial decision interval of a QPSK signal. right The quadrature component of the partial judgment method is the same as that of the in-phase component.
进一步地,对于16-QAM(QuadratureAmplitude Modulation,正交调幅)星座图,对进行部分判决也是通过对的同相分量和正交分量分别进行判决得到的,具体过程如下:假设星座符号X的同相分量与正交分量均取值于符号集合[-3,-1,+1,+3],对的同相分量按照式(10)进行部分判决。Further, for 16-QAM (QuadratureAmplitude Modulation, quadrature amplitude modulation) constellation diagram, for Part of the judgment is also passed on The in-phase component and the quadrature component of the constellation symbol X are determined separately, and the specific process is as follows: Assume that the in-phase component and the quadrature component of the constellation symbol X both take values from the symbol set [-3, -1, +1, +3], for in-phase component of Part of the judgment is made according to formula (10).
其中,β表示16-QAM星座图空间的最佳判决区间参数,0<β<1,表示部分判决的结果,且是的同相分量。参见图6,为16-QAM信号的部分判决区间。对的正交分量进行部分判决的方法与同相分量相同。Among them, β represents the best decision interval parameter in the 16-QAM constellation space, 0<β<1, express the result of a partial judgment, and yes in-phase component of . Referring to FIG. 6 , it is a partial decision interval of a 16-QAM signal. right The quadrature component of the partial judgment method is the same as that of the in-phase component.
步骤104:去除数据块xn (i)对伪随机序列cn的干扰,并进行伪随机序列cn的循环重建。Step 104: Remove the interference of the data block x n (i) on the pseudo-random sequence c n , and perform cyclic reconstruction of the pseudo-random sequence c n .
具体过程如下:The specific process is as follows:
1)根据步骤103中得到的数据块xn (i)的部分判决结果计算数据块xn (i)和初始信道冲激响应的循环卷积即数据块xn (i)对伪随机序列cn的干扰。循环卷积的频域计算方法如式(11)所示:1) According to the partial decision result of the data block x n (i) obtained in
2)根据当前帧rn (i)和当前帧的下一帧rn+N (i)构建伪随机序列cn和信道冲激响应hn (i)的循环卷积结果yn (i),如式(12)所示,该结果包含了数据块xn (i)对伪随机序列cn的干扰。2) Construct the circular convolution result y n (i) of the pseudo-random sequence c n and the channel impulse response h n ( i) according to the current frame r n (i) and the next frame r n+N (i ) of the current frame , as shown in formula (12), the result includes the interference of the data block x n (i) on the pseudo-random sequence c n .
3)在循环卷积结果yn (i)中去除数据块xn (i)对伪随机序列cn的干扰如式(13)所示,得到伪随机序列的循环重建结果 3) Remove the interference of the data block x n (i) on the pseudo-random sequence c n from the circular convolution result y n (i) As shown in formula (13), the cyclic reconstruction result of the pseudo-random sequence is obtained
步骤105:更新信道估计。Step 105: Update channel estimation.
根据伪随机序列cn的循环重建结果重新估计信道冲激响应,并将重新估计后得到的信道冲激响应作为当前帧本次迭代的信道估计结果。信道冲激响应迫零算法的频域计算方法如式(14)所示。The result of the cyclic reconstruction from the pseudorandom sequence c n Re-estimate the channel impulse response, and the re-estimated channel impulse response As the channel estimation result of this iteration of the current frame. channel impulse response The frequency domain calculation method of the zero-forcing algorithm is shown in formula (14).
步骤106:令I=I+1,判断迭代标号I是否等于预先设置的迭代次数J,如果是,则结束信道估计;否则,返回步骤101。Step 106: Let I=I+1, judge whether the iteration number I is equal to the preset iteration number J, if yes, end the channel estimation; otherwise, return to step 101.
基于上述描述,对本发明实施例提供的用于TDS-OFDM系统的信道估计方法进行了计算机仿真。参见表1,为仿真中采用的系统参数。仿真中采用了两个多径信道模型:信道I和信道II,参见表2,为仿真中采用的多径信道参数。假设两个多径信道都服从独立的瑞利衰落,且信道冲激响应是归一化的,以便让信号通过多径信道后的功率保持不变,QPSK星座图的判决区间参数取α=0.1875,16-QAM星座图的判决区间参数取β=0.0938。Based on the above description, a computer simulation is performed on the channel estimation method for the TDS-OFDM system provided by the embodiment of the present invention. See Table 1 for the system parameters used in the simulation. Two multipath channel models are used in the simulation: channel I and channel II, see Table 2 for the multipath channel parameters used in the simulation. Assuming that the two multipath channels are subject to independent Rayleigh fading, and the channel impulse response is normalized so that the power of the signal after passing through the multipath channel remains unchanged, the decision interval parameter of the QPSK constellation is α=0.1875 , the decision interval parameter of the 16-QAM constellation diagram is β=0.0938.
表1Table 1
表2Table 2
参见图7,为在信道I下仿真的信道估计误差随迭代次数的变化情况图;参见图8,为在信道II下仿真的信道估计误差随迭代次数的变化情况图。信道I和信道II都假设为是静态的。信道估计误差ξ定义为:Referring to FIG. 7 , it is a graph showing the variation of the channel estimation error with the number of iterations simulated under channel I; see FIG. 8 , which is a graph showing the variation of the channel estimation error with the number of iterations simulated under channel II. Both channel I and channel II are assumed to be static. The channel estimation error ξ is defined as:
其中,和hl分别表示估计的信道冲激响应和真实的信道冲激响应。从图7和图8可以看出,经过3至4次的迭代运算,信道估计误差几乎就不减小了。在准静态或者是缓慢变化的信道中,如果将前一个符号的信道冲激响应作为下一个符号的初始信道冲激响应,可以在无需迭代的情况下获得较准确的信道冲激响应估计性能。in, and h l respectively represent the estimated channel impulse response and the real channel impulse response. It can be seen from FIG. 7 and FIG. 8 that after 3 to 4 iterations, the channel estimation error hardly decreases. In a quasi-static or slowly changing channel, if the channel impulse response of the previous symbol is used as the initial channel impulse response of the next symbol, more accurate channel impulse response estimation performance can be obtained without iteration.
图9为采用QPSK星座图的TDS-OFDM系统在多径信道下的BER(Bit Error Rate,误码率)仿真曲线图,图中横轴为每个比特的信噪比Eb/N0,最大多普勒频移设为18Hz,以使得信道在一个TDS-OFDM符号内近似不变,但是信道从一个TDS-OFDM符号到下一个符号是变化的;对900个连续的TDS-OFDM符号进行仿真来计算误码率,但是最开始的两个TDS-OFDM符号的误码没有被统计;图中的最小下界表示理想信道估计情况下的误码率。从图中可以看出,在信道I和信道II下,采用本实施例提供的信道估计的方法,得到的TDS-OFDM系统的误码率在无需迭代的情况下(J=0)可以逼近最小下界。FIG. 9 is a BER (Bit Error Rate, bit error rate) simulation curve of a TDS-OFDM system using a QPSK constellation diagram under a multipath channel. The horizontal axis in the figure is the signal-to-noise ratio E b /N 0 of each bit, The maximum Doppler frequency shift is set to 18Hz, so that the channel is approximately constant within a TDS-OFDM symbol, but the channel changes from one TDS-OFDM symbol to the next; 900 consecutive TDS-OFDM symbols The bit error rate is calculated by simulation, but the bit error rate of the first two TDS-OFDM symbols is not counted; the minimum lower bound in the figure represents the bit error rate under the ideal channel estimation situation. As can be seen from the figure, under channel I and channel II, using the channel estimation method provided in this embodiment, the bit error rate of the TDS-OFDM system obtained can approach the minimum without iteration (J=0) Nether.
图10为采用16-QAM星座图的TDS-OFDM系统在多径信道下的BER仿真曲线图,由图中可以得到类似于QPSK系统的结论。Fig. 10 is a BER simulation graph of a TDS-OFDM system using a 16-QAM constellation diagram under a multipath channel, from which a conclusion similar to that of a QPSK system can be obtained.
本发明实施例通过构建数据块与信道冲激响应的循环卷积进行信道估计,使得FFT/IFFT运算长度最小;通过延时很小的部分判决辅助信道估计,便于加快迭代的收敛速度;并且在信道估计中采用部分判决,使得估计结果更加精确,该方法在缓慢变换的信道环境下无需迭代就可以使系统误码率达到最小下界。In the embodiment of the present invention, the channel estimation is performed by constructing the circular convolution of the data block and the channel impulse response, so that the length of the FFT/IFFT operation is minimized; the channel estimation is assisted by partial judgment with a small delay, which is convenient to speed up the convergence speed of the iteration; and in Partial decisions are used in channel estimation to make the estimation results more accurate. This method can make the system bit error rate reach the minimum lower bound without iteration in the slowly changing channel environment.
上面对本发明的具体实施例进行了详细说明,但本发明并不限制于上述实施例。在本发明权利要求的精神和原则之内,所作的任何修改、等同替换、和改进等,均应包含在本发明的保护范围之内。The specific examples of the present invention have been described in detail above, but the present invention is not limited to the above examples. Within the spirit and principles of the claims of the present invention, any modifications, equivalent replacements, improvements, etc., should be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101753018A CN101136884B (en) | 2007-09-28 | 2007-09-28 | Channel Estimation Method for TDS-OFDM System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101753018A CN101136884B (en) | 2007-09-28 | 2007-09-28 | Channel Estimation Method for TDS-OFDM System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101136884A CN101136884A (en) | 2008-03-05 |
CN101136884B true CN101136884B (en) | 2010-06-02 |
Family
ID=39160720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101753018A Expired - Fee Related CN101136884B (en) | 2007-09-28 | 2007-09-28 | Channel Estimation Method for TDS-OFDM System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101136884B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101588327B (en) * | 2008-05-19 | 2013-03-27 | 清华大学 | Data-guiding channel estimation method for OFDM systems, and implementation device thereof |
CN101431498B (en) * | 2008-12-02 | 2011-08-17 | 清华大学 | Demodulation method and device for flexible sub-carrier modulation system |
CN101710885B (en) * | 2009-12-15 | 2013-06-19 | 中国空间技术研究院 | Method for estimating frequency deviation in carrier synchronization of wireless communication system |
CN101808056B (en) * | 2010-04-06 | 2013-01-30 | 清华大学 | Channel estimation method and system based on training sequence reconstruction |
CN101848183B (en) * | 2010-04-06 | 2013-02-06 | 中国人民解放军信息工程大学 | Channel Estimation Method and Device in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System |
CN102710567A (en) * | 2012-05-08 | 2012-10-03 | 山东大学 | Part judgment method in interference elimination technology for multiple-input multiple-output (MIMO) wireless communication receiver |
CN102957641B (en) * | 2012-12-05 | 2015-04-15 | 电子科技大学 | Channel estimation method of TDS (Total Dissolved Solids)-OFDM (Orthogonal Frequency Division Multiplexing) system |
US10524161B2 (en) * | 2014-08-20 | 2019-12-31 | Qualcomm Incorporated | Delay spread estimation and utilization |
CN105635027B (en) * | 2014-11-06 | 2019-12-31 | 苏州普源精电科技有限公司 | Measuring device capable of generating pseudo-random sequence quadrature amplitude modulation signal and modulation method thereof |
CN104394105B (en) * | 2014-11-25 | 2017-09-22 | 清华大学 | TDS OFDM channel estimation balancing method and system |
AT517986B1 (en) * | 2015-11-26 | 2017-12-15 | Siemens Ag Oesterreich | Method and communication system for receiving frequency-multiplexed transmitted frames |
CN105897629A (en) * | 2016-06-15 | 2016-08-24 | 晶晨半导体(上海)有限公司 | Signal decision device and signal decision method |
CN111010355B (en) * | 2019-11-29 | 2020-10-20 | 北京科技大学 | A Channel Estimation Method for Steel Piercing System |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1334655A (en) * | 2001-08-17 | 2002-02-06 | 清华大学 | Filling method of protecting gap in orthogonal frequency division multiplexing modulation system |
CN1677908A (en) * | 2004-03-31 | 2005-10-05 | 清华大学 | TDS-OFDM Receiver Adaptive Channel Estimation Equalization Method and System |
CN1893409A (en) * | 2005-07-08 | 2007-01-10 | 清华大学 | Method for eliminating interaction of pseudo-random series fill in OFDM modulation system |
-
2007
- 2007-09-28 CN CN2007101753018A patent/CN101136884B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1334655A (en) * | 2001-08-17 | 2002-02-06 | 清华大学 | Filling method of protecting gap in orthogonal frequency division multiplexing modulation system |
CN1677908A (en) * | 2004-03-31 | 2005-10-05 | 清华大学 | TDS-OFDM Receiver Adaptive Channel Estimation Equalization Method and System |
CN1893409A (en) * | 2005-07-08 | 2007-01-10 | 清华大学 | Method for eliminating interaction of pseudo-random series fill in OFDM modulation system |
Non-Patent Citations (2)
Title |
---|
JUN Wang ect..Iterative Padding Subtraction of the PN Sequence for theTDS-OFDM over Broadcast Channels.IEEE Transaction on Comsumer Electronics51 4.2005,1148-1152. |
JUN Wang ect..Iterative Padding Subtraction of the PN Sequence for theTDS-OFDM over Broadcast Channels.IEEE Transaction on Comsumer Electronics51 4.2005,1148-1152. * |
Also Published As
Publication number | Publication date |
---|---|
CN101136884A (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101136884B (en) | Channel Estimation Method for TDS-OFDM System | |
Zhou et al. | Finite-alphabet based channel estimation for OFDM and related multicarrier systems | |
Lele et al. | 2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation | |
CN101945066B (en) | Channel estimation method of OFDM/OQAM system | |
CN101753512A (en) | Shortwave high speed data transmission method based on single carrier frequency-domain equalization | |
CN107483373B (en) | Anti-multipath iterative weighting LMMSE channel estimation method and device | |
CN103428154B (en) | The transform domain multiplexing method of the dual-selection channel based on Vector OFDM | |
CN101588327A (en) | Data-guiding channel estimation method for OFDM systems, and implementation device thereof | |
CN103179062A (en) | Phase Noise Suppression Method for Low Complexity Channel Estimation in SC-FDE System | |
Muquet et al. | OFDM with trailing zeros versus OFDM with cyclic prefix: links, comparisons and application to the HiperLAN/2 system | |
CN101917252B (en) | Zero padding mode-based CI-OFDM communication method | |
CN101364831A (en) | Channel Estimation Method | |
CN106534000B (en) | A method and device for time-domain channel estimation | |
CN114513396B (en) | Pilot frequency method and system based on OFDM/OQAM under industrial 5G | |
Tang et al. | Iterative channel estimation for block transmission with known symbol padding-a new look at TDS-OFDM | |
CN101197796B (en) | Wireless sensor network channel evaluation method based on SC-FDE and virtual multi-antenna | |
KR100656384B1 (en) | Channel Estimation Method and Apparatus Using Linear Prediction in Open FM Communication System with Virtual Subcarrier | |
Boonkajay et al. | A blind polyphase time-domain selected mapping for filtered single-carrier signal transmission | |
He et al. | Hybrid time-frequency domain equalization for single-carrier underwater acoustic communications | |
CN100505596C (en) | A Channel Estimation Method Applicable to Orthogonal Frequency Division Multiple Access System | |
KR100602518B1 (en) | Channel Estimation Method and Apparatus for Orthogonal Frequency Division Multiple Communication System | |
CN102647372B (en) | Channel estimating method | |
Pietikäinen | Orthogonal frequency division multiplexing | |
Harbi et al. | Wiener filter channel estimation for OFDM/OQAM with iterative interference cancellation in LTE channel | |
Murad et al. | Linear equalization techniques for underwater acoustic OFDM communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20170928 |