CN101132014A - Image sensing device and manufacturing method thereof - Google Patents
Image sensing device and manufacturing method thereof Download PDFInfo
- Publication number
- CN101132014A CN101132014A CNA2006101218678A CN200610121867A CN101132014A CN 101132014 A CN101132014 A CN 101132014A CN A2006101218678 A CNA2006101218678 A CN A2006101218678A CN 200610121867 A CN200610121867 A CN 200610121867A CN 101132014 A CN101132014 A CN 101132014A
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- layer
- optical
- groove
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
一种图像感测装置,包括一基底、至少一光学元件、至少一介电层以及至少一波导管设于该光学元件上方,该波导管的侧壁设有一光学屏障层并有一填充层镶嵌于该波导管,因此可有效缩短光径、聚集光线、避免不同光路间的跨越现象以提升该图像感测装置的灵敏度。
An image sensing device includes a substrate, at least one optical element, at least one dielectric layer and at least one waveguide disposed above the optical element. The side wall of the waveguide is provided with an optical barrier layer and a filling layer is embedded in the waveguide. Therefore, the optical path can be effectively shortened, light can be concentrated, and the crossing phenomenon between different optical paths can be avoided to improve the sensitivity of the image sensing device.
Description
技术领域 technical field
本发明涉及一种具有波导管的图像感测装置及其制作方法。The invention relates to an image sensing device with a waveguide and a manufacturing method thereof.
背景技术 Background technique
互补式金属氧化物半导体晶体管图像感测器(CMOS image sensor,CIS)为现今一种常见的图像感测装置,且由于CIS可以整合于传统的半导体工艺制作,因此具有制作成本较低、元件尺寸较小以及集成度(integration)较高的优点。此外CIS还具有低操作电压、低功率消耗、高量子效率(quantumefficiency)、低噪声(read-out noise)以及可根据需要进行随机存取(randomaccess)等优势,因此已广泛应用在个人电脑相机(PC camera)以及数字相机(digital camera)等电子产品上。Complementary metal-oxide-semiconductor transistor image sensor (CMOS image sensor, CIS) is a common image sensing device today, and because CIS can be integrated in traditional semiconductor process, it has low manufacturing cost and low device size. Smaller and higher integration (integration) advantages. In addition, CIS also has the advantages of low operating voltage, low power consumption, high quantum efficiency, low noise (read-out noise), and random access as needed, so it has been widely used in personal computer cameras ( PC camera) and digital camera (digital camera) and other electronic products.
典型的CIS结构可依其功能划分为一光感测区与一周边电路区,其中光感测区通常设有多个成阵列排列的光电二极管(photodiode),并分别搭配重置晶体管(reset transistor)、电流汲取元件(current source follower)及列选择开关(row selector)等的MOS晶体管,用来接收外部的光线并感测光照的强度,而周边电路区则用来串接内部的金属内连线及外部的连接线路。而CIS的感光原理是将入射光线区分为各种不同波长光线的组合,再分别由半导体基底上的多个感光元件予以接收,并转换为不同强弱的数字信号。例如,将入射光区分为红、蓝、绿三色光线的组合,再由相对应的光电二极管予以接收,进而转换为数字信号。此外,光电二极管主要是依照该光感测区所产生的光电流来处理信号数据,例如光感测区于受光状态所产生的光电流(light current)代表信号(signal),而光感测区于不受光状态所产生的暗电流(dark current)则代表噪声(noise),因此光电二极管可以利用信号噪声比的强弱方式来处理信号数据,并将比对后的信号数据转交该周边电路区传输。A typical CIS structure can be divided into a photo-sensing area and a peripheral circuit area according to its function. The photo-sensing area is usually provided with a plurality of photodiodes arranged in an array, and reset transistors (reset transistors) are arranged respectively. ), current source follower, row selector and other MOS transistors are used to receive external light and sense the intensity of light, while the peripheral circuit area is used to connect the internal metal interconnection in series lines and external connections. The photosensitive principle of CIS is to distinguish the incident light into various combinations of light of different wavelengths, which are then received by multiple photosensitive elements on the semiconductor substrate and converted into digital signals of different strengths. For example, the incident light is divided into a combination of red, blue and green light, which is then received by the corresponding photodiode and then converted into a digital signal. In addition, the photodiode mainly processes signal data according to the photocurrent generated by the photosensitive region, for example, the photocurrent (light current) generated by the photosensitive region in the light-receiving state represents a signal (signal), and the photosensitive region The dark current (dark current) generated in the non-light state represents noise (noise), so the photodiode can use the strength of the signal-to-noise ratio to process the signal data, and transfer the compared signal data to the peripheral circuit area transmission.
请参考图1,图1为传统的CIS结构示意图,包括有一半导体基底10,其表面设有多个光电二极管11、12、13以及多个浅沟隔离(shallow trenchisolation,STI)14分隔光电二极管11、12、13,以定义出一像素阵列,其中光电二极管11、12、13分别包括一n型掺杂剂区16与一p型掺杂剂区17,作为感测外来光源强度的元件。此外,为建立完整的CIS结构,半导体基底10表面设有多层介电层与多重金属内连线(multilevel interconnects),例如一层间介电层(interlevel dielectric layer)20与二层金属间介电层(intermetaldielectric layer,IMD)22、24,而金属间介电层22、24间另设置有多个金属导线23、25。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a traditional CIS structure, including a
然而如图1所示,当来自一外部光源30的一入射光线32,以近乎垂直的角度入射至光电二极管12,并引发相关的电子信号传递;但同样来自外部光源30的一散射光线34,则是先射向金属导线25并在表面反射后,再转而入射至邻近光电二极管12的另一光电二极管13,因而发生了所谓的跨越干扰现象(crosstalk effect),使得原本处于不受光状态的光电二极管13受到散射光线34的干扰,导致光电二极管13比对信号与噪声的比值无法提升,明显影响CIS在感光功能上的灵敏度(sensitivity)。However, as shown in FIG. 1 , when an
为改善传统CIS各光电二极管间所发生的跨越干扰现象,美国专利案号US 6,861,866提出一种改良后的CIS结构,如图2所示。图2为美国专利案号US 6,861,866所提出的改良后的CIS结构示意图,其可大略区分为左侧的一光感测区40以及右侧的一金属内连线电路区42,此CIS结构包括一基底44、多层金属间介电层(IMD)46与多层防止金属原子扩散的扩散阻障层(diffusion barrier layer)48交互相叠于基底44上方,其中金属内连线电路区42包括多层铜金属导线50,负责电连接相对应的栅极52与源极/漏极54以控制CIS信号的传递;而光感测区40则包括设于基底44表面的一光电二极管56、一光学通道(light passageway)58设于光电二极管56上方、多层金属阻障层(metal barrier)60共同构成光学通道58的一内侧壁面62、一用以阻绝跨越干扰现象的保护层64设于光学通道58的内侧壁面62表面并覆盖于金属间介电层46表面、一透明填充层(transparent filler)66填入光学通道58、一彩色滤光片68覆盖于透明填充层66表面以及一微聚光镜(microlens)70设于光学通道58上方。但由于工艺的关系,光学通道58的内侧壁面62分别由各介电层46中定义光学通道58位置的金属阻障层60上下连接而成,因此光学通道58的内侧壁面62为一不连续的表面,这将使得部分照射至光学通道58的内侧壁面62的光线容易发生散射,而无法完全顺利到达光学通道58下方的光电二极管56,相对地造成光电二极管56可接收到的有效光线数将大幅减少。In order to improve the crossover interference phenomenon that occurs between the photodiodes of the traditional CIS, US Patent No. US 6,861,866 proposes an improved CIS structure, as shown in Figure 2. FIG. 2 is a schematic diagram of the improved CIS structure proposed by US Patent No. US 6,861,866, which can be roughly divided into a photo-
此外,另一美国专利案号US 6,969,899亦揭露相似的CIS结构,如图3所示,其包括有一基底72多个光电二极管74设于基底72表面、多个浅沟隔离76交错于光电二极管74之间、多层第一介电层78覆盖于基底72上方,以及多个光学通道80直接至连接光电二极管74。其中,每一个光学通道80内均充填有一第二介电层82,且各光学通道80的内侧壁面皆形成有一第三介电层84,用以阻绝跨越干扰现象。但由于其所揭露的光学通道80直接连接至光电二极管74,因此在实际的工艺上,这将导致在蚀刻出光学通道80时,光电二极管74的光感测区表面非常容易受到等离子体损坏(plasma damage)及不纯物残留的污染,产生大量的表面缺陷,增加漏电流造成噪声,使得光电二极管74的感光效果下降,严重时,甚至会造成光电二极管74元件的损坏而丧失其功能。In addition, another U.S. Patent No. US 6,969,899 also discloses a similar CIS structure, as shown in FIG. 3 , which includes a substrate 72 with a plurality of photodiodes 74 arranged on the surface of the substrate 72, and a plurality of shallow trench isolations 76 interleaved with the photodiodes 74. In between, a multilayer first dielectric layer 78 overlies the substrate 72 , and a plurality of optical channels 80 directly to the photodiodes 74 . Wherein, each optical channel 80 is filled with a second dielectric layer 82 , and the inner wall surface of each optical channel 80 is formed with a third dielectric layer 84 to prevent crossover interference. However, since the disclosed optical channel 80 is directly connected to the photodiode 74, in an actual process, when the optical channel 80 is etched, the surface of the photosensitive area of the photodiode 74 is very vulnerable to plasma damage ( Plasma damage) and the contamination of impurity residues will produce a large number of surface defects, increase the leakage current and cause noise, so that the light-sensing effect of the photodiode 74 will decrease.
发明内容 Contents of the invention
因此本发明的主要目的在于提供一种具有波导管的图像感测装置以及其制作方法,可有效避免跨越干扰现象并大幅提高图像感测装置的灵敏度。Therefore, the main objective of the present invention is to provide an image sensing device with a waveguide and a manufacturing method thereof, which can effectively avoid crossover interference and greatly improve the sensitivity of the image sensing device.
依据本发明,揭露一种图像感测装置,包括一具有至少一光学元件的基底、至少一介电层设于该基底上以及至少一波导管(wave-guide tube)设于该介电层中。该波导管的侧壁具有一平直表面,且该波导管对应该光学元件并与该光学元件相距一预定距离,而该波导管包括有一镶嵌于该介电层内的填充层以及一设于该填充层的侧壁的光学屏障层,其中该填充层与该光学屏障层分别具有一反射系数n2与n3,且该填充层的该反射系数n2大于该光学屏障层的该反射系数n3。According to the present invention, an image sensing device is disclosed, comprising a substrate having at least one optical element, at least one dielectric layer disposed on the substrate, and at least one wave-guide tube disposed in the dielectric layer . The side wall of the waveguide has a flat surface, and the waveguide corresponds to the optical element and is at a predetermined distance from the optical element, and the waveguide includes a filling layer embedded in the dielectric layer and a The optical barrier layer of the sidewall of the filling layer, wherein the filling layer and the optical barrier layer have a reflection coefficient n 2 and n 3 respectively, and the reflection coefficient n 2 of the filling layer is greater than the reflection coefficient of the optical barrier layer n 3 .
依据本发明,另揭露一种图像感测装置的制作方法。首先提供一具有至少一光学元件的基底,随即在该基底上形成至少一介电层,并覆盖于该光学元件,之后于该介电层中形成一具有一凹槽,该凹槽对应于该光学元件,且该凹槽与该光学元件相隔一预定距离,然后于该凹槽的内侧壁表面形成一光学屏障层,最后形成一填充层填满该凹槽,以形成一波导管,其中该介电层具有一反射系数n1、该填充层具有一反射系数n2以及该光学屏障层具有一反射系数n3,且该填充层的该反射系数n2大于该光学屏障层的该反射系数n3。According to the present invention, a manufacturing method of an image sensing device is also disclosed. First provide a substrate with at least one optical element, then form at least one dielectric layer on the substrate, and cover the optical element, and then form a groove in the dielectric layer, the groove corresponds to the The optical element, and the groove is separated from the optical element by a predetermined distance, then an optical barrier layer is formed on the inner wall surface of the groove, and finally a filling layer is formed to fill the groove to form a waveguide, wherein the The dielectric layer has a reflection coefficient n 1 , the filling layer has a reflection coefficient n 2 and the optical barrier layer has a reflection coefficient n 3 , and the reflection coefficient n 2 of the filling layer is greater than the reflection coefficient of the optical barrier layer n 3 .
由于本发明的图像感测装置的波导管底部为具有聚焦效果的一凹型底面,并与光学元件间相距一预定距离,以避免光学元件发生表面缺陷而增加漏电流,而波导管内侧壁更具有一光学屏障层,可有效避免不同光路间的跨越效应,同时藉由光学屏障层与填充层的折射率差异,使非垂直入射的光线在波导管内进行全反射,造成波导效应(wave-guide effect),因此下方的光学元件可以收集到更多的光线,进而能增加该图像感测装置的感光效果和灵敏度。此外,波导管内的填充层更可直接利用分色膜(dichroic film)或彩色滤光片的材质制作而成,以缩短光径,大幅提高图像感测装置的解析度。Because the bottom of the waveguide of the image sensing device of the present invention is a concave bottom surface with a focusing effect, and is separated from the optical element by a predetermined distance, so as to avoid surface defects of the optical element and increase the leakage current, and the inner wall of the waveguide has more An optical barrier layer can effectively avoid the spanning effect between different optical paths, and at the same time, the difference in refractive index between the optical barrier layer and the filling layer makes the non-perpendicularly incident light be totally reflected in the waveguide, resulting in the waveguide effect (wave-guide effect) ), so the lower optical element can collect more light, which can increase the photosensitive effect and sensitivity of the image sensing device. In addition, the filling layer in the waveguide can be directly made of dichroic film or color filter material, so as to shorten the light path and greatly improve the resolution of the image sensing device.
附图说明 Description of drawings
图1为传统的CIS结构示意图;FIG. 1 is a schematic diagram of a traditional CIS structure;
图2为美国专利案号US 6,861,866所提出的改良后的CIS结构示意图;Figure 2 is a schematic diagram of the improved CIS proposed in US Patent No. US 6,861,866;
图3为美国专利案号US 6.969,899所提出的另一改良后的CIS结构示意图;Figure 3 is a schematic diagram of another improved CIS proposed in US Patent No. US 6.969,899;
图4至图10为本发明的图像感测装置的工艺示意图;4 to 10 are process schematic diagrams of the image sensing device of the present invention;
图11为本发明所揭示的一优选实施例。Fig. 11 is a preferred embodiment disclosed by the present invention.
主要元件符号说明Description of main component symbols
10半导体基底 11、12、13光电二极管10
14浅沟隔离 16n型掺杂剂区14 shallow trench isolation 16 n-type dopant region
17p型掺杂剂区 20层间介电层17p-
22、24金属内连线层 23、25金属导线22, 24
30外部光源 32入射光线30
34散射光线 40光感测区34 scattered light 40 light sensing areas
42周边电路区 44基底42
46介电层 48扩散阻障层46
50铜金属导线 52栅极50
54源极 56光电二极管54
58光学通道 60金属阻障层58
62内侧壁面 64保护层62
66透明填充层 68彩色滤光片66
70聚光镜 72基底70 Condenser 72 Bases
74光电二极管 76浅沟隔离74 Photodiode 76 Shallow Trench Isolation
78第一介电层 80光学通道78 first dielectric layer 80 optical channels
82第二介电层 84第三介电层82 second dielectric layer 84 third dielectric layer
100基底 105绝缘物100
106光学元件 107、108、109金属导线106
112层间介电层 114、116、118金属间介电层112
120凹槽 122凹型底面120
124光学屏障层 125波导管124
126填充层 128平坦层126 filling
130微聚光镜 200图像感测装置130 Micro Condenser 200 Image Sensing Device
202基底 204光学元件202 base 204 optical element
206绝色缘物 208层间介电层206 Insulator 208 Interlayer dielectric layer
210、212、214金属间介电层 215波导管210, 212, 214 intermetallic dielectric layer 215 waveguide
216介电层 217、218、219金属导线216 dielectric layer 217, 218, 219 metal wires
220平坦层 222微聚光镜220 flat layer 222 micro condenser
224光学屏障层 226填充层224 optical barrier layer 226 filling layer
228、229光线228, 229 rays
具体实施方式 Detailed ways
为了使突显本发明的优点及特征,下文列举本发明的一优选实施例,并配合图示作详细说明如下:In order to highlight the advantages and features of the present invention, a preferred embodiment of the present invention is listed below, and is described in detail in conjunction with the drawings as follows:
图4至图10为本发明的图像感测装置的工艺示意图。首先请参考图4,提供一基底100,其上已形成有至少一光学元件106、至少一绝缘物105分隔光学元件106、至少一层间介电层(interlevel dielectric layer,ILD)112、多层金属间介电层(intermetal dielectric layer,IMD)114、116、118以及多个金属导线107、108、109。于本优选实施例中,基底100为一半导体基底,但不限制为一硅晶片(wafer)或一硅覆绝缘(SOI)等的基底;光学元件106可为一光电二极管(photodiode),用来接收外部的光线并感测光照的强度,而且光学元件106另电连接至重置晶体管、电流汲取元件或列选择开关等的CMOS晶体管(未显示);绝缘物105可为浅沟隔离(shallow trench isolation,STI)或局部硅氧化绝缘层(local oxidation of silicon isolation layer,LOCOS),用以避免光学元件106与其他元件相接触而发生短路;层间介电层112可以是一氧化硅层(silicon oxide)或一硼磷硅玻璃(borophosposilicate glass,BPSG)层等;金属间介电层114、116、118则可由一氮氧化硅层(SiON)或一氟硅玻璃层(fluoride silicate glass,FSG)等;至于构成多重金属内连线(multilevelinterconnects)的金属导线107、108、109及金属间介电层114、116、118则可利用双镶嵌工艺或现有的金属内连线工艺加以制作,在此不多赘述。4 to 10 are process schematic diagrams of the image sensing device of the present invention. First please refer to FIG. 4 , a
如图5所示,首先于金属间介电层118表面形成一图案化的光致抗蚀剂层(图未示),接着再利用此图案化的光致抗蚀剂层当作掩模来蚀刻光学元件106上方的金属间介电层114、116、118,以于金属间介电层114、116、118中形成一凹槽120,并使凹槽120底部产生一凹型(concave)底面122。其中,凹槽120顶端开口的直径由于蚀刻的结果会自然形成略大于凹槽120的底面直径,例如凹槽122的底面直径约为开口直径的75%~95%之间,最好是在95%以上尽量使该侧壁保持接近垂直,此一漏斗型结构将有利于后续沉积工艺的进行,并能有效地导引入射光线至光学元件106。此外,本发明亦可先利用一干蚀刻工艺来蚀刻金属间介电层114、116、118,然后再进行一湿蚀刻工艺来蚀刻层间介电层112以产生凹型底面122,或者是如前所述藉由控制该干蚀刻工艺的参数而直接于金属间介电层114、116、118中形成此具有凹型底面122的凹槽120。由于凹槽120是直接蚀刻多层介电层所得,因此凹槽120具有一平直的内侧壁,不会造成光线无方向性的散射。此外,凹槽120的外观并不限于如图5所示的漏斗型结构,其亦可以是一具有垂直壁面的管状结构或是其他开口直径与底面直径一致的柱状结构,且凹槽120的底面122亦可取代为一平面或其他可聚光的底面结构。As shown in FIG. 5, a patterned photoresist layer (not shown) is first formed on the surface of the
值得注意的是,本发明的凹槽120的凹型底面122与光学元件106间相距一预定距离。于本优选实施例中,此预定距离约为层间介电层112的厚度,亦即本优选实施例是蚀刻金属间介电层114、116、118而停止于层间介电层112表面。而且本发明的该预定距离,亦相对应于凹槽120蚀刻的深浅,可端视于各产品的规格需求或凹型底面122的曲率半径及感光区域的形状大小而做适度的调整,因此不但能用以确保凹型底面122相作用于光学元件106的焦距,提高感光的灵敏度(sensitivity),而且该预定距离更可用以确保光学元件106表面在蚀刻工艺或其他后续的工艺当中不受外力的影响与伤害,进而增加本发明所示的图像感测装置的可靠性。It should be noted that the
接着如图6所示,利用一沉积工艺,如化学气相沉积(chemical vapordeposition,CVD)工艺、高温沉积工艺、等离子体辅助化学气相沉积(plasmaenhanced chemical vapor deposition,PECVD)工艺或物理气相沉积(physicalvapor deposition,PVD)工艺等,形成一平直的光学屏障层124覆盖于凹槽120的内侧壁、凹型底面122与金属间介电层118表面。值得注意的是,在本优选实施例中,层间介电层112与金属间介电层114、116、118的反射系数大于光学屏障层124的反射系数。例如,若层间介电层112与金属间介电层114、116、118均具有一相同的反射系数(reflective index,RI)n1,而光学屏障层124具有一反射系数n3,则层间介电层112与金属间介电层114、116、118的反射系数n1大于光学屏障层124的反射系数n3。光学屏障层124的材质可以是氧化钛(titanium oxide)、氧化硅或其他反射系数值符合前述要件的材料所构成。此外,考量金属本身具有良好的光学反射特性,故光学屏障层124亦可由一金属屏障层所取代,以强化光学屏障层124的阻隔效果。Next, as shown in FIG. 6, a deposition process is used, such as a chemical vapor deposition (chemical vapor deposition, CVD) process, a high temperature deposition process, a plasma-assisted chemical vapor deposition (plasma enhanced chemical vapor deposition, PECVD) process or a physical vapor deposition (physical vapor deposition) process. , PVD) process, etc., to form a flat
如图7所示,进行一回蚀刻工艺,用以移除沉积于金属间介电层118表面的光学屏障层124与沉积在凹型底面122上的光学屏障层124,仅保留沉积在凹槽120内侧壁面的部分光学屏障层124。随后如图8所示,进行一沉积工艺,如旋转涂布(SOG)、化学气相沉积(CVD)工艺、高温沉积工艺、等离子体辅助化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)工艺或物理气相沉积(PVD)工艺等,于金属间介电层118及光学屏障层124表面形成一填充层126并填满凹槽120。于本优选实施例中,填充层126可利用如氧化钛(titanium oxide)或氧化钽(tantalum oxide)等分色膜(dichroic film)材料制作而成,然填充层126并不仅限定以分色膜材料制作,其亦可利用彩色滤光片的原料,例如加入彩色染料的树脂、彩色光致抗蚀剂或其他无机化合物等材料制作成一彩色滤光层,又或者利用其他可供光线通过的透明物质作为填充层126的材料。As shown in FIG. 7 , an etch-back process is performed to remove the
如图9所示,进行一化学机械抛光的平坦化工艺,用以移除部分形成于金属间介电层118表面的部分填充层126,使填充层126表面与金属间介电层118表面齐平。至此,凹槽120、光学屏障层124以及填充层126即共同构成本发明的波导管125。As shown in FIG. 9, a chemical mechanical polishing planarization process is performed to remove part of the
值得注意的是,在本优选实施例中,填充层126具有一反射系数n2,且填充层126的反射系数n2大于光学屏障层124的反射系数n3。因此当一入射光线射向光学屏障层124时,由于填充层126的反射系数n2大于光学屏障层124的反射系数n3所以非垂直入射的入射光线会在光学屏障层124表面进行全反射,再到达光学元件106,形成波导效应(wave guide effect),而不会有穿越金属间介电层114、116、118与层间介电层112,造成跨越现象的问题。It should be noted that, in this preferred embodiment, the
如图10所示,可于金属间介电层118与波导管125上方形成一平坦层128与一微聚光镜(microlens)130。平坦层128可保护下方的金属间介电层114、116、118、层间介电层112与波导管125并形成平坦表面,利于后续形成微聚光镜130的工艺进行。而平坦层128可以是透明的薄膜层,例如氧化硅层、透明树脂、玻璃或其他具有透光特性的材质制成,而微聚光镜130可藉由形成一图案化的聚合物于平坦层128上,再经由一退火工艺将该聚合物形成相对于凹槽120的微聚光镜130,以提供有效的聚光效果。此外,考量填充层126所选用的物质特性,若填充层126选用一透明物质作为其材料,于平坦层128与微聚光镜130间另可设置一彩色滤光片(图未示),以选择入射光的种类。As shown in FIG. 10 , a
本发明所述的图像感测装置的制作方法,不仅能制作单一波导管的图像感测装置,亦可制作包括多个波导管的图像感测装置。请参考图11,图11为本发明所揭示的一优选实施例的图像感测装置200,包括有一基底202、至少一光学元件204、至少一介电层216覆盖在基底202表面以及至少一波导管215设于介电层216中。于本实施例中,介电层216包括至少一层间介电层208以及多层金属间介电层210、212、214,且金属间介电层210、212、214间设有由多个金属导线217、218、219所连结的金属内连线(图未示)与光学元件204或与外部电路电连接,同时光学元件204间设有一绝缘物206,用来避免光学元件204与其他元件相接触而发生短路。图像感测装置200所包括的波导管215对应于各光学元件204,且各波导管215分别包括一光学屏障层224以及一填充层226,其中波导管215具有一凹型底面,且波导管215的开口直径由于蚀刻的结果会自然形成略大于其底面直径,而底面直径约为开口直径的75%~95%之间,最好是在95%以上尽量使波导管215的侧壁保持接近垂直,同时波导管215的该凹型底面与光学元件204间相距一预定距离,于本实施例中,此预定距离约为层间介电层208的厚度,以确保光学元件204的可靠性。The manufacturing method of the image sensing device described in the present invention can not only manufacture the image sensing device with a single waveguide, but also can manufacture the image sensing device including multiple waveguides. Please refer to FIG. 11. FIG. 11 is an image sensing device 200 disclosed in a preferred embodiment of the present invention, including a substrate 202, at least one optical element 204, at least one dielectric layer 216 covering the surface of the substrate 202 and at least one waveguide The tube 215 is disposed in the dielectric layer 216 . In this embodiment, the dielectric layer 216 includes at least one interlayer dielectric layer 208 and multiple intermetallic dielectric layers 210, 212, 214, and the intermetallic dielectric layers 210, 212, 214 are provided with a plurality of The metal interconnection wires (not shown) connected by the metal wires 217, 218, 219 are electrically connected to the optical element 204 or to an external circuit, and an insulator 206 is provided between the optical elements 204 to prevent the optical element 204 from contacting other elements. short circuit due to contact. The waveguide 215 included in the image sensing device 200 corresponds to each optical element 204, and each waveguide 215 includes an optical barrier layer 224 and a filling layer 226, wherein the waveguide 215 has a concave bottom surface, and the waveguide 215 The diameter of the opening will naturally be slightly larger than the diameter of the bottom surface due to the etching result, and the diameter of the bottom surface is about 75% to 95% of the diameter of the opening, preferably more than 95%. At the same time, there is a predetermined distance between the concave bottom surface of the waveguide 215 and the optical element 204 . In this embodiment, the predetermined distance is about the thickness of the interlayer dielectric layer 208 to ensure the reliability of the optical element 204 .
而图像感测装置200还包括一平坦层220以及至少一微聚光镜222设于介电层216与波导管215上方,保护下方的介电层216与波导管215,并提供聚光的效用。值得注意的是,波导管215的侧壁具有一平直表面,故当有外来光线入射时,较不易造成无方向性的散射,于本优选实施例中,层间介电层208与金属间介电层210、212、214均具有相同的一反射系数n1,而光学屏障层224具有一反射系数n3,其中层间介电层208与金属间介电层210、212、214的反射系数n1大于光学屏障层224的反射系数n3,由于反射系数的差异,自外界通过金属间介电层214射向光学屏障层224的光线229,将会在光学屏障层224与金属间介电层214的介面反射,又填充层226可具有一反射系数n2,且填充层226的反射系数n2大于光学屏障层224的反射系数n3;故当一光线228射向光学屏障层224时,由于填充层226的反射系数n2大于光学屏障层224的反射系数n3,因此光线228在光学屏障层224表面会进行全反射,而不会有穿越介电层216并造成跨越现象的问题。此外,考量金属本身可造成良好的光反射效果且光线不易穿过,因此光学屏障层224亦可由一金属屏障层所取代,以强化光学屏障层224的阻隔效果。值得注意的是,图像感测装置200包括至少一个光学元件204以及其对应的波导管215可适用于制作具有光学阵列排列的图像感测元件,例如具有红、蓝、绿或其他颜色的分光或滤光效果的光学阵列,以应用在相关的电机电子产品当中。The image sensing device 200 further includes a planar layer 220 and at least one micro-condenser 222 disposed above the dielectric layer 216 and the waveguide 215 to protect the underlying dielectric layer 216 and the waveguide 215 and provide light concentrating. It is worth noting that the side wall of the waveguide 215 has a flat surface, so when there is an incident external light, it is less likely to cause non-directional scattering. In this preferred embodiment, the interlayer dielectric layer 208 and the metal layer The dielectric layers 210, 212, 214 all have the same reflection coefficient n 1 , and the optical barrier layer 224 has a reflection coefficient n 3 , wherein the reflection coefficient of the interlayer dielectric layer 208 and the intermetal dielectric layer 210, 212, 214 The coefficient n 1 is greater than the reflection coefficient n 3 of the optical barrier layer 224. Due to the difference in reflection coefficient, the light 229 from the outside passing through the intermetallic dielectric layer 214 to the optical barrier layer 224 will pass between the optical barrier layer 224 and the metal interlayer. The interface reflection of the electrical layer 214, and the filling layer 226 can have a reflection coefficient n 2 , and the reflection coefficient n 2 of the filling layer 226 is greater than the reflection coefficient n 3 of the optical barrier layer 224; so when a light 228 strikes the optical barrier layer 224 When , since the reflection coefficient n 2 of the filling layer 226 is greater than the reflection coefficient n 3 of the optical barrier layer 224, the light 228 will be totally reflected on the surface of the optical barrier layer 224, without passing through the dielectric layer 216 and causing the phenomenon of crossing question. In addition, considering that the metal itself can cause good light reflection effect and light is difficult to pass through, the optical barrier layer 224 can also be replaced by a metal barrier layer to enhance the barrier effect of the optical barrier layer 224 . It is worth noting that the image sensing device 200 includes at least one optical element 204 and its corresponding waveguide 215, which can be adapted to fabricate an image sensing element with an optical array arrangement, such as a light-splitting or optical element having red, blue, green or other colors. The optical array with filtering effect can be applied in related electrical and electronic products.
综上所述,本发明提供一种图像感测装置及其制作方法,其特点在于波导管底部的凹型底面与光学元件间相距一预定距离,以提高聚焦效果并避免光学元件发生表面缺陷而增加漏电流;波导管内侧壁具有一光学屏障层,可有效避免不同光路间的跨越效应,相对地使图像感测装置的灵敏度大幅提升;再者,藉由折射率的不同,该光学屏障层可使非垂直入射的光线在凹槽内进行全反射,造成完整的波导效应,使下方的光学元件可以收集到更多的光线,增加该图像感测装置的感光效果。此外,波导管内的填充层更可直接利用分色膜或彩色滤光片的材质制作而成,缩短光径,进而提高图像感测装置的解析度。To sum up, the present invention provides an image sensing device and its manufacturing method, which is characterized in that the concave bottom surface of the bottom of the waveguide is at a predetermined distance from the optical element, so as to improve the focusing effect and prevent the optical element from causing surface defects to increase Leakage current; the inner wall of the waveguide has an optical barrier layer, which can effectively avoid the crossing effect between different optical paths, and relatively greatly improve the sensitivity of the image sensing device; moreover, by virtue of the difference in refractive index, the optical barrier layer can The non-perpendicularly incident light is totally reflected in the groove to form a complete waveguide effect, so that the optical elements below can collect more light and increase the light-sensing effect of the image sensing device. In addition, the filling layer in the waveguide can be made directly from the material of dichroic film or color filter, so as to shorten the light path and improve the resolution of the image sensing device.
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (33)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101218678A CN100495715C (en) | 2006-08-25 | 2006-08-25 | Image sensing device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101218678A CN100495715C (en) | 2006-08-25 | 2006-08-25 | Image sensing device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101132014A true CN101132014A (en) | 2008-02-27 |
CN100495715C CN100495715C (en) | 2009-06-03 |
Family
ID=39129193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101218678A Active CN100495715C (en) | 2006-08-25 | 2006-08-25 | Image sensing device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100495715C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101764093A (en) * | 2008-12-24 | 2010-06-30 | 东部高科股份有限公司 | Image sensor and manufacturing method of image sensor |
CN101834196A (en) * | 2009-03-12 | 2010-09-15 | 索尼公司 | Solid-state image pickup apparatus and manufacture method thereof and image pick-up device |
CN101944533A (en) * | 2009-07-06 | 2011-01-12 | 原相科技股份有限公司 | Image Sensor and preparation method thereof |
CN102081041A (en) * | 2009-11-27 | 2011-06-01 | 采钰科技股份有限公司 | Biochemical sensing device and manufacturing method thereof |
CN101814520B (en) * | 2009-02-25 | 2013-04-17 | 索尼公司 | Solid-state image pickup apparatus and production method thereof |
CN106910754A (en) * | 2015-12-22 | 2017-06-30 | 力晶科技股份有限公司 | Semiconductor device and method for manufacturing the same |
WO2017121117A1 (en) * | 2016-01-14 | 2017-07-20 | 无锡华润上华半导体有限公司 | Method for manufacturing photodiode, photodiode and light sensor |
CN107564925A (en) * | 2016-07-01 | 2018-01-09 | 佳能株式会社 | Imaging device, imaging system and loose impediment |
CN103000647B (en) * | 2012-10-25 | 2018-10-16 | 上海集成电路研发中心有限公司 | A kind of CMOS image sensor optical enhancement structure and preparation method |
CN108807449A (en) * | 2018-08-24 | 2018-11-13 | 德淮半导体有限公司 | Imaging sensor and forming method thereof |
CN108922897A (en) * | 2018-07-25 | 2018-11-30 | 德淮半导体有限公司 | Back side illumination image sensor and its manufacturing method |
WO2020224549A1 (en) * | 2019-05-09 | 2020-11-12 | 虹软科技股份有限公司 | Image sensor package |
CN113764446A (en) * | 2020-06-02 | 2021-12-07 | X-Fab全球服务有限公司 | Light sensor including photodiode array |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6969899B2 (en) * | 2003-12-08 | 2005-11-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor with light guides |
KR100642764B1 (en) * | 2004-09-08 | 2006-11-10 | 삼성전자주식회사 | Image device and its manufacturing method |
JP2006222270A (en) * | 2005-02-10 | 2006-08-24 | Sony Corp | Solid-state image sensor and its manufacturing method |
-
2006
- 2006-08-25 CN CNB2006101218678A patent/CN100495715C/en active Active
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101764093A (en) * | 2008-12-24 | 2010-06-30 | 东部高科股份有限公司 | Image sensor and manufacturing method of image sensor |
CN101814520B (en) * | 2009-02-25 | 2013-04-17 | 索尼公司 | Solid-state image pickup apparatus and production method thereof |
CN101834196A (en) * | 2009-03-12 | 2010-09-15 | 索尼公司 | Solid-state image pickup apparatus and manufacture method thereof and image pick-up device |
CN101834196B (en) * | 2009-03-12 | 2013-03-13 | 索尼公司 | Solid-state image pickup apparatus, method of manufacturing the same, and image pickup apparatus |
CN101944533A (en) * | 2009-07-06 | 2011-01-12 | 原相科技股份有限公司 | Image Sensor and preparation method thereof |
CN102081041A (en) * | 2009-11-27 | 2011-06-01 | 采钰科技股份有限公司 | Biochemical sensing device and manufacturing method thereof |
CN102081041B (en) * | 2009-11-27 | 2012-12-26 | 采钰科技股份有限公司 | Biochemical sensing device and manufacturing method thereof |
CN103000647B (en) * | 2012-10-25 | 2018-10-16 | 上海集成电路研发中心有限公司 | A kind of CMOS image sensor optical enhancement structure and preparation method |
CN106910754A (en) * | 2015-12-22 | 2017-06-30 | 力晶科技股份有限公司 | Semiconductor device and method for manufacturing the same |
CN106910754B (en) * | 2015-12-22 | 2020-01-03 | 力晶积成电子制造股份有限公司 | Semiconductor device and method for manufacturing the same |
WO2017121117A1 (en) * | 2016-01-14 | 2017-07-20 | 无锡华润上华半导体有限公司 | Method for manufacturing photodiode, photodiode and light sensor |
CN107564925A (en) * | 2016-07-01 | 2018-01-09 | 佳能株式会社 | Imaging device, imaging system and loose impediment |
CN107564925B (en) * | 2016-07-01 | 2022-01-28 | 佳能株式会社 | Imaging device, imaging system, and movable object |
CN108922897A (en) * | 2018-07-25 | 2018-11-30 | 德淮半导体有限公司 | Back side illumination image sensor and its manufacturing method |
CN108807449A (en) * | 2018-08-24 | 2018-11-13 | 德淮半导体有限公司 | Imaging sensor and forming method thereof |
WO2020224549A1 (en) * | 2019-05-09 | 2020-11-12 | 虹软科技股份有限公司 | Image sensor package |
CN113764446A (en) * | 2020-06-02 | 2021-12-07 | X-Fab全球服务有限公司 | Light sensor including photodiode array |
US12125862B2 (en) | 2020-06-02 | 2024-10-22 | X-FAB Global Services GmbH | Optical sensor comprising a photodiode array |
Also Published As
Publication number | Publication date |
---|---|
CN100495715C (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100495715C (en) | Image sensing device and manufacturing method thereof | |
US7524690B2 (en) | Image sensor with a waveguide tube and a related fabrication method | |
TWI752159B (en) | Image sensor device and method for manufacturing the smae | |
TW200810100A (en) | Image sensor and the method for manufacturing the same | |
US8229255B2 (en) | Optical waveguides in image sensors | |
US7646943B1 (en) | Optical waveguides in image sensors | |
US20230136761A1 (en) | Image pickup device and method for manufacturing image pickup device | |
KR100687102B1 (en) | Image sensor and its manufacturing method. | |
TWI623090B (en) | Backside photosensitive image sensor and forming method thereof | |
KR100642764B1 (en) | Image device and its manufacturing method | |
CN102637705B (en) | Semiconductor device manufacturing method | |
JP2012182427A (en) | Method of manufacturing semiconductor device | |
KR20080015643A (en) | Image sensor having internal lenses and manufacturing method thereof | |
KR100524200B1 (en) | Image device and method of manufacturing the same | |
KR100937662B1 (en) | Image sensor and its manufacturing method | |
JP3959734B2 (en) | Solid-state imaging device and manufacturing method thereof | |
KR20090034429A (en) | Image sensor and its manufacturing method | |
US9391227B2 (en) | Manufacturing method of semiconductor device | |
US20090108390A1 (en) | Image Sensor and Method for Manufacturing Thereof | |
TWI615957B (en) | Image sensor and manufacturing method thereof | |
KR100667650B1 (en) | Image device and its manufacturing method | |
CN110112152A (en) | Image Sensor with class photoconductive tube structure | |
US20240290817A1 (en) | Image sensor and method of manufacturing same | |
CN108538868A (en) | Image sensor and manufacturing method thereof | |
KR20240111235A (en) | Image sensor and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |