CN101118925A - MOS transistor element and its manufacturing method and improving method - Google Patents
MOS transistor element and its manufacturing method and improving method Download PDFInfo
- Publication number
- CN101118925A CN101118925A CNA2006101081745A CN200610108174A CN101118925A CN 101118925 A CN101118925 A CN 101118925A CN A2006101081745 A CNA2006101081745 A CN A2006101081745A CN 200610108174 A CN200610108174 A CN 200610108174A CN 101118925 A CN101118925 A CN 101118925A
- Authority
- CN
- China
- Prior art keywords
- region
- epitaxial layer
- layer
- gate structure
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002955 isolation Methods 0.000 claims abstract description 75
- 239000004065 semiconductor Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 230000002093 peripheral effect Effects 0.000 claims abstract description 27
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 12
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 87
- 230000008569 process Effects 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 125000006850 spacer group Chemical group 0.000 claims description 14
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 34
- 229910052710 silicon Inorganic materials 0.000 description 34
- 239000010703 silicon Substances 0.000 description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000000407 epitaxy Methods 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910021332 silicide Inorganic materials 0.000 description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 5
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- -1 DCS) Chemical compound 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 101100107923 Vitis labrusca AMAT gene Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体装置及其制造方法与改善方法,尤其涉及一种MOS晶体管元件及其制造方法与改善漏极电流的方法。The invention relates to a semiconductor device and its manufacturing method and improvement method, in particular to a MOS transistor element, its manufacturing method and the method of improving drain current.
背景技术Background technique
随着金属氧化物半导体晶体管(MOSFET)朝向微细化尺寸的发展,进入到深亚微米时代,例如65纳米(nm)以下的工艺,对于MOS晶体管元件的驱动电流(drive current)的提升已显得日益重要。With the development of metal oxide semiconductor transistors (MOSFETs) towards miniaturization and entering the deep submicron era, such as processes below 65 nanometers (nm), the improvement of the drive current of MOS transistor elements has become increasingly apparent. important.
已知有使用应变硅(strained silicon)的概念增加空穴或电子的迁移率(mobility),以增进金属氧化物半导体晶体管元件的性能。例如,利用硅锗层的晶格常数与硅不同导致当硅外延在硅锗层上时产生结构上应变的原理,使松弛的硅(Si)锗(Ge)层成长在绝缘硅(SOI)的基底上或传统的硅基底上,再于松弛的硅锗层上成长硅外延,形成应变硅。由于硅锗层的晶格常数(lattice constant)比硅大,这使得硅的带结构(band structure)发生改变,而造成载流子移动性增加。It is known to use strained silicon to increase the mobility of holes or electrons to improve the performance of metal-oxide-semiconductor transistors. For example, using the principle that the lattice constant of the silicon germanium layer is different from that of silicon to cause structural strain when silicon is epitaxy on the silicon germanium layer, the relaxed silicon (Si) germanium (Ge) layer is grown on a silicon-on-insulator (SOI) layer. On the substrate or the traditional silicon substrate, silicon epitaxy is grown on the relaxed silicon germanium layer to form strained silicon. Since the lattice constant of the silicon germanium layer is larger than that of silicon, the band structure of silicon is changed, resulting in increased carrier mobility.
另外,亦有使用选择性外延成长方法,于栅极形成之后,在源极/漏极区域中嵌入掺杂锗,形成受压挤的应变硅膜,以增进PMOS的电子迁移率。或在NMOS工艺中进行掺杂碳的硅选择性外延嵌入源极/漏极区域中,形成拉伸的应变硅膜,以增进电子迁移率。In addition, a selective epitaxial growth method is also used. After the gate is formed, doped germanium is embedded in the source/drain region to form a squeezed strained silicon film to improve the electron mobility of the PMOS. Or in the NMOS process, carbon-doped silicon is selectively epitaxy embedded in the source/drain region to form a stretched strained silicon film to enhance electron mobility.
图1显示多个现有的MOS晶体管元件的顶视示意图。图2显示图1中沿着AA’线段的剖面示意图,以CMOS元件结构做说明。CMOS半导体元件1包括一半导体基底,其具有硅层12,半导体基底包括有一有源区13及一隔离区16,隔离区16围绕有源区13以将有源区予以电绝缘。一栅极结构,设于有源区13上。栅极结构包括一栅极绝缘层18、一栅极电极层20、及一间隙壁22。有源区13可包括一掺杂井14或15。因此,其沟道宽度即为栅极电极层与有源区交叠时的宽度,亦即,此种现有MOS晶体管元件结构的沟道宽度是局限于有源区13的宽度。FIG. 1 shows a schematic top view of several conventional MOS transistor devices. FIG. 2 shows a schematic cross-sectional view along line AA' in FIG. 1 , illustrating the structure of a CMOS device. The CMOS semiconductor device 1 includes a semiconductor substrate with a
由上述知道有许多增进载流子迁移率的方法,例如,图3显示另一现有的MOS晶体管元件的剖面示意图,其进一步具有自对准金属硅化物层25及接触孔蚀刻停止层(contact etch stop layer,CESL)21。藉由应力的施加,使半导体基底上的沟道产生拉伸或挤压的应变,而改进迁移率。然而,就目前改良载流子迁移率的技术而言,其沟道的大小,终究仍迁就而局限于既有的技术极限所制得的元件尺寸大小,例如光刻、蚀刻的极限及制造浅沟槽隔离结构时填沟的极限等。It is known from the above that there are many methods for improving carrier mobility. For example, FIG. etch stop layer, CESL)21. By applying stress, the channel on the semiconductor substrate is subjected to tensile or compressive strain, thereby improving the mobility. However, as far as the current technology for improving carrier mobility is concerned, the size of the channel is still limited to the size of the device made by the existing technological limit, such as the limit of lithography and etching and the shallow fabrication. The limit of trench filling in the trench isolation structure, etc.
因此,仍需要一种MOS晶体管元件及其制造方法,以较现有技术更进一步增进元件性能。Therefore, there is still a need for a MOS transistor device and its manufacturing method to further improve device performance compared to the prior art.
发明内容Contents of the invention
本发明的目的是提供一种金属氧化物半导体(MOS)晶体管元件、一种制造MOS晶体管元件的方法、及一种改良MOS晶体管元件的漏极电流的方法。本发明的MOS晶体管包括一外延层位于栅极结构与半导体基底的有源区之间,并且外延层的一周边部分覆盖在隔离区的一周边部分的上方,使得栅极下方的沟道宽度能比原本的有源区宽度还宽,因此,能使漏极电流增加。The object of the present invention is to provide a metal oxide semiconductor (MOS) transistor device, a method of manufacturing a MOS transistor device, and a method of improving a drain current of a MOS transistor device. The MOS transistor of the present invention includes an epitaxial layer located between the gate structure and the active region of the semiconductor substrate, and a peripheral portion of the epitaxial layer covers a peripheral portion of the isolation region, so that the channel width under the gate can be It is wider than the original active region width, so the drain current can be increased.
依据本发明的MOS晶体管元件,包括一半导体基底、一栅极结构、及一选择性外延层。半导体基底包括一有源区及一隔离区,隔离区围绕有源区以将有源区予以电绝缘。栅极结构是设于有源区上。外延层是位于有源区与栅极结构之间,并且外延层的一周边部分覆盖在隔离区的一周边部分的上方。The MOS transistor device according to the present invention includes a semiconductor substrate, a gate structure, and a selective epitaxial layer. The semiconductor substrate includes an active area and an isolation area, and the isolation area surrounds the active area to electrically isolate the active area. The gate structure is disposed on the active area. The epitaxial layer is located between the active region and the gate structure, and a peripheral portion of the epitaxial layer covers a peripheral portion of the isolation region.
依据本发明的制造MOS晶体管元件的方法,包括下述步骤。首先提供一半导体基底。其次,于半导体基底中形成一隔离区,从而界定出隔离区与一有源区,其中,有源区是与隔离区相邻且经由隔离区而电绝缘。接着,进行一选择性外延工艺,以于有源区表面上形成一外延层,同时外延层横向成长而延伸至隔离区的周边部分的表面上。然后,于有源区的半导体基底中形成一掺杂井。于外延层上形成一栅极结构。最后,于栅极结构两侧的掺杂井及外延层中形成一源极/漏极区域。A method of manufacturing a MOS transistor device according to the present invention includes the following steps. Firstly, a semiconductor substrate is provided. Secondly, an isolation region is formed in the semiconductor substrate, thereby defining the isolation region and an active region, wherein the active region is adjacent to the isolation region and electrically insulated through the isolation region. Then, a selective epitaxial process is performed to form an epitaxial layer on the surface of the active region, and at the same time, the epitaxial layer grows laterally to extend to the surface of the peripheral portion of the isolation region. Then, a doping well is formed in the semiconductor substrate in the active region. A gate structure is formed on the epitaxial layer. Finally, a source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure.
又,依据本发明的制造MOS晶体管元件的方法,包括下述步骤。首先,提供一半导体基底。其次,于半导体基底中形成一隔离区及一掺杂井,并使掺杂井被隔离区围绕。然后,进行一选择性外延工艺,可以于掺杂井的表面上形成一外延层,同时外延层横向成长而延伸至隔离区的周边部分的表面上。然后,于外延层上形成一栅极结构。最后,于栅极结构两侧的掺杂井及外延层中形成一源极/漏极区域。Also, the method of manufacturing a MOS transistor device according to the present invention includes the following steps. First, a semiconductor substrate is provided. Secondly, an isolation region and a doping well are formed in the semiconductor substrate, and the doping well is surrounded by the isolation region. Then, a selective epitaxial process is performed to form an epitaxial layer on the surface of the doping well, and meanwhile, the epitaxial layer grows laterally and extends to the surface of the peripheral portion of the isolation region. Then, a gate structure is formed on the epitaxial layer. Finally, a source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure.
依据本发明的改善MOS晶体管元件漏极电流的方法,MOS晶体管元件是包括一半导体基底及一栅极结构,其中半导体基底包括一隔离区及一有源区,隔离区围绕有源区以使其电绝缘。此方法包括下述步骤。首先,于形成隔离区之后及形成栅极结构之前,于有源区上形成一选择性外延层,并使外延层横向成长而延伸至隔离区的周边部分的表面上,藉以增加MOS晶体管元件的沟道宽度。According to the method for improving the drain current of a MOS transistor element of the present invention, the MOS transistor element includes a semiconductor substrate and a gate structure, wherein the semiconductor substrate includes an isolation region and an active region, and the isolation region surrounds the active region to make it electrical insulation. This method includes the following steps. First, after forming the isolation region and before forming the gate structure, a selective epitaxial layer is formed on the active region, and the epitaxial layer is grown laterally to extend to the surface of the peripheral part of the isolation region, thereby increasing the MOS transistor element channel width.
附图说明Description of drawings
图1显示一现有的MOS晶体管元件的顶视示意图;FIG. 1 shows a schematic top view of a conventional MOS transistor device;
图2显示图1中沿着AA’线段的剖面示意图;Fig. 2 shows the schematic sectional view along AA ' line segment in Fig. 1;
图3显示另一现有的MOS晶体管元件的剖面示意图;FIG. 3 shows a schematic cross-sectional view of another existing MOS transistor element;
图4显示一依据本发明的MOS晶体管元件的具体实施例的顶视示意图;FIG. 4 shows a schematic top view of a specific embodiment of a MOS transistor device according to the present invention;
图5显示图4中沿着BB’线段的剖面示意图;Fig. 5 shows the sectional schematic diagram along BB ' line segment in Fig. 4;
图6显示一依据本发明的MOS晶体管元件的另一具体实施例的剖面示意图;6 shows a schematic cross-sectional view of another embodiment of a MOS transistor device according to the present invention;
图7至图13说明依据本发明的制造MOS晶体管元件的方法的具体实施例;7 to 13 illustrate specific embodiments of the method for manufacturing MOS transistor elements according to the present invention;
图14显示一依据本发明的制造MOS晶体管元件的方法的流程图;FIG. 14 shows a flow chart of a method for manufacturing a MOS transistor device according to the present invention;
图15显示一依据本发明的制造MOS晶体管元件的方法的具体实施例中外延层完成后的穿透式电子显微照片;Figure 15 shows a transmission electron micrograph after the completion of the epitaxial layer in a specific embodiment of the method for manufacturing a MOS transistor element according to the present invention;
图16显示依据本发明的方法制得的HVT PMOS晶体管元件与现有的HVT PMOS晶体管元件的电流(Ion)对Ldrawn作图;Fig. 16 shows that the current (I on ) of the HVT PMOS transistor element made according to the method of the present invention and the existing HVT PMOS transistor element is plotted against Ldrawn;
图17显示依据本发明的方法制得的HVT NMOS晶体管元件与现有的HVT NMOS晶体管元件的电流(Ion)对Ldrawn作图;Fig. 17 shows that the current (I on ) of the HVT NMOS transistor element made according to the method of the present invention and the existing HVT NMOS transistor element is plotted against Ldrawn;
图18显示依据本发明的方法制得的HVT NMOS晶体管元件与现有的HVTNMOS晶体管元件的Ioff对Ion作图所获得的泛曲线;Fig. 18 shows the generic curve obtained by plotting the I off of the HVT NMOS transistor element and the existing HVTNMOS transistor element according to the method of the present invention;
图19显示依据本发明的方法制得的HVT PMOS晶体管元件与现有的HVT PMOS晶体管元件的Ioff对Ion作图所获得的泛曲线。Fig. 19 shows the generic curve obtained by plotting I off versus I on of the HVT PMOS transistor element manufactured by the method of the present invention and the existing HVT PMOS transistor element.
主要元件符号说明Description of main component symbols
1现有的CMOS半导体元件1 Existing CMOS semiconductor components
10 本发明的CMOS半导体元件10 CMOS semiconductor element of the present invention
12 硅层 13 有源区12
14 掺杂井 15 掺杂井14 Doping well 15 Doping well
16 隔离区 17 浅结源/漏极延伸16
18 栅极绝缘层 19 浅结源/漏极延伸18
20 栅极电极层 21 接触孔蚀刻停止层20
22 间隙壁 23 接触孔蚀刻停止层22
24 外延层 24a 外延层的周边部分24
25 自对准金属硅化物层25 salicide layer
26、27、28、29 源极/漏极区域26, 27, 28, 29 Source/drain regions
31 氧化硅层 32 多晶硅层31
101、102、103、104、105、112、113 步骤101, 102, 103, 104, 105, 112, 113 steps
具体实施方式Detailed ways
依据本发明的MOS晶体管元件,可为NMOS、PMOS、或CMOS。图4显示多个依据本发明的MOS晶体管元件的顶视示意图,图5是显示图4中沿着BB’线段的剖面示意图,以CMOS元件结构做说明。其中相同的元件或部位仍沿用相同的符号来表示。需注意的是图式仅以说明为目的,并未依照原尺寸作图。CMOS晶体管元件10包括一半导体基底。半导体基底包括有源区13及隔离区16,隔离区16围绕有源区13,以将有源区13予以电绝缘。一栅极结构,例如包括栅极绝缘层18、栅极电极层20、及间隙壁22,设于有源区13上方。一外延层24位于有源区13与栅极结构之间,并且外延层24的一周边部分24a覆盖在隔离区16的一周边部分的上方。The MOS transistor device according to the present invention can be NMOS, PMOS, or CMOS. FIG. 4 shows a schematic top view of a plurality of MOS transistor elements according to the present invention, and FIG. 5 shows a schematic cross-sectional view along line BB' in FIG. 4 , illustrating the structure of a CMOS element. The same elements or parts are still represented by the same symbols. It should be noted that the drawings are for illustration purposes only and are not drawn to original scale. The
于CMOS晶体管元件10中,半导体基底一般可包括有硅层12,例如硅基底或者是硅覆绝缘(silicon-on-insulator,SOI)基底,此并无特别限制。隔离区16可为例如浅沟槽隔离结构(shallow trench isolation,STI),其可包括例如氧化硅的材质,以将其所包围的有源区13电绝缘。有源区13可包括一P型掺杂井或N型掺杂井,于NMOS元件中,则为P型掺杂井14,于PMOS元件中,为N型掺杂井15。有源区13内尚可包括源极/漏极区域26、27、或28、29,分别位于栅极结构两侧的掺杂井14或15及外延层24中。于NMOS元件中,源极/漏极区域26及27为N型掺杂,于PMOS元件中,源极/漏极区域28及29为P型掺杂。源极/漏极区域亦可进一步包括一轻掺杂漏极(LDD)区域。外延层24是位于有源区13的上方及栅极结构的下方,即,位于掺杂井14与栅极结构之间,以及掺杂井15与栅极结构之间。应注意的是,外延层24并不覆盖整个隔离区16,而是经由选择性的形成于具有晶体结构的基底表面上,仅以周边部分24a延伸至隔离区16的一周边部分的上方。In the
如此的结构,由图4可清楚看到,沟道宽度w相比于仅以有源区13为宽度的先前技术的沟道宽度,是较为增加的,使得Id值更增加,而达到增进元件效能的目的。于PMOS元件中,外延层可包括Si、SiC、或此二者的混合物等。于NMOS元件中,外延层可包括Si、SiGe、或此二者的混合物等。亦可将外延层进一步予以轻掺杂。外延层的厚度,并无严格的限制,可依需要而定,例如可在50至500之间,外延层越厚,其周边部分延伸到隔离区的周边部分上方的宽度也会越宽,相对获得的沟道宽度会越宽。但是值得注意的是,于一隔离层上来自相邻MOS晶体管元件的外延层的周边部分不能会合而彼此接触到,或是相距过近,以免影响二个MOS晶体管元件之间的电绝缘需求。With such a structure, it can be clearly seen from FIG. 4 that the channel width w is relatively increased compared to the channel width of the prior art with only the
栅极结构可包括一栅极绝缘层18及一栅极电极层20,栅极绝缘层可为例如硅氧化物等介电材料,栅极电极层可为例如多晶硅材料等导电材料。可进一步包括一间隙壁22,间隙壁是用来形成源极/漏极区域的轻掺杂延伸区域,之后,可留存于结构中,或是移除。栅极结构亦可进一步包括一L形衬垫层(liner)形成于间隙壁与栅极电极层、半导体基底之间(未示出)。The gate structure may include a
依据本发明的MOS晶体管元件的结构,特征在于栅极结构与半导体基底的有源区之间具有一外延层,外延层的周边部分延伸至与有源区相邻的隔离区周边部分的上方,因此能使沟道宽度增加。According to the structure of the MOS transistor element of the present invention, it is characterized in that there is an epitaxial layer between the gate structure and the active region of the semiconductor substrate, and the peripheral portion of the epitaxial layer extends above the peripheral portion of the isolation region adjacent to the active region, Therefore, the channel width can be increased.
由于已知晶体管的漏极电流大小是依工艺中所制得的沟道长度(L)和宽度(W)来计算的。当晶体管在饱和模式下运作,漏极电流Id的大小在沟道的长度和宽度决定后就保持固定,如下列公式所示:It is known that the drain current of a transistor is calculated according to the channel length (L) and width (W) produced in the process. When the transistor operates in saturation mode, the magnitude of the drain current Id remains fixed after the channel length and width are determined, as shown in the following formula:
W:沟道宽度W: channel width
L:沟道长度L: channel length
μ:迁移率μ: Mobility
Cox:电容值C ox : capacitance value
Vg:栅极电压V g : Gate voltage
Vt:起始电压V t : starting voltage
因此,当沟道宽度增加时,可使Id值增加。如上述的依据本发明的MOS晶体管元件的结构,特征在于具有选择性外延层的构造,使得沟道宽度可比现有技术为宽,因此,Id值会比现有技术增加。而,于制造依据本发明的MOS晶体管元件时,除了选择性外延层的形成之外,可利用既有的工艺。选择性外延层的形成不会对于原工艺有不良影响,却能在基于原工艺的效能基础上,再进一步使Id值更增加,而达到更加增进元件效能的目的。Therefore, as the channel width increases, the I d value can be increased. The structure of the MOS transistor device according to the present invention as described above is characterized by the structure of the selective epitaxial layer, so that the channel width can be wider than that of the prior art, and therefore, the Id value can be increased compared with the prior art. However, in the manufacture of the MOS transistor device according to the present invention, in addition to the formation of the selective epitaxial layer, existing processes can be used. The formation of the selective epitaxial layer will not have adverse effects on the original process, but can further increase the I d value on the basis of the performance based on the original process, so as to achieve the purpose of further improving the performance of the device.
再者,由于栅极绝缘层下方的沟道上层是由纯的外延层构成,因此,于工艺中难免会扩散的掺杂物扩散至此处的浓度较小,所以有利于Vt值的降低,如此,亦有利于Id值的提升。Furthermore, since the upper layer of the channel under the gate insulating layer is composed of a pure epitaxial layer, the dopant that will inevitably diffuse in the process diffuses to a relatively small concentration, which is beneficial to the reduction of the Vt value. In this way, it is also conducive to the improvement of the I d value.
基于此种结构的MOS晶体管元件可适用于多种变化的MOS晶体管元件,例如图6所示,可进一步包括一自对准金属硅化物层(salicide layer)25,亦可进一步包括一接触孔蚀刻停止层23。接触孔蚀刻停止层23可为例如一均匀沉积的氮化硅盖层,其厚度优选在30至2000之间。The MOS transistor element based on this kind of structure can be applicable to the MOS transistor element of many changes, for example as shown in Figure 6, can further include a self-aligned metal silicide layer (salicide layer) 25, also can further include a contact hole
下列请参阅图7至图13,以进一步说明本发明的制造MOS晶体管元件的方法。MOS晶体管元件可为NMOS、PMOS、或CMOS晶体管元件。图7至图13显示的是本发明的制造CMOS晶体管元件的一具体实施例的方法的剖面示意图,其中相同的元件或部位仍沿用相同的符号来表示。需注意的是图式仅以说明为目的,并未依照原尺寸作图。Please refer to FIG. 7 to FIG. 13 below to further illustrate the method for manufacturing the MOS transistor device of the present invention. The MOS transistor elements may be NMOS, PMOS, or CMOS transistor elements. 7 to 13 are schematic cross-sectional views of a method for manufacturing a CMOS transistor device according to an embodiment of the present invention, wherein the same components or parts are still represented by the same symbols. It should be noted that the drawings are for illustration purposes only and are not drawn to original scale.
请参阅图7,首先准备一半导体基底,其包括有硅层12。于硅层12上形成隔离区16,隔离区可为例如浅沟槽隔离结构,形成浅沟槽隔离结构的步骤可包括首先在硅层12上利用高温氧化而于硅层12表面上生成一氧化物阻障层,以保护有源区。接着,可经由化学气相沉积形成一硅氮化物层于氧化阻障层上,然后进行一光刻工艺以形成一光致抗蚀剂图形于硅氮化物层上,进行沟槽的蚀刻。于清洗及干燥后,进行一低压化学气相沉积以将沟槽填满氧化物,然后,可进行化学机械抛光以将多余的氧化物层移除,再以例如热磷酸将硅氮化物层去除,露出硅层12。如此,形成隔离区16,隔离区16围绕有源区,以将有源区电绝缘。Please refer to FIG. 7 , first prepare a semiconductor substrate including a
于本发明的方法中,外延层是在形成隔离区16且去除硅氮化物层而露出硅层12之后进行,而可在掺杂井形成之前或之后进行。而优选在露出硅层12之后,紧接着进行,以免硅层的晶体结构被破坏而影响外延品质。请参阅图8,图8显示在隔离区16形成之后,及形成掺杂井之前,先形成外延层24于硅层12上,此是藉由进行一选择性外延工艺而达成。In the method of the present invention, the epitaxial layer is formed after the
在本发明的优选实施例中,选择性外延工艺所使用的气体包括有例如二氯甲硅烷(dichlorosilane,DCS)、氯化氢(HCl)以及氢气,而工艺温度是低于800℃,以例如减压化学气相沉积方法,进行硅外延层的制造。在本发明的其它实施例中,选择性外延工艺亦可利用例如硅甲烷(silane,SiH4)与氯气(Cl2)作为工艺气体。亦可使用其他方法以形成硅外延层,例如分子束外延法或超高真空化学气相沉积法。在本发明的其它实施例中,亦可形成硅与锗的外延层,可使用例如二氯硅烷(SiH2Cl2;简称DCS)及锗烷(GeH4),以低压化学气相沉积(LPCVD)方法,在例如500至800℃及低压下进行。或是形成硅与碳的外延,可使用SiH4及甲基硅甲烷(SiH3CH3),以低压化学气相沉积(LPCVD)方法,在例如500至800℃及低压下进行。可于外延工艺时一并略加低浓度的掺杂物以形成外延,或是外延成长后,再经由离子注入方式略加低浓度的掺杂,以调整MOS的起始电压(Vt)。In a preferred embodiment of the present invention, the gases used in the selective epitaxy process include, for example, dichlorosilane (dichlorosilane, DCS), hydrogen chloride (HCl) and hydrogen, and the process temperature is lower than 800 ° C, for example, decompression Chemical vapor deposition method for the manufacture of silicon epitaxial layers. In other embodiments of the present invention, the selective epitaxy process may also use, for example, silane (SiH 4 ) and chlorine (Cl 2 ) as process gases. Other methods can also be used to form the silicon epitaxial layer, such as molecular beam epitaxy or ultra-high vacuum chemical vapor deposition. In other embodiments of the present invention, epitaxial layers of silicon and germanium can also be formed, for example, dichlorosilane (SiH 2 Cl 2 ; DCS for short) and germane (GeH 4 ) can be used for low-pressure chemical vapor deposition (LPCVD). The method is carried out at, for example, 500 to 800° C. and low pressure. Alternatively, silicon and carbon epitaxy can be performed using SiH 4 and methylsilyl methane (SiH 3 CH 3 ) by low-pressure chemical vapor deposition (LPCVD) at, for example, 500 to 800° C. and low pressure. A low-concentration dopant can be added during the epitaxial process to form epitaxy, or a low-concentration dopant can be added by ion implantation after epitaxial growth to adjust the initial voltage (V t ) of the MOS.
由于外延层是以晶体构造层层往上长厚,所形成的结晶晶格是与露出的半导体基底的晶体晶格相似,而浅沟槽隔离结构是氧化物构造,为非晶形,因此,外延层并不会在隔离区16的表面上成长。因此,使用本发明的方法,是在半导体基底上全面性进行选择性外延工艺,且进行一次即已足够,不需分段进行,也不需图形掩模的辅助,即能便利的在基底的所需位置上产生外延层。值得注意的是,依据本发明的方法,外延层除了会在有源区的表面上向上成长之外,亦会同时在具有厚度的外延层侧边逐渐往侧向成长,而使得最后获得的外延层的周边部分是延伸而跨在隔离区16的周边部分的表面上。如此,可增加晶体管栅极沟道的宽度,增进漏极电流量。Since the epitaxial layer grows thicker layer by layer with a crystal structure, the formed crystal lattice is similar to the crystal lattice of the exposed semiconductor substrate, and the shallow trench isolation structure is an oxide structure, which is amorphous. Therefore, the epitaxial Layers do not grow on the surface of the
形成外延层后,可进一步进行一退火工艺(anneal),以修复有缺陷的外延晶格。After the epitaxial layer is formed, an annealing process (anneal) can be further performed to repair the defective epitaxial lattice.
接着,进行掺杂井的制作,以获得如图10所示的结构。亦即可利用掩模分别使用注入方法(implantation)将所需的P型掺杂物及N型掺杂物注入硅层12中,形成P型掺杂井14或N型掺杂井15。在外延层24已形成后进行掺杂,并不会对外延层有不良影响。或是,进一步进行一退火处理,以修复有缺陷的外延晶格。Next, doping wells are fabricated to obtain the structure shown in FIG. 10 . That is, the desired P-type dopant and N-type dopant can be implanted into the
此外,亦可以先形成掺杂井然后再形成外延层。如图9显示,在形成隔离区16之后,先不形成外延层,而于隔离区16的半导体基底中先形成掺杂井14及15。然后,请参阅图10,于掺杂井14及15的表面上进行选择性外延工艺,以形成如上述的外延层24。In addition, it is also possible to form the doped well first and then form the epitaxial layer. As shown in FIG. 9 , after the
选择性外延层形成后,可于外延层上制造所需的元件,例如,栅极结构。请参阅图11,首先,于隔离区16及外延层24上沉积一层氧化硅层31等的介电层,及于氧化硅层31上沉积一多晶硅层32等的导电层,然后利用光刻与蚀刻工艺,形成栅极结构,其包括氧化硅层作为栅极绝缘层18,及多晶硅层作为栅极电极层20。After the selective epitaxial layer is formed, desired elements, such as gate structures, can be fabricated on the epitaxial layer. Please refer to FIG. 11, at first, deposit a dielectric layer such as a
栅极结构形成之后,可于栅极结构两侧的外延层及掺杂井中形成源极/漏极区域。例如,进行轻漏极掺杂(LDD)工艺。请参阅图13,分别于栅极结构两侧的外延层24及掺杂井14及15中形成浅结源/漏极延伸17以及浅结源/漏极延伸19。随后,在栅极电极层20及栅极绝缘层18的侧壁上形成间隙壁22,间隙壁可为例如氮化硅或氧化硅等材料所构成。而在形成间隙壁22之前可先形成一衬垫层,衬垫层可为氧化硅所构成。After the gate structure is formed, source/drain regions can be formed in the epitaxial layer and doped wells on both sides of the gate structure. For example, a light drain doping (LDD) process is performed. Referring to FIG. 13 , a shallow junction source/
在形成间隙壁22之后,可进一步进行一离子注入工艺,将N型掺杂物物种,例如砷、锑或磷等注入硅层12中,或将P型掺杂物物种,例如硼等注入硅层12中,藉此形成NMOS元件的源/漏极区26、27,以及PMOS元件的源/漏极区28、29。在完成漏极源极的掺杂后,半导体基底通常可以进行一退火(annealing)或活化(activation)掺杂物的热工艺,此步骤亦为该行业者所熟知,不再加以陈述。After the
可进一步于栅极电极层20、露出的源/漏极区26、27、28、及29上形成一物质层,例如一金属硅化物层(metal silicide layer)25。可利用自对准金属硅化物(self-aligned silicide,salicide)工艺来形成金属硅化物层;例如,在形成源极/漏极区域之后,利用溅镀或沉积方法,再形成一金属层覆盖于源极/漏极区域与栅极结构上方,然后进行一快速高温工艺(RTP)使金属与栅极结构、源极/漏极区域中的硅反应,形成金属硅化物。RTP温度可在700℃至1000℃之间。A material layer such as a
间隙壁22可留在结构中或是移除,移除后仅在栅极侧壁上留下约略呈L型的衬垫层。衬垫层不一定呈L型,亦可以进行一较温和的蚀刻工艺,略微蚀刻衬垫层,以缩减其厚度。在其它实施例中,衬垫层可被完全去除。The
可进一步进行例如应变硅的制作或其他半导体工艺技术。例如,可于半导体基底上形成一接触孔蚀刻停止层23,例如一均匀沉积的氮化硅盖层。使接触孔蚀刻停止层23于沉积时先设定沉积在一压缩应力状态(例如,一般在-0.1Gpa至-3Gpa之间,对于PMOS)或一拉伸应力状态(例如,一般在0.1Gpa至3Gpa之间,对于NMOS),如此,使得沟道区域在沟道方向具有对应的压缩应变或拉伸应变,可改善沟道中载流子的迁移率,以增进Id。接触孔蚀刻停止层应力状态可以利用热处理、紫外线照射、等离子体增强化学气相沉积法、或其他现有的方法进行。Further processing such as strained silicon fabrication or other semiconductor process technologies can be performed. For example, a contact
图14显示一如上述的依据本发明的制造MOS晶体管元件的方法的可行的流程图的一例。简言之,依据本发明的方法,首先,于半导体基底上进行一步骤101,以形成隔离区;其次,可先进行步骤102以形成选择性外延层,再进行步骤103以形成掺杂井,或是先进行步骤112以形成掺杂井,再进行步骤113以形成选择性外延层;接着,进行步骤104,以于外延层上形成栅极结构;最后,进行步骤105,以于栅极结构两侧的半导体基底及外延层中形成源极/漏极区域。FIG. 14 shows an example of a possible flowchart of the method for manufacturing a MOS transistor device according to the present invention as described above. In short, according to the method of the present invention, firstly, a step 101 is performed on the semiconductor substrate to form an isolation region; secondly, step 102 can be performed first to form a selective epitaxial layer, and then step 103 can be performed to form a doped well, Or perform step 112 to form a doped well, and then perform step 113 to form a selective epitaxial layer; then perform step 104 to form a gate structure on the epitaxial layer; finally, perform step 105 to form a gate structure Source/drain regions are formed in the semiconductor substrate and the epitaxial layer on both sides.
依据本发明的另一具体实施例,使外延层在形成掺杂井之后形成,则隔离区与掺杂井的形成秩序并无限定,亦可先进行步骤112以形成掺杂井,再进行步骤101,以形成隔离区,然后进行步骤113以形成选择性外延层。According to another specific embodiment of the present invention, the epitaxial layer is formed after the doped wells are formed, and the formation order of the isolation region and the doped wells is not limited, and the step 112 can be performed first to form the doped wells, and then the step 101 to form an isolation region, and then proceed to step 113 to form a selective epitaxial layer.
因此,值得注意的是,本发明的形成MOS晶体管元件的方法,其中形成选择性外延层的步骤必须在形成隔离区之后以及形成栅极结构之前进行。Therefore, it is worth noting that, in the method for forming MOS transistor elements of the present invention, the step of forming the selective epitaxial layer must be performed after forming the isolation region and before forming the gate structure.
图15显示一具体实施例中外延层完成后的穿透式电子显微照片,是依据本发明的制造MOS晶体管元件的方法中于半导体基板上选择性形成外延层的结果。此选择性外延成长是使用AMAT外延机台(美国应用材料公司制造),于15托的压力下,以200sccm的二氯硅烷(dichlorosilane(DCS))、0.04slm(标准升/分)的HCl、及30slm的H2进行减压化学气相沉积(reducedpressure chemical vapor deposition)。形成的外延层厚度T为约70nm,外延层的周边部分延伸至与有源区相邻的浅沟槽隔离结构(STI)的周边的上方而覆盖它,约140nm的延伸距离。FIG. 15 shows a transmission electron micrograph of the completed epitaxial layer in an embodiment, which is the result of selectively forming the epitaxial layer on the semiconductor substrate in the method for manufacturing a MOS transistor device according to the present invention. This selective epitaxial growth is to use the AMAT epitaxial machine (manufactured by Applied Materials, USA), under the pressure of 15 torr, with 200 sccm of dichlorosilane (dichlorosilane (DCS)), 0.04 slm (standard liter/min) of HCl, And 30slm of H 2 for reduced pressure chemical vapor deposition (reduced pressure chemical vapor deposition). The thickness T of the formed epitaxial layer is about 70nm, and the peripheral portion of the epitaxial layer extends above and covers the periphery of the shallow trench isolation structure (STI) adjacent to the active region, an extension distance of about 140nm.
上述具体实施例只是可行方式的其中一例,可有许多变化,例如,可使用分子束外延法或超高真空化学气相沉积法取代减压化学气相沉积、或是使用SiH4取代二氯硅烷。The above-mentioned embodiment is just one example of possible ways, and there are many variations, for example, molecular beam epitaxy or ultra-high vacuum chemical vapor deposition can be used instead of reduced-pressure chemical vapor deposition, or SiH 4 can be used instead of dichlorosilane.
使用如上述具体实施例所制得的具有选择性外延层及隔离区的晶片编号24,制造高压P型金属氧化物半导体晶体管(HVT PMOS)及HVT NMOS,与现有技术的由不具有选择性外延层的晶片编号12制得的HVT PMOS与HVT NMOS分别比较之,二者具有相同的沟道长度,但晶片编号24制得的晶体管元件具有较宽的沟道宽度。在相同的沟道长度下(Ldrawn),如图16所示,晶片编号24制得的HVT PMOS晶体管元件,于施加1V的电压下,具有比晶片编号12制得的HVT PMOS高的电流(Ion),在Ldrawn为0.07时,增加约28%,在Ldrawn为0.12时,增加约21%。如图17所示,晶片编号24制得的HVT NMOS晶体管元件,于施加1V的电压下,具有分别比晶片编号12制得的HVT NMOS高的电流(Ion),在Ldrawn为0.07时,增加约9.6%,在Ldrawn为0.12时,增加约16%。Using the
图18显示晶片编号24制得的HVT NMOS晶体管元件与晶片编号12制得的HVT NMOS于各种沟道长度下元件的闭电流(Ioff)对开电流(Ion)作图,获得泛曲线(universal curve)。可看出在相同Ioff值下,依据本发明的方法制得的晶体管元件具有较高的Ion值。Figure 18 shows the off-current (I off ) versus on-current (I on ) plots of the HVT NMOS transistor element made by
图19显示晶片编号24制得的HVT PMOS晶体管元件与晶片编号12制得的HVT PMOS于各种沟道长度下Ioff对Ion作图,获得泛曲线(universalcurve)。显示在相同Ioff值下,依据本发明的方法制得的晶体管元件具有较高的Ion值。FIG. 19 shows the HVT PMOS transistor element manufactured by
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (42)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101081745A CN101118925A (en) | 2006-07-31 | 2006-07-31 | MOS transistor element and its manufacturing method and improving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101081745A CN101118925A (en) | 2006-07-31 | 2006-07-31 | MOS transistor element and its manufacturing method and improving method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101118925A true CN101118925A (en) | 2008-02-06 |
Family
ID=39054940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101081745A Pending CN101118925A (en) | 2006-07-31 | 2006-07-31 | MOS transistor element and its manufacturing method and improving method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101118925A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856206A (en) * | 2011-06-30 | 2013-01-02 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
-
2006
- 2006-07-31 CN CNA2006101081745A patent/CN101118925A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856206A (en) * | 2011-06-30 | 2013-01-02 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102856206B (en) * | 2011-06-30 | 2016-05-11 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7855126B2 (en) | Methods of fabricating a semiconductor device using a cyclic selective epitaxial growth technique and semiconductor devices formed using the same | |
US7361563B2 (en) | Methods of fabricating a semiconductor device using a selective epitaxial growth technique | |
KR100844933B1 (en) | Transistor of semiconductor device and manufacturing method thereof | |
US7494884B2 (en) | SiGe selective growth without a hard mask | |
US7553717B2 (en) | Recess etch for epitaxial SiGe | |
US8076194B2 (en) | Method of fabricating metal oxide semiconductor transistor | |
KR101023208B1 (en) | MOSF device with a tensile-deformed substrate and its manufacturing method | |
US20080017931A1 (en) | Metal-oxide-semiconductor transistor device, manufacturing method thereof, and method of improving drain current thereof | |
CN100429788C (en) | Introduced gate strain for improved MOS performance | |
US7605407B2 (en) | Composite stressors with variable element atomic concentrations in MOS devices | |
US7517766B2 (en) | Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device | |
US8114727B2 (en) | Disposable spacer integration with stress memorization technique and silicon-germanium | |
KR101600553B1 (en) | Methods for fabricating mos devices having epitaxially grown stress-inducing source and drain regions | |
US20080242032A1 (en) | Carbon-Doped Epitaxial SiGe | |
JP5671294B2 (en) | Integrated circuit and manufacturing method thereof | |
US8907425B2 (en) | Semiconductor device | |
US8486795B2 (en) | Method of fabricating transistors | |
CN101632159A (en) | Stressed field effect transistor and method of manufacturing same | |
US20050279997A1 (en) | Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same | |
CN101276758A (en) | Method for manufacturing semiconductor transistor element | |
US20110306170A1 (en) | Novel Method to Improve Performance by Enhancing Poly Gate Doping Concentration in an Embedded SiGe PMOS Process | |
US20070259503A1 (en) | Method of fabricating a semiconductor device | |
JP5076367B2 (en) | Semiconductor device and manufacturing method thereof | |
KR101673920B1 (en) | Method of manufacturing a semiconductor device | |
CN101118925A (en) | MOS transistor element and its manufacturing method and improving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080206 |