[go: up one dir, main page]

CN101118925A - MOS transistor element and its manufacturing method and improving method - Google Patents

MOS transistor element and its manufacturing method and improving method Download PDF

Info

Publication number
CN101118925A
CN101118925A CNA2006101081745A CN200610108174A CN101118925A CN 101118925 A CN101118925 A CN 101118925A CN A2006101081745 A CNA2006101081745 A CN A2006101081745A CN 200610108174 A CN200610108174 A CN 200610108174A CN 101118925 A CN101118925 A CN 101118925A
Authority
CN
China
Prior art keywords
region
epitaxial layer
layer
gate structure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101081745A
Other languages
Chinese (zh)
Inventor
施泓林
江日舜
孟宪樑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CNA2006101081745A priority Critical patent/CN101118925A/en
Publication of CN101118925A publication Critical patent/CN101118925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The invention relates to a Metal Oxide Semiconductor (MOS) transistor element, wherein, a semiconductor substrate comprises an active region and an isolation region, a selective epitaxial layer is arranged between the active region and a gate structure, and a peripheral part of the epitaxial layer covers the upper part of the peripheral part of the isolation region. Thus, the channel width can be increased, and the drain current can be improved.

Description

金属氧化物半导体晶体管元件及其制造方法与改善方法 Metal-oxide-semiconductor transistor element, manufacturing method and improvement method thereof

技术领域technical field

本发明涉及一种半导体装置及其制造方法与改善方法,尤其涉及一种MOS晶体管元件及其制造方法与改善漏极电流的方法。The invention relates to a semiconductor device and its manufacturing method and improvement method, in particular to a MOS transistor element, its manufacturing method and the method of improving drain current.

背景技术Background technique

随着金属氧化物半导体晶体管(MOSFET)朝向微细化尺寸的发展,进入到深亚微米时代,例如65纳米(nm)以下的工艺,对于MOS晶体管元件的驱动电流(drive current)的提升已显得日益重要。With the development of metal oxide semiconductor transistors (MOSFETs) towards miniaturization and entering the deep submicron era, such as processes below 65 nanometers (nm), the improvement of the drive current of MOS transistor elements has become increasingly apparent. important.

已知有使用应变硅(strained silicon)的概念增加空穴或电子的迁移率(mobility),以增进金属氧化物半导体晶体管元件的性能。例如,利用硅锗层的晶格常数与硅不同导致当硅外延在硅锗层上时产生结构上应变的原理,使松弛的硅(Si)锗(Ge)层成长在绝缘硅(SOI)的基底上或传统的硅基底上,再于松弛的硅锗层上成长硅外延,形成应变硅。由于硅锗层的晶格常数(lattice constant)比硅大,这使得硅的带结构(band structure)发生改变,而造成载流子移动性增加。It is known to use strained silicon to increase the mobility of holes or electrons to improve the performance of metal-oxide-semiconductor transistors. For example, using the principle that the lattice constant of the silicon germanium layer is different from that of silicon to cause structural strain when silicon is epitaxy on the silicon germanium layer, the relaxed silicon (Si) germanium (Ge) layer is grown on a silicon-on-insulator (SOI) layer. On the substrate or the traditional silicon substrate, silicon epitaxy is grown on the relaxed silicon germanium layer to form strained silicon. Since the lattice constant of the silicon germanium layer is larger than that of silicon, the band structure of silicon is changed, resulting in increased carrier mobility.

另外,亦有使用选择性外延成长方法,于栅极形成之后,在源极/漏极区域中嵌入掺杂锗,形成受压挤的应变硅膜,以增进PMOS的电子迁移率。或在NMOS工艺中进行掺杂碳的硅选择性外延嵌入源极/漏极区域中,形成拉伸的应变硅膜,以增进电子迁移率。In addition, a selective epitaxial growth method is also used. After the gate is formed, doped germanium is embedded in the source/drain region to form a squeezed strained silicon film to improve the electron mobility of the PMOS. Or in the NMOS process, carbon-doped silicon is selectively epitaxy embedded in the source/drain region to form a stretched strained silicon film to enhance electron mobility.

图1显示多个现有的MOS晶体管元件的顶视示意图。图2显示图1中沿着AA’线段的剖面示意图,以CMOS元件结构做说明。CMOS半导体元件1包括一半导体基底,其具有硅层12,半导体基底包括有一有源区13及一隔离区16,隔离区16围绕有源区13以将有源区予以电绝缘。一栅极结构,设于有源区13上。栅极结构包括一栅极绝缘层18、一栅极电极层20、及一间隙壁22。有源区13可包括一掺杂井14或15。因此,其沟道宽度即为栅极电极层与有源区交叠时的宽度,亦即,此种现有MOS晶体管元件结构的沟道宽度是局限于有源区13的宽度。FIG. 1 shows a schematic top view of several conventional MOS transistor devices. FIG. 2 shows a schematic cross-sectional view along line AA' in FIG. 1 , illustrating the structure of a CMOS device. The CMOS semiconductor device 1 includes a semiconductor substrate with a silicon layer 12. The semiconductor substrate includes an active region 13 and an isolation region 16. The isolation region 16 surrounds the active region 13 to electrically insulate the active region. A gate structure is disposed on the active region 13 . The gate structure includes a gate insulating layer 18 , a gate electrode layer 20 , and a spacer 22 . The active region 13 may include a doped well 14 or 15 . Therefore, the channel width is the width when the gate electrode layer overlaps the active area, that is, the channel width of this conventional MOS transistor device structure is limited to the width of the active area 13 .

由上述知道有许多增进载流子迁移率的方法,例如,图3显示另一现有的MOS晶体管元件的剖面示意图,其进一步具有自对准金属硅化物层25及接触孔蚀刻停止层(contact etch stop layer,CESL)21。藉由应力的施加,使半导体基底上的沟道产生拉伸或挤压的应变,而改进迁移率。然而,就目前改良载流子迁移率的技术而言,其沟道的大小,终究仍迁就而局限于既有的技术极限所制得的元件尺寸大小,例如光刻、蚀刻的极限及制造浅沟槽隔离结构时填沟的极限等。It is known from the above that there are many methods for improving carrier mobility. For example, FIG. etch stop layer, CESL)21. By applying stress, the channel on the semiconductor substrate is subjected to tensile or compressive strain, thereby improving the mobility. However, as far as the current technology for improving carrier mobility is concerned, the size of the channel is still limited to the size of the device made by the existing technological limit, such as the limit of lithography and etching and the shallow fabrication. The limit of trench filling in the trench isolation structure, etc.

因此,仍需要一种MOS晶体管元件及其制造方法,以较现有技术更进一步增进元件性能。Therefore, there is still a need for a MOS transistor device and its manufacturing method to further improve device performance compared to the prior art.

发明内容Contents of the invention

本发明的目的是提供一种金属氧化物半导体(MOS)晶体管元件、一种制造MOS晶体管元件的方法、及一种改良MOS晶体管元件的漏极电流的方法。本发明的MOS晶体管包括一外延层位于栅极结构与半导体基底的有源区之间,并且外延层的一周边部分覆盖在隔离区的一周边部分的上方,使得栅极下方的沟道宽度能比原本的有源区宽度还宽,因此,能使漏极电流增加。The object of the present invention is to provide a metal oxide semiconductor (MOS) transistor device, a method of manufacturing a MOS transistor device, and a method of improving a drain current of a MOS transistor device. The MOS transistor of the present invention includes an epitaxial layer located between the gate structure and the active region of the semiconductor substrate, and a peripheral portion of the epitaxial layer covers a peripheral portion of the isolation region, so that the channel width under the gate can be It is wider than the original active region width, so the drain current can be increased.

依据本发明的MOS晶体管元件,包括一半导体基底、一栅极结构、及一选择性外延层。半导体基底包括一有源区及一隔离区,隔离区围绕有源区以将有源区予以电绝缘。栅极结构是设于有源区上。外延层是位于有源区与栅极结构之间,并且外延层的一周边部分覆盖在隔离区的一周边部分的上方。The MOS transistor device according to the present invention includes a semiconductor substrate, a gate structure, and a selective epitaxial layer. The semiconductor substrate includes an active area and an isolation area, and the isolation area surrounds the active area to electrically isolate the active area. The gate structure is disposed on the active area. The epitaxial layer is located between the active region and the gate structure, and a peripheral portion of the epitaxial layer covers a peripheral portion of the isolation region.

依据本发明的制造MOS晶体管元件的方法,包括下述步骤。首先提供一半导体基底。其次,于半导体基底中形成一隔离区,从而界定出隔离区与一有源区,其中,有源区是与隔离区相邻且经由隔离区而电绝缘。接着,进行一选择性外延工艺,以于有源区表面上形成一外延层,同时外延层横向成长而延伸至隔离区的周边部分的表面上。然后,于有源区的半导体基底中形成一掺杂井。于外延层上形成一栅极结构。最后,于栅极结构两侧的掺杂井及外延层中形成一源极/漏极区域。A method of manufacturing a MOS transistor device according to the present invention includes the following steps. Firstly, a semiconductor substrate is provided. Secondly, an isolation region is formed in the semiconductor substrate, thereby defining the isolation region and an active region, wherein the active region is adjacent to the isolation region and electrically insulated through the isolation region. Then, a selective epitaxial process is performed to form an epitaxial layer on the surface of the active region, and at the same time, the epitaxial layer grows laterally to extend to the surface of the peripheral portion of the isolation region. Then, a doping well is formed in the semiconductor substrate in the active region. A gate structure is formed on the epitaxial layer. Finally, a source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure.

又,依据本发明的制造MOS晶体管元件的方法,包括下述步骤。首先,提供一半导体基底。其次,于半导体基底中形成一隔离区及一掺杂井,并使掺杂井被隔离区围绕。然后,进行一选择性外延工艺,可以于掺杂井的表面上形成一外延层,同时外延层横向成长而延伸至隔离区的周边部分的表面上。然后,于外延层上形成一栅极结构。最后,于栅极结构两侧的掺杂井及外延层中形成一源极/漏极区域。Also, the method of manufacturing a MOS transistor device according to the present invention includes the following steps. First, a semiconductor substrate is provided. Secondly, an isolation region and a doping well are formed in the semiconductor substrate, and the doping well is surrounded by the isolation region. Then, a selective epitaxial process is performed to form an epitaxial layer on the surface of the doping well, and meanwhile, the epitaxial layer grows laterally and extends to the surface of the peripheral portion of the isolation region. Then, a gate structure is formed on the epitaxial layer. Finally, a source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure.

依据本发明的改善MOS晶体管元件漏极电流的方法,MOS晶体管元件是包括一半导体基底及一栅极结构,其中半导体基底包括一隔离区及一有源区,隔离区围绕有源区以使其电绝缘。此方法包括下述步骤。首先,于形成隔离区之后及形成栅极结构之前,于有源区上形成一选择性外延层,并使外延层横向成长而延伸至隔离区的周边部分的表面上,藉以增加MOS晶体管元件的沟道宽度。According to the method for improving the drain current of a MOS transistor element of the present invention, the MOS transistor element includes a semiconductor substrate and a gate structure, wherein the semiconductor substrate includes an isolation region and an active region, and the isolation region surrounds the active region to make it electrical insulation. This method includes the following steps. First, after forming the isolation region and before forming the gate structure, a selective epitaxial layer is formed on the active region, and the epitaxial layer is grown laterally to extend to the surface of the peripheral part of the isolation region, thereby increasing the MOS transistor element channel width.

附图说明Description of drawings

图1显示一现有的MOS晶体管元件的顶视示意图;FIG. 1 shows a schematic top view of a conventional MOS transistor device;

图2显示图1中沿着AA’线段的剖面示意图;Fig. 2 shows the schematic sectional view along AA ' line segment in Fig. 1;

图3显示另一现有的MOS晶体管元件的剖面示意图;FIG. 3 shows a schematic cross-sectional view of another existing MOS transistor element;

图4显示一依据本发明的MOS晶体管元件的具体实施例的顶视示意图;FIG. 4 shows a schematic top view of a specific embodiment of a MOS transistor device according to the present invention;

图5显示图4中沿着BB’线段的剖面示意图;Fig. 5 shows the sectional schematic diagram along BB ' line segment in Fig. 4;

图6显示一依据本发明的MOS晶体管元件的另一具体实施例的剖面示意图;6 shows a schematic cross-sectional view of another embodiment of a MOS transistor device according to the present invention;

图7至图13说明依据本发明的制造MOS晶体管元件的方法的具体实施例;7 to 13 illustrate specific embodiments of the method for manufacturing MOS transistor elements according to the present invention;

图14显示一依据本发明的制造MOS晶体管元件的方法的流程图;FIG. 14 shows a flow chart of a method for manufacturing a MOS transistor device according to the present invention;

图15显示一依据本发明的制造MOS晶体管元件的方法的具体实施例中外延层完成后的穿透式电子显微照片;Figure 15 shows a transmission electron micrograph after the completion of the epitaxial layer in a specific embodiment of the method for manufacturing a MOS transistor element according to the present invention;

图16显示依据本发明的方法制得的HVT PMOS晶体管元件与现有的HVT PMOS晶体管元件的电流(Ion)对Ldrawn作图;Fig. 16 shows that the current (I on ) of the HVT PMOS transistor element made according to the method of the present invention and the existing HVT PMOS transistor element is plotted against Ldrawn;

图17显示依据本发明的方法制得的HVT NMOS晶体管元件与现有的HVT NMOS晶体管元件的电流(Ion)对Ldrawn作图;Fig. 17 shows that the current (I on ) of the HVT NMOS transistor element made according to the method of the present invention and the existing HVT NMOS transistor element is plotted against Ldrawn;

图18显示依据本发明的方法制得的HVT NMOS晶体管元件与现有的HVTNMOS晶体管元件的Ioff对Ion作图所获得的泛曲线;Fig. 18 shows the generic curve obtained by plotting the I off of the HVT NMOS transistor element and the existing HVTNMOS transistor element according to the method of the present invention;

图19显示依据本发明的方法制得的HVT PMOS晶体管元件与现有的HVT PMOS晶体管元件的Ioff对Ion作图所获得的泛曲线。Fig. 19 shows the generic curve obtained by plotting I off versus I on of the HVT PMOS transistor element manufactured by the method of the present invention and the existing HVT PMOS transistor element.

主要元件符号说明Description of main component symbols

1现有的CMOS半导体元件1 Existing CMOS semiconductor components

10      本发明的CMOS半导体元件10 CMOS semiconductor element of the present invention

12       硅层         13       有源区12 Silicon layer 13 Active area

14       掺杂井       15       掺杂井14 Doping well 15 Doping well

16       隔离区       17       浅结源/漏极延伸16 Isolation Region 17 Shallow Junction Source/Drain Extension

18       栅极绝缘层   19       浅结源/漏极延伸18 Gate insulating layer 19 Shallow junction source/drain extension

20       栅极电极层   21       接触孔蚀刻停止层20 Gate electrode layer 21 Contact hole etch stop layer

22       间隙壁       23       接触孔蚀刻停止层22 Spacer 23 Contact hole etch stop layer

24       外延层       24a      外延层的周边部分24 Epitaxial layer 24a Peripheral part of epitaxial layer

25       自对准金属硅化物层25 salicide layer

26、27、28、29       源极/漏极区域26, 27, 28, 29 Source/drain regions

31       氧化硅层     32       多晶硅层31 Silicon oxide layer 32 Polysilicon layer

101、102、103、104、105、112、113  步骤101, 102, 103, 104, 105, 112, 113 steps

具体实施方式Detailed ways

依据本发明的MOS晶体管元件,可为NMOS、PMOS、或CMOS。图4显示多个依据本发明的MOS晶体管元件的顶视示意图,图5是显示图4中沿着BB’线段的剖面示意图,以CMOS元件结构做说明。其中相同的元件或部位仍沿用相同的符号来表示。需注意的是图式仅以说明为目的,并未依照原尺寸作图。CMOS晶体管元件10包括一半导体基底。半导体基底包括有源区13及隔离区16,隔离区16围绕有源区13,以将有源区13予以电绝缘。一栅极结构,例如包括栅极绝缘层18、栅极电极层20、及间隙壁22,设于有源区13上方。一外延层24位于有源区13与栅极结构之间,并且外延层24的一周边部分24a覆盖在隔离区16的一周边部分的上方。The MOS transistor device according to the present invention can be NMOS, PMOS, or CMOS. FIG. 4 shows a schematic top view of a plurality of MOS transistor elements according to the present invention, and FIG. 5 shows a schematic cross-sectional view along line BB' in FIG. 4 , illustrating the structure of a CMOS element. The same elements or parts are still represented by the same symbols. It should be noted that the drawings are for illustration purposes only and are not drawn to original scale. The CMOS transistor device 10 includes a semiconductor substrate. The semiconductor substrate includes an active region 13 and an isolation region 16 , the isolation region 16 surrounds the active region 13 to electrically insulate the active region 13 . A gate structure, for example including a gate insulating layer 18 , a gate electrode layer 20 , and a spacer 22 , is disposed above the active region 13 . An epitaxial layer 24 is located between the active region 13 and the gate structure, and a peripheral portion 24 a of the epitaxial layer 24 covers a peripheral portion of the isolation region 16 .

于CMOS晶体管元件10中,半导体基底一般可包括有硅层12,例如硅基底或者是硅覆绝缘(silicon-on-insulator,SOI)基底,此并无特别限制。隔离区16可为例如浅沟槽隔离结构(shallow trench isolation,STI),其可包括例如氧化硅的材质,以将其所包围的有源区13电绝缘。有源区13可包括一P型掺杂井或N型掺杂井,于NMOS元件中,则为P型掺杂井14,于PMOS元件中,为N型掺杂井15。有源区13内尚可包括源极/漏极区域26、27、或28、29,分别位于栅极结构两侧的掺杂井14或15及外延层24中。于NMOS元件中,源极/漏极区域26及27为N型掺杂,于PMOS元件中,源极/漏极区域28及29为P型掺杂。源极/漏极区域亦可进一步包括一轻掺杂漏极(LDD)区域。外延层24是位于有源区13的上方及栅极结构的下方,即,位于掺杂井14与栅极结构之间,以及掺杂井15与栅极结构之间。应注意的是,外延层24并不覆盖整个隔离区16,而是经由选择性的形成于具有晶体结构的基底表面上,仅以周边部分24a延伸至隔离区16的一周边部分的上方。In the CMOS transistor device 10 , the semiconductor substrate generally includes a silicon layer 12 , such as a silicon substrate or a silicon-on-insulator (SOI) substrate, which is not particularly limited. The isolation region 16 can be, for example, a shallow trench isolation (STI) structure, which can include a material such as silicon oxide, so as to electrically isolate the active region 13 surrounded by it. The active region 13 may include a P-type doped well or an N-type doped well. In NMOS devices, it is a P-type doped well 14 , and in a PMOS device, it is an N-type doped well 15 . The active region 13 may further include source/drain regions 26, 27, or 28, 29, respectively located in the doped wells 14 or 15 and the epitaxial layer 24 on both sides of the gate structure. In an NMOS device, the source/drain regions 26 and 27 are N-type doped, and in a PMOS device, the source/drain regions 28 and 29 are P-type doped. The source/drain region may further include a lightly doped drain (LDD) region. The epitaxial layer 24 is located above the active region 13 and below the gate structure, that is, between the doped well 14 and the gate structure, and between the doped well 15 and the gate structure. It should be noted that the epitaxial layer 24 does not cover the entire isolation region 16 , but is selectively formed on the surface of the substrate having a crystalline structure, and only extends above a peripheral portion of the isolation region 16 with the peripheral portion 24 a.

如此的结构,由图4可清楚看到,沟道宽度w相比于仅以有源区13为宽度的先前技术的沟道宽度,是较为增加的,使得Id值更增加,而达到增进元件效能的目的。于PMOS元件中,外延层可包括Si、SiC、或此二者的混合物等。于NMOS元件中,外延层可包括Si、SiGe、或此二者的混合物等。亦可将外延层进一步予以轻掺杂。外延层的厚度,并无严格的限制,可依需要而定,例如可在50至500之间,外延层越厚,其周边部分延伸到隔离区的周边部分上方的宽度也会越宽,相对获得的沟道宽度会越宽。但是值得注意的是,于一隔离层上来自相邻MOS晶体管元件的外延层的周边部分不能会合而彼此接触到,或是相距过近,以免影响二个MOS晶体管元件之间的电绝缘需求。With such a structure, it can be clearly seen from FIG. 4 that the channel width w is relatively increased compared to the channel width of the prior art with only the active region 13 as the width, so that the value of I d is increased to achieve an improved The purpose of component performance. In PMOS devices, the epitaxial layer may include Si, SiC, or a mixture of the two, and the like. In NMOS devices, the epitaxial layer may include Si, SiGe, or a mixture of the two, and the like. The epitaxial layer can also be further lightly doped. The thickness of the epitaxial layer is not strictly limited, and can be determined according to needs, for example, it can be between 50 Ȧ and 500 Ȧ. The thicker the epitaxial layer, the wider the width of its peripheral portion extending above the peripheral portion of the isolation region. , the wider the obtained channel width will be. However, it should be noted that the peripheral portions of the epitaxial layers from adjacent MOS transistor elements on an isolation layer cannot meet and contact each other, or be too close together, so as not to affect the electrical isolation requirement between the two MOS transistor elements.

栅极结构可包括一栅极绝缘层18及一栅极电极层20,栅极绝缘层可为例如硅氧化物等介电材料,栅极电极层可为例如多晶硅材料等导电材料。可进一步包括一间隙壁22,间隙壁是用来形成源极/漏极区域的轻掺杂延伸区域,之后,可留存于结构中,或是移除。栅极结构亦可进一步包括一L形衬垫层(liner)形成于间隙壁与栅极电极层、半导体基底之间(未示出)。The gate structure may include a gate insulating layer 18 and a gate electrode layer 20 , the gate insulating layer may be a dielectric material such as silicon oxide, and the gate electrode layer may be a conductive material such as polysilicon material. A spacer 22 may be further included. The spacer is used to form a lightly doped extension of the source/drain region, which may remain in the structure or be removed later. The gate structure may further include an L-shaped liner (not shown) formed between the spacer, the gate electrode layer, and the semiconductor substrate.

依据本发明的MOS晶体管元件的结构,特征在于栅极结构与半导体基底的有源区之间具有一外延层,外延层的周边部分延伸至与有源区相邻的隔离区周边部分的上方,因此能使沟道宽度增加。According to the structure of the MOS transistor element of the present invention, it is characterized in that there is an epitaxial layer between the gate structure and the active region of the semiconductor substrate, and the peripheral portion of the epitaxial layer extends above the peripheral portion of the isolation region adjacent to the active region, Therefore, the channel width can be increased.

由于已知晶体管的漏极电流大小是依工艺中所制得的沟道长度(L)和宽度(W)来计算的。当晶体管在饱和模式下运作,漏极电流Id的大小在沟道的长度和宽度决定后就保持固定,如下列公式所示:It is known that the drain current of a transistor is calculated according to the channel length (L) and width (W) produced in the process. When the transistor operates in saturation mode, the magnitude of the drain current Id remains fixed after the channel length and width are determined, as shown in the following formula:

II dd == WW LL μμ CC oxox (( VV gg -- VV tt )) 22 22

W:沟道宽度W: channel width

L:沟道长度L: channel length

μ:迁移率μ: Mobility

Cox:电容值C ox : capacitance value

Vg:栅极电压V g : Gate voltage

Vt:起始电压V t : starting voltage

因此,当沟道宽度增加时,可使Id值增加。如上述的依据本发明的MOS晶体管元件的结构,特征在于具有选择性外延层的构造,使得沟道宽度可比现有技术为宽,因此,Id值会比现有技术增加。而,于制造依据本发明的MOS晶体管元件时,除了选择性外延层的形成之外,可利用既有的工艺。选择性外延层的形成不会对于原工艺有不良影响,却能在基于原工艺的效能基础上,再进一步使Id值更增加,而达到更加增进元件效能的目的。Therefore, as the channel width increases, the I d value can be increased. The structure of the MOS transistor device according to the present invention as described above is characterized by the structure of the selective epitaxial layer, so that the channel width can be wider than that of the prior art, and therefore, the Id value can be increased compared with the prior art. However, in the manufacture of the MOS transistor device according to the present invention, in addition to the formation of the selective epitaxial layer, existing processes can be used. The formation of the selective epitaxial layer will not have adverse effects on the original process, but can further increase the I d value on the basis of the performance based on the original process, so as to achieve the purpose of further improving the performance of the device.

再者,由于栅极绝缘层下方的沟道上层是由纯的外延层构成,因此,于工艺中难免会扩散的掺杂物扩散至此处的浓度较小,所以有利于Vt值的降低,如此,亦有利于Id值的提升。Furthermore, since the upper layer of the channel under the gate insulating layer is composed of a pure epitaxial layer, the dopant that will inevitably diffuse in the process diffuses to a relatively small concentration, which is beneficial to the reduction of the Vt value. In this way, it is also conducive to the improvement of the I d value.

基于此种结构的MOS晶体管元件可适用于多种变化的MOS晶体管元件,例如图6所示,可进一步包括一自对准金属硅化物层(salicide layer)25,亦可进一步包括一接触孔蚀刻停止层23。接触孔蚀刻停止层23可为例如一均匀沉积的氮化硅盖层,其厚度优选在30至2000之间。The MOS transistor element based on this kind of structure can be applicable to the MOS transistor element of many changes, for example as shown in Figure 6, can further include a self-aligned metal silicide layer (salicide layer) 25, also can further include a contact hole etching Stop layer 23. The contact hole etch stop layer 23 can be, for example, a uniformly deposited silicon nitride capping layer, and its thickness is preferably between 30 to 2000 Ȧ.

下列请参阅图7至图13,以进一步说明本发明的制造MOS晶体管元件的方法。MOS晶体管元件可为NMOS、PMOS、或CMOS晶体管元件。图7至图13显示的是本发明的制造CMOS晶体管元件的一具体实施例的方法的剖面示意图,其中相同的元件或部位仍沿用相同的符号来表示。需注意的是图式仅以说明为目的,并未依照原尺寸作图。Please refer to FIG. 7 to FIG. 13 below to further illustrate the method for manufacturing the MOS transistor device of the present invention. The MOS transistor elements may be NMOS, PMOS, or CMOS transistor elements. 7 to 13 are schematic cross-sectional views of a method for manufacturing a CMOS transistor device according to an embodiment of the present invention, wherein the same components or parts are still represented by the same symbols. It should be noted that the drawings are for illustration purposes only and are not drawn to original scale.

请参阅图7,首先准备一半导体基底,其包括有硅层12。于硅层12上形成隔离区16,隔离区可为例如浅沟槽隔离结构,形成浅沟槽隔离结构的步骤可包括首先在硅层12上利用高温氧化而于硅层12表面上生成一氧化物阻障层,以保护有源区。接着,可经由化学气相沉积形成一硅氮化物层于氧化阻障层上,然后进行一光刻工艺以形成一光致抗蚀剂图形于硅氮化物层上,进行沟槽的蚀刻。于清洗及干燥后,进行一低压化学气相沉积以将沟槽填满氧化物,然后,可进行化学机械抛光以将多余的氧化物层移除,再以例如热磷酸将硅氮化物层去除,露出硅层12。如此,形成隔离区16,隔离区16围绕有源区,以将有源区电绝缘。Please refer to FIG. 7 , first prepare a semiconductor substrate including a silicon layer 12 . An isolation region 16 is formed on the silicon layer 12. The isolation region can be, for example, a shallow trench isolation structure. The step of forming the shallow trench isolation structure may include firstly using high temperature oxidation on the silicon layer 12 to generate an oxide on the surface of the silicon layer 12. barrier layer to protect the active area. Next, a silicon nitride layer can be formed on the oxidation barrier layer through chemical vapor deposition, and then a photolithography process is performed to form a photoresist pattern on the silicon nitride layer to etch the groove. After cleaning and drying, a low pressure chemical vapor deposition is performed to fill the trenches with oxide, then chemical mechanical polishing can be performed to remove the excess oxide layer, and then the silicon nitride layer is removed with, for example, hot phosphoric acid, The silicon layer 12 is exposed. In this way, the isolation region 16 is formed, and the isolation region 16 surrounds the active region to electrically isolate the active region.

于本发明的方法中,外延层是在形成隔离区16且去除硅氮化物层而露出硅层12之后进行,而可在掺杂井形成之前或之后进行。而优选在露出硅层12之后,紧接着进行,以免硅层的晶体结构被破坏而影响外延品质。请参阅图8,图8显示在隔离区16形成之后,及形成掺杂井之前,先形成外延层24于硅层12上,此是藉由进行一选择性外延工艺而达成。In the method of the present invention, the epitaxial layer is formed after the isolation region 16 is formed and the silicon nitride layer is removed to expose the silicon layer 12, and it can be performed before or after the formation of the doped well. It is preferable to proceed immediately after the silicon layer 12 is exposed, so as not to damage the crystal structure of the silicon layer and affect the epitaxial quality. Please refer to FIG. 8 . FIG. 8 shows that after the formation of the isolation region 16 and before the formation of the doped wells, an epitaxial layer 24 is formed on the silicon layer 12 by performing a selective epitaxial process.

在本发明的优选实施例中,选择性外延工艺所使用的气体包括有例如二氯甲硅烷(dichlorosilane,DCS)、氯化氢(HCl)以及氢气,而工艺温度是低于800℃,以例如减压化学气相沉积方法,进行硅外延层的制造。在本发明的其它实施例中,选择性外延工艺亦可利用例如硅甲烷(silane,SiH4)与氯气(Cl2)作为工艺气体。亦可使用其他方法以形成硅外延层,例如分子束外延法或超高真空化学气相沉积法。在本发明的其它实施例中,亦可形成硅与锗的外延层,可使用例如二氯硅烷(SiH2Cl2;简称DCS)及锗烷(GeH4),以低压化学气相沉积(LPCVD)方法,在例如500至800℃及低压下进行。或是形成硅与碳的外延,可使用SiH4及甲基硅甲烷(SiH3CH3),以低压化学气相沉积(LPCVD)方法,在例如500至800℃及低压下进行。可于外延工艺时一并略加低浓度的掺杂物以形成外延,或是外延成长后,再经由离子注入方式略加低浓度的掺杂,以调整MOS的起始电压(Vt)。In a preferred embodiment of the present invention, the gases used in the selective epitaxy process include, for example, dichlorosilane (dichlorosilane, DCS), hydrogen chloride (HCl) and hydrogen, and the process temperature is lower than 800 ° C, for example, decompression Chemical vapor deposition method for the manufacture of silicon epitaxial layers. In other embodiments of the present invention, the selective epitaxy process may also use, for example, silane (SiH 4 ) and chlorine (Cl 2 ) as process gases. Other methods can also be used to form the silicon epitaxial layer, such as molecular beam epitaxy or ultra-high vacuum chemical vapor deposition. In other embodiments of the present invention, epitaxial layers of silicon and germanium can also be formed, for example, dichlorosilane (SiH 2 Cl 2 ; DCS for short) and germane (GeH 4 ) can be used for low-pressure chemical vapor deposition (LPCVD). The method is carried out at, for example, 500 to 800° C. and low pressure. Alternatively, silicon and carbon epitaxy can be performed using SiH 4 and methylsilyl methane (SiH 3 CH 3 ) by low-pressure chemical vapor deposition (LPCVD) at, for example, 500 to 800° C. and low pressure. A low-concentration dopant can be added during the epitaxial process to form epitaxy, or a low-concentration dopant can be added by ion implantation after epitaxial growth to adjust the initial voltage (V t ) of the MOS.

由于外延层是以晶体构造层层往上长厚,所形成的结晶晶格是与露出的半导体基底的晶体晶格相似,而浅沟槽隔离结构是氧化物构造,为非晶形,因此,外延层并不会在隔离区16的表面上成长。因此,使用本发明的方法,是在半导体基底上全面性进行选择性外延工艺,且进行一次即已足够,不需分段进行,也不需图形掩模的辅助,即能便利的在基底的所需位置上产生外延层。值得注意的是,依据本发明的方法,外延层除了会在有源区的表面上向上成长之外,亦会同时在具有厚度的外延层侧边逐渐往侧向成长,而使得最后获得的外延层的周边部分是延伸而跨在隔离区16的周边部分的表面上。如此,可增加晶体管栅极沟道的宽度,增进漏极电流量。Since the epitaxial layer grows thicker layer by layer with a crystal structure, the formed crystal lattice is similar to the crystal lattice of the exposed semiconductor substrate, and the shallow trench isolation structure is an oxide structure, which is amorphous. Therefore, the epitaxial Layers do not grow on the surface of the isolation region 16 . Therefore, using the method of the present invention, the selective epitaxial process is comprehensively carried out on the semiconductor substrate, and it is enough to carry out once, without the need for segmented, and without the assistance of a pattern mask, it can be conveniently carried out on the substrate. An epitaxial layer is produced at the desired location. It is worth noting that, according to the method of the present invention, the epitaxial layer will not only grow upward on the surface of the active region, but also gradually grow laterally on the side of the thick epitaxial layer, so that the finally obtained epitaxial layer The peripheral portion of the layer extends across the surface of the peripheral portion of isolation region 16 . In this way, the width of the gate channel of the transistor can be increased to increase the amount of drain current.

形成外延层后,可进一步进行一退火工艺(anneal),以修复有缺陷的外延晶格。After the epitaxial layer is formed, an annealing process (anneal) can be further performed to repair the defective epitaxial lattice.

接着,进行掺杂井的制作,以获得如图10所示的结构。亦即可利用掩模分别使用注入方法(implantation)将所需的P型掺杂物及N型掺杂物注入硅层12中,形成P型掺杂井14或N型掺杂井15。在外延层24已形成后进行掺杂,并不会对外延层有不良影响。或是,进一步进行一退火处理,以修复有缺陷的外延晶格。Next, doping wells are fabricated to obtain the structure shown in FIG. 10 . That is, the desired P-type dopant and N-type dopant can be implanted into the silicon layer 12 by implantation using the mask to form the P-type doped well 14 or the N-type doped well 15 . Doping after the epitaxial layer 24 has been formed does not adversely affect the epitaxial layer. Alternatively, an annealing treatment is further performed to repair the defective epitaxial lattice.

此外,亦可以先形成掺杂井然后再形成外延层。如图9显示,在形成隔离区16之后,先不形成外延层,而于隔离区16的半导体基底中先形成掺杂井14及15。然后,请参阅图10,于掺杂井14及15的表面上进行选择性外延工艺,以形成如上述的外延层24。In addition, it is also possible to form the doped well first and then form the epitaxial layer. As shown in FIG. 9 , after the isolation region 16 is formed, the epitaxial layer is not formed first, but doped wells 14 and 15 are firstly formed in the semiconductor substrate of the isolation region 16 . Then, referring to FIG. 10 , a selective epitaxial process is performed on the surfaces of the doped wells 14 and 15 to form the above-mentioned epitaxial layer 24 .

选择性外延层形成后,可于外延层上制造所需的元件,例如,栅极结构。请参阅图11,首先,于隔离区16及外延层24上沉积一层氧化硅层31等的介电层,及于氧化硅层31上沉积一多晶硅层32等的导电层,然后利用光刻与蚀刻工艺,形成栅极结构,其包括氧化硅层作为栅极绝缘层18,及多晶硅层作为栅极电极层20。After the selective epitaxial layer is formed, desired elements, such as gate structures, can be fabricated on the epitaxial layer. Please refer to FIG. 11, at first, deposit a dielectric layer such as a silicon oxide layer 31 on the isolation region 16 and the epitaxial layer 24, and deposit a conductive layer such as a polysilicon layer 32 on the silicon oxide layer 31, and then use photolithography With an etching process, a gate structure is formed, which includes a silicon oxide layer as the gate insulating layer 18 and a polysilicon layer as the gate electrode layer 20 .

栅极结构形成之后,可于栅极结构两侧的外延层及掺杂井中形成源极/漏极区域。例如,进行轻漏极掺杂(LDD)工艺。请参阅图13,分别于栅极结构两侧的外延层24及掺杂井14及15中形成浅结源/漏极延伸17以及浅结源/漏极延伸19。随后,在栅极电极层20及栅极绝缘层18的侧壁上形成间隙壁22,间隙壁可为例如氮化硅或氧化硅等材料所构成。而在形成间隙壁22之前可先形成一衬垫层,衬垫层可为氧化硅所构成。After the gate structure is formed, source/drain regions can be formed in the epitaxial layer and doped wells on both sides of the gate structure. For example, a light drain doping (LDD) process is performed. Referring to FIG. 13 , a shallow junction source/drain extension 17 and a shallow junction source/drain extension 19 are respectively formed in the epitaxial layer 24 and the doped wells 14 and 15 on both sides of the gate structure. Subsequently, a spacer 22 is formed on the sidewalls of the gate electrode layer 20 and the gate insulating layer 18 , and the spacer can be made of materials such as silicon nitride or silicon oxide. Before forming the spacer 22, a liner layer can be formed first, and the liner layer can be made of silicon oxide.

在形成间隙壁22之后,可进一步进行一离子注入工艺,将N型掺杂物物种,例如砷、锑或磷等注入硅层12中,或将P型掺杂物物种,例如硼等注入硅层12中,藉此形成NMOS元件的源/漏极区26、27,以及PMOS元件的源/漏极区28、29。在完成漏极源极的掺杂后,半导体基底通常可以进行一退火(annealing)或活化(activation)掺杂物的热工艺,此步骤亦为该行业者所熟知,不再加以陈述。After the spacer 22 is formed, an ion implantation process can be further performed to implant N-type dopant species such as arsenic, antimony or phosphorus into the silicon layer 12, or implant P-type dopant species such as boron into the silicon layer 12. In layer 12, source/drain regions 26, 27 of NMOS elements and source/drain regions 28, 29 of PMOS elements are thereby formed. After the doping of the drain and the source is completed, the semiconductor substrate can generally undergo a thermal process of annealing or activating the dopant. This step is also well known in the industry and will not be described here.

可进一步于栅极电极层20、露出的源/漏极区26、27、28、及29上形成一物质层,例如一金属硅化物层(metal silicide layer)25。可利用自对准金属硅化物(self-aligned silicide,salicide)工艺来形成金属硅化物层;例如,在形成源极/漏极区域之后,利用溅镀或沉积方法,再形成一金属层覆盖于源极/漏极区域与栅极结构上方,然后进行一快速高温工艺(RTP)使金属与栅极结构、源极/漏极区域中的硅反应,形成金属硅化物。RTP温度可在700℃至1000℃之间。A material layer such as a metal silicide layer 25 may be further formed on the gate electrode layer 20 and the exposed source/drain regions 26 , 27 , 28 , and 29 . The metal silicide layer can be formed by using a self-aligned silicide (salicide) process; for example, after forming the source/drain region, a metal layer is formed to cover it by sputtering or deposition. Above the source/drain region and the gate structure, a rapid high temperature process (RTP) is then performed to react the metal with the silicon in the gate structure and the source/drain region to form a metal silicide. The RTP temperature can be between 700°C and 1000°C.

间隙壁22可留在结构中或是移除,移除后仅在栅极侧壁上留下约略呈L型的衬垫层。衬垫层不一定呈L型,亦可以进行一较温和的蚀刻工艺,略微蚀刻衬垫层,以缩减其厚度。在其它实施例中,衬垫层可被完全去除。The spacer 22 can be left in the structure or removed, and only a roughly L-shaped liner layer is left on the sidewall of the gate after removal. The liner layer does not have to be L-shaped, and a milder etching process can also be performed to slightly etch the liner layer to reduce its thickness. In other embodiments, the liner layer may be completely removed.

可进一步进行例如应变硅的制作或其他半导体工艺技术。例如,可于半导体基底上形成一接触孔蚀刻停止层23,例如一均匀沉积的氮化硅盖层。使接触孔蚀刻停止层23于沉积时先设定沉积在一压缩应力状态(例如,一般在-0.1Gpa至-3Gpa之间,对于PMOS)或一拉伸应力状态(例如,一般在0.1Gpa至3Gpa之间,对于NMOS),如此,使得沟道区域在沟道方向具有对应的压缩应变或拉伸应变,可改善沟道中载流子的迁移率,以增进Id。接触孔蚀刻停止层应力状态可以利用热处理、紫外线照射、等离子体增强化学气相沉积法、或其他现有的方法进行。Further processing such as strained silicon fabrication or other semiconductor process technologies can be performed. For example, a contact etch stop layer 23, such as a uniformly deposited silicon nitride capping layer, may be formed on the semiconductor substrate. The contact hole etching stop layer 23 is first set to be deposited in a compressive stress state (for example, generally between -0.1Gpa to -3Gpa, for PMOS) or a tensile stress state (for example, generally between 0.1Gpa to -3Gpa) during deposition. 3Gpa, for NMOS), so that the channel region has a corresponding compressive strain or tensile strain in the channel direction, which can improve the mobility of carriers in the channel to increase I d . The stress state of the contact hole etch stop layer can be performed by heat treatment, ultraviolet irradiation, plasma enhanced chemical vapor deposition, or other existing methods.

图14显示一如上述的依据本发明的制造MOS晶体管元件的方法的可行的流程图的一例。简言之,依据本发明的方法,首先,于半导体基底上进行一步骤101,以形成隔离区;其次,可先进行步骤102以形成选择性外延层,再进行步骤103以形成掺杂井,或是先进行步骤112以形成掺杂井,再进行步骤113以形成选择性外延层;接着,进行步骤104,以于外延层上形成栅极结构;最后,进行步骤105,以于栅极结构两侧的半导体基底及外延层中形成源极/漏极区域。FIG. 14 shows an example of a possible flowchart of the method for manufacturing a MOS transistor device according to the present invention as described above. In short, according to the method of the present invention, firstly, a step 101 is performed on the semiconductor substrate to form an isolation region; secondly, step 102 can be performed first to form a selective epitaxial layer, and then step 103 can be performed to form a doped well, Or perform step 112 to form a doped well, and then perform step 113 to form a selective epitaxial layer; then perform step 104 to form a gate structure on the epitaxial layer; finally, perform step 105 to form a gate structure Source/drain regions are formed in the semiconductor substrate and the epitaxial layer on both sides.

依据本发明的另一具体实施例,使外延层在形成掺杂井之后形成,则隔离区与掺杂井的形成秩序并无限定,亦可先进行步骤112以形成掺杂井,再进行步骤101,以形成隔离区,然后进行步骤113以形成选择性外延层。According to another specific embodiment of the present invention, the epitaxial layer is formed after the doped wells are formed, and the formation order of the isolation region and the doped wells is not limited, and the step 112 can be performed first to form the doped wells, and then the step 101 to form an isolation region, and then proceed to step 113 to form a selective epitaxial layer.

因此,值得注意的是,本发明的形成MOS晶体管元件的方法,其中形成选择性外延层的步骤必须在形成隔离区之后以及形成栅极结构之前进行。Therefore, it is worth noting that, in the method for forming MOS transistor elements of the present invention, the step of forming the selective epitaxial layer must be performed after forming the isolation region and before forming the gate structure.

图15显示一具体实施例中外延层完成后的穿透式电子显微照片,是依据本发明的制造MOS晶体管元件的方法中于半导体基板上选择性形成外延层的结果。此选择性外延成长是使用AMAT外延机台(美国应用材料公司制造),于15托的压力下,以200sccm的二氯硅烷(dichlorosilane(DCS))、0.04slm(标准升/分)的HCl、及30slm的H2进行减压化学气相沉积(reducedpressure chemical vapor deposition)。形成的外延层厚度T为约70nm,外延层的周边部分延伸至与有源区相邻的浅沟槽隔离结构(STI)的周边的上方而覆盖它,约140nm的延伸距离。FIG. 15 shows a transmission electron micrograph of the completed epitaxial layer in an embodiment, which is the result of selectively forming the epitaxial layer on the semiconductor substrate in the method for manufacturing a MOS transistor device according to the present invention. This selective epitaxial growth is to use the AMAT epitaxial machine (manufactured by Applied Materials, USA), under the pressure of 15 torr, with 200 sccm of dichlorosilane (dichlorosilane (DCS)), 0.04 slm (standard liter/min) of HCl, And 30slm of H 2 for reduced pressure chemical vapor deposition (reduced pressure chemical vapor deposition). The thickness T of the formed epitaxial layer is about 70nm, and the peripheral portion of the epitaxial layer extends above and covers the periphery of the shallow trench isolation structure (STI) adjacent to the active region, an extension distance of about 140nm.

上述具体实施例只是可行方式的其中一例,可有许多变化,例如,可使用分子束外延法或超高真空化学气相沉积法取代减压化学气相沉积、或是使用SiH4取代二氯硅烷。The above-mentioned embodiment is just one example of possible ways, and there are many variations, for example, molecular beam epitaxy or ultra-high vacuum chemical vapor deposition can be used instead of reduced-pressure chemical vapor deposition, or SiH 4 can be used instead of dichlorosilane.

使用如上述具体实施例所制得的具有选择性外延层及隔离区的晶片编号24,制造高压P型金属氧化物半导体晶体管(HVT PMOS)及HVT NMOS,与现有技术的由不具有选择性外延层的晶片编号12制得的HVT PMOS与HVT NMOS分别比较之,二者具有相同的沟道长度,但晶片编号24制得的晶体管元件具有较宽的沟道宽度。在相同的沟道长度下(Ldrawn),如图16所示,晶片编号24制得的HVT PMOS晶体管元件,于施加1V的电压下,具有比晶片编号12制得的HVT PMOS高的电流(Ion),在Ldrawn为0.07时,增加约28%,在Ldrawn为0.12时,增加约21%。如图17所示,晶片编号24制得的HVT NMOS晶体管元件,于施加1V的电压下,具有分别比晶片编号12制得的HVT NMOS高的电流(Ion),在Ldrawn为0.07时,增加约9.6%,在Ldrawn为0.12时,增加约16%。Using the wafer number 24 with selective epitaxial layers and isolation regions prepared in the above specific embodiments, high-voltage P-type metal-oxide-semiconductor transistors (HVT PMOS) and HVT NMOS are manufactured, which are not selective to those of the prior art Comparing the HVT PMOS and HVT NMOS made of wafer number 12 of the epitaxial layer, the two have the same channel length, but the transistor element made of wafer number 24 has a wider channel width. Under the same channel length (Ldrawn), as shown in Figure 16, the HVT PMOS transistor element made by wafer number 24 has a higher current (I on ), when Ldrawn is 0.07, it increases by about 28%, and when Ldrawn is 0.12, it increases by about 21%. As shown in Figure 17, the HVT NMOS transistor element manufactured by wafer number 24 has a higher current (I on ) than the HVT NMOS transistor element manufactured by wafer number 12 under the applied voltage of 1V. When Ldrawn is 0.07, the increase About 9.6%, at an Ldrawn of 0.12, an increase of about 16%.

图18显示晶片编号24制得的HVT NMOS晶体管元件与晶片编号12制得的HVT NMOS于各种沟道长度下元件的闭电流(Ioff)对开电流(Ion)作图,获得泛曲线(universal curve)。可看出在相同Ioff值下,依据本发明的方法制得的晶体管元件具有较高的Ion值。Figure 18 shows the off-current (I off ) versus on-current (I on ) plots of the HVT NMOS transistor element made by wafer number 24 and the HVT NMOS transistor element made by wafer number 12 at various channel lengths, and a generic curve is obtained (universal curve). It can be seen that under the same I off value, the transistor element prepared according to the method of the present invention has a higher I on value.

图19显示晶片编号24制得的HVT PMOS晶体管元件与晶片编号12制得的HVT PMOS于各种沟道长度下Ioff对Ion作图,获得泛曲线(universalcurve)。显示在相同Ioff值下,依据本发明的方法制得的晶体管元件具有较高的Ion值。FIG. 19 shows the HVT PMOS transistor element manufactured by wafer number 24 and the HVT PMOS manufactured by wafer number 12. I off is plotted against I on at various channel lengths to obtain a universal curve. It shows that under the same I off value, the transistor element prepared according to the method of the present invention has a higher I on value.

以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (42)

1.一种金属氧化物半导体晶体管元件,包括:1. A metal oxide semiconductor transistor element, comprising: 半导体基底,该半导体基底包括有源区及隔离区,该隔离区围绕该有源区以将该有源区予以电绝缘;a semiconductor substrate comprising an active region and an isolation region surrounding the active region to electrically insulate the active region; 栅极结构,设于该有源区上;及a gate structure disposed on the active region; and 外延层,位于该有源区与该栅极结构之间,并且该外延层的周边部分覆盖在该隔离区的周边部分的上方。An epitaxial layer is located between the active region and the gate structure, and the peripheral portion of the epitaxial layer covers above the peripheral portion of the isolation region. 2.如权利要求1所述的金属氧化物半导体晶体管元件,其中该外延层包括Si或SiGe。2. The metal oxide semiconductor transistor device as claimed in claim 1, wherein the epitaxial layer comprises Si or SiGe. 3.如权利要求1所述的金属氧化物半导体晶体管元件,其中该外延层包括Si或SiC。3. The metal oxide semiconductor transistor device as claimed in claim 1, wherein the epitaxial layer comprises Si or SiC. 4.如权利要求1所述的金属氧化物半导体晶体管元件,其中该栅极结构包括栅极电极层以及介于该栅极电极层与该半导体基底之间的栅极绝缘层。4. The metal oxide semiconductor transistor device as claimed in claim 1, wherein the gate structure comprises a gate electrode layer and a gate insulating layer interposed between the gate electrode layer and the semiconductor substrate. 5.如权利要求4所述的金属氧化物半导体晶体管元件,其中该栅极结构进一步包括间隙壁,位于该栅极电极层以及该栅极绝缘层的侧壁。5. The metal-oxide-semiconductor transistor device as claimed in claim 4, wherein the gate structure further comprises spacers located on sidewalls of the gate electrode layer and the gate insulating layer. 6.如权利要求1所述的金属氧化物半导体晶体管元件,其中该有源区包括漏极/源极区域,位于该栅极结构两侧的该半导体基底与该外延层中。6. The metal-oxide-semiconductor transistor device as claimed in claim 1, wherein the active region comprises a drain/source region located in the semiconductor substrate and the epitaxial layer on both sides of the gate structure. 7.如权利要求6所述的金属氧化物半导体晶体管元件,其中该漏极/源极区域包括轻掺杂区及掺杂区。7. The metal oxide semiconductor transistor device as claimed in claim 6, wherein the drain/source region comprises a lightly doped region and a doped region. 8.如权利要求6所述的金属氧化物半导体晶体管元件,进一步包括接触孔蚀刻停止层,覆盖于该源极/漏极区域上。8. The MOS transistor device of claim 6, further comprising a contact etch stop layer covering the source/drain region. 9.如权利要求6所述的金属氧化物半导体晶体管元件,进一步包括自对准金属硅化物层,位于该栅极电极层表面及该源极/漏极区域表面上。9. The MOS transistor device as claimed in claim 6, further comprising a salicide layer on the surface of the gate electrode layer and the surface of the source/drain region. 10.如权利要求1所述的金属氧化物半导体晶体管元件,其中该有源区包括掺杂井。10. The MOS transistor device as claimed in claim 1, wherein the active region comprises a doped well. 11.如权利要求1所述的金属氧化物半导体晶体管元件,其中该外延层包括低浓度的掺杂物。11. The MOS transistor device of claim 1, wherein the epitaxial layer includes a low concentration of dopants. 12.如权利要求1所述的金属氧化物半导体晶体管元件,其中该金属氧化物半导体晶体管元件为P型金属氧化物半导体晶体管元件或N型金属氧化物半导体晶体管元件。12. The MOS transistor device as claimed in claim 1, wherein the MOS transistor device is a P-type MOS transistor device or an N-type MOS transistor device. 13.如权利要求1所述的金属氧化物半导体晶体管元件,其中该隔离区包括浅沟槽隔离结构。13. The MOS transistor device as claimed in claim 1, wherein the isolation region comprises a shallow trench isolation structure. 14.一种制造金属氧化物半导体晶体管元件的方法,包括:14. A method of fabricating a metal oxide semiconductor transistor device, comprising: 提供半导体基底;Provide a semiconductor substrate; 于该半导体基底中形成隔离区,从而界定出该隔离区与有源区,其中该有源区与该隔离区相邻且经由该隔离区而电绝缘;forming an isolation region in the semiconductor substrate, thereby defining the isolation region and an active region, wherein the active region is adjacent to the isolation region and electrically insulated by the isolation region; 进行选择性外延工艺,以于该有源区表面上形成外延层,同时该外延层横向成长而延伸至该隔离区的周边部分的表面上;performing a selective epitaxial process to form an epitaxial layer on the surface of the active region, while the epitaxial layer grows laterally to extend to the surface of the peripheral portion of the isolation region; 于该有源区的半导体基底中形成掺杂井;forming doped wells in the semiconductor substrate of the active region; 于该外延层上形成栅极结构;及forming a gate structure on the epitaxial layer; and 于该栅极结构两侧的该掺杂井及该外延层中形成源极/漏极区域。A source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure. 15.如权利要求14所述的方法,其中该外延层包括Si或SiGe。15. The method of claim 14, wherein the epitaxial layer comprises Si or SiGe. 16.如权利要求14所述的方法,其中该外延层包括Si或SiC。16. The method of claim 14, wherein the epitaxial layer comprises Si or SiC. 17.如权利要求14所述的方法,进一步包括将该外延层轻掺杂。17. The method of claim 14, further comprising lightly doping the epitaxial layer. 18.如权利要求14所述的方法,进一步包括将该外延层予以退火处理。18. The method of claim 14, further comprising annealing the epitaxial layer. 19.如权利要求14所述的方法,其中该栅极结构包括栅极电极层以及介于该栅极电极层与该半导体基底之间的栅极绝缘层。19. The method of claim 14, wherein the gate structure comprises a gate electrode layer and a gate insulating layer interposed between the gate electrode layer and the semiconductor substrate. 20.如权利要求14所述的方法,于形成该栅极结构之后,进一步于该栅极结构的侧壁上形成间隙壁。20. The method of claim 14, after forming the gate structure, further forming spacers on sidewalls of the gate structure. 21.如权利要求14所述的方法,其中该隔离区包括浅沟槽隔离结构。21. The method of claim 14, wherein the isolation region comprises a shallow trench isolation structure. 22.如权利要求14所述的方法,其中形成该漏极/源极区域包括形成轻掺杂区及掺杂区。22. The method of claim 14, wherein forming the drain/source region comprises forming a lightly doped region and a doped region. 23.如权利要求14所述的方法,进一步形成自对准金属硅化物层于该源极/漏极区域表面及该栅极结构表面。23. The method of claim 14, further forming a salicide layer on the surface of the source/drain region and the surface of the gate structure. 24.如权利要求14所述的方法,进一步形成接触孔蚀刻停止层于该源极/漏极区域上。24. The method of claim 14, further forming a contact etch stop layer on the source/drain region. 25.一种制造金属氧化物半导体晶体管元件的方法,包括:25. A method of fabricating a metal oxide semiconductor transistor device comprising: 提供半导体基底;Provide a semiconductor substrate; 于该半导体基底中形成隔离区及掺杂井,并使该掺杂井被该隔离区围绕;forming an isolation region and a doped well in the semiconductor substrate, and making the doped well surrounded by the isolation region; 进行选择性外延工艺,以于该掺杂井的表面上形成外延层,同时该外延层横向成长而延伸至该隔离区的周边部分的表面上;performing a selective epitaxial process to form an epitaxial layer on the surface of the doped well, and at the same time, the epitaxial layer grows laterally to extend to the surface of the peripheral portion of the isolation region; 于该外延层上形成栅极结构;及forming a gate structure on the epitaxial layer; and 于该栅极结构两侧的该掺杂井及该外延层中形成源极/漏极区域。A source/drain region is formed in the doped well and the epitaxial layer on both sides of the gate structure. 26.如权利要求25所述的方法,其中该外延层包括Si或SiGe。26. The method of claim 25, wherein the epitaxial layer comprises Si or SiGe. 27.如权利要求25所述的方法,其中该外延层包括Si或SiC。27. The method of claim 25, wherein the epitaxial layer comprises Si or SiC. 28.如权利要求25所述的方法,进一步包括将该外延层轻掺杂。28. The method of claim 25, further comprising lightly doping the epitaxial layer. 29.如权利要求25所述的方法,进一步包括将该外延层予以退火处理。29. The method of claim 25, further comprising annealing the epitaxial layer. 30.如权利要求25所述的方法,其中该栅极结构包括栅极电极层以及介于该栅极电极层与该半导体基底之间的栅极绝缘层。30. The method of claim 25, wherein the gate structure comprises a gate electrode layer and a gate insulating layer between the gate electrode layer and the semiconductor substrate. 31.如权利要求25所述的方法,于形成该栅极结构之后,进一步于该栅极结构的侧壁上形成间隙壁。31. The method of claim 25, after forming the gate structure, further forming spacers on sidewalls of the gate structure. 32.如权利要求25所述的方法,其中该隔离区包括浅沟槽隔离结构。32. The method of claim 25, wherein the isolation region comprises a shallow trench isolation structure. 33.如权利要求25所述的方法,其中形成该漏极/源极区域包括形成轻掺杂区及掺杂区。33. The method of claim 25, wherein forming the drain/source region comprises forming a lightly doped region and a doped region. 34.如权利要求25所述的方法,其中于形成该隔离区之后,形成该掺杂井。34. The method of claim 25, wherein the doped well is formed after the isolation region is formed. 35.如权利要求25所述的方法,其中于形成该掺杂井之后,形成该隔离区。35. The method of claim 25, wherein the isolation region is formed after forming the doped well. 36.如权利要求25所述的方法,进一步形成自对准金属硅化物层于该源极/漏极区域表面及该栅极电极层表面。36. The method of claim 25, further forming a salicide layer on the surface of the source/drain region and the surface of the gate electrode layer. 37.如权利要求25所述的方法,进一步形成接触孔蚀刻停止层于该源极/漏极区域上。37. The method of claim 25, further forming a contact etch stop layer on the source/drain region. 38.一种改善金属氧化物半导体晶体管元件漏极电流的方法,该金属氧化物半导体晶体管元件包括半导体基底及栅极结构,其中该半导体基底包括隔离区及有源区,该隔离区围绕该有源区以使其电绝缘,该方法包括:38. A method for improving the drain current of a metal oxide semiconductor transistor element, the metal oxide semiconductor transistor element comprising a semiconductor substrate and a gate structure, wherein the semiconductor substrate comprises an isolation region and an active region, and the isolation region surrounds the active region source region to electrically isolate it, the method comprising: 于形成该隔离区之后及形成该栅极结构之前,于该有源区上形成选择性外延层,并使该外延层横向成长而延伸至该隔离区的周边部分的表面上,藉以增加该金属氧化物半导体晶体管元件的沟道宽度。After forming the isolation region and before forming the gate structure, a selective epitaxial layer is formed on the active region, and the epitaxial layer is grown laterally to extend to the surface of the peripheral portion of the isolation region, thereby increasing the metal The channel width of an oxide semiconductor transistor element. 39.如权利要求38所述的方法,其中该外延层包括Si或SiGe。39. The method of claim 38, wherein the epitaxial layer comprises Si or SiGe. 40.如权利要求38所述的方法,其中该外延层包括Si或SiC。40. The method of claim 38, wherein the epitaxial layer comprises Si or SiC. 41.如权利要求38所述的方法,进一步包括将该外延层轻掺杂。41. The method of claim 38, further comprising lightly doping the epitaxial layer. 42.如权利要求38所述的方法,进一步包括将该外延层予以退火处理。42. The method of claim 38, further comprising annealing the epitaxial layer.
CNA2006101081745A 2006-07-31 2006-07-31 MOS transistor element and its manufacturing method and improving method Pending CN101118925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2006101081745A CN101118925A (en) 2006-07-31 2006-07-31 MOS transistor element and its manufacturing method and improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2006101081745A CN101118925A (en) 2006-07-31 2006-07-31 MOS transistor element and its manufacturing method and improving method

Publications (1)

Publication Number Publication Date
CN101118925A true CN101118925A (en) 2008-02-06

Family

ID=39054940

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101081745A Pending CN101118925A (en) 2006-07-31 2006-07-31 MOS transistor element and its manufacturing method and improving method

Country Status (1)

Country Link
CN (1) CN101118925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856206A (en) * 2011-06-30 2013-01-02 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856206A (en) * 2011-06-30 2013-01-02 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof
CN102856206B (en) * 2011-06-30 2016-05-11 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7855126B2 (en) Methods of fabricating a semiconductor device using a cyclic selective epitaxial growth technique and semiconductor devices formed using the same
US7361563B2 (en) Methods of fabricating a semiconductor device using a selective epitaxial growth technique
KR100844933B1 (en) Transistor of semiconductor device and manufacturing method thereof
US7494884B2 (en) SiGe selective growth without a hard mask
US7553717B2 (en) Recess etch for epitaxial SiGe
US8076194B2 (en) Method of fabricating metal oxide semiconductor transistor
KR101023208B1 (en) MOSF device with a tensile-deformed substrate and its manufacturing method
US20080017931A1 (en) Metal-oxide-semiconductor transistor device, manufacturing method thereof, and method of improving drain current thereof
CN100429788C (en) Introduced gate strain for improved MOS performance
US7605407B2 (en) Composite stressors with variable element atomic concentrations in MOS devices
US7517766B2 (en) Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device
US8114727B2 (en) Disposable spacer integration with stress memorization technique and silicon-germanium
KR101600553B1 (en) Methods for fabricating mos devices having epitaxially grown stress-inducing source and drain regions
US20080242032A1 (en) Carbon-Doped Epitaxial SiGe
JP5671294B2 (en) Integrated circuit and manufacturing method thereof
US8907425B2 (en) Semiconductor device
US8486795B2 (en) Method of fabricating transistors
CN101632159A (en) Stressed field effect transistor and method of manufacturing same
US20050279997A1 (en) Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same
CN101276758A (en) Method for manufacturing semiconductor transistor element
US20110306170A1 (en) Novel Method to Improve Performance by Enhancing Poly Gate Doping Concentration in an Embedded SiGe PMOS Process
US20070259503A1 (en) Method of fabricating a semiconductor device
JP5076367B2 (en) Semiconductor device and manufacturing method thereof
KR101673920B1 (en) Method of manufacturing a semiconductor device
CN101118925A (en) MOS transistor element and its manufacturing method and improving method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080206