CN101113095A - Synthetic preparation method of A1N ceramic powder - Google Patents
Synthetic preparation method of A1N ceramic powder Download PDFInfo
- Publication number
- CN101113095A CN101113095A CNA2007100845224A CN200710084522A CN101113095A CN 101113095 A CN101113095 A CN 101113095A CN A2007100845224 A CNA2007100845224 A CN A2007100845224A CN 200710084522 A CN200710084522 A CN 200710084522A CN 101113095 A CN101113095 A CN 101113095A
- Authority
- CN
- China
- Prior art keywords
- powder
- preparation
- carbon materials
- aln
- nanometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000000919 ceramic Substances 0.000 title claims abstract description 12
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000000654 additive Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 10
- DSLAWOVIUYGFOS-UHFFFAOYSA-H N.C([O-])([O-])=O.[Al+3].C([O-])([O-])=O.C([O-])([O-])=O.[Al+3] Chemical compound N.C([O-])([O-])=O.[Al+3].C([O-])([O-])=O.C([O-])([O-])=O.[Al+3] DSLAWOVIUYGFOS-UHFFFAOYSA-H 0.000 claims abstract description 5
- IOGARICUVYSYGI-UHFFFAOYSA-K azanium (4-oxo-1,3,2-dioxalumetan-2-yl) carbonate Chemical compound [NH4+].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O IOGARICUVYSYGI-UHFFFAOYSA-K 0.000 claims description 20
- 239000011268 mixed slurry Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 9
- 239000006229 carbon black Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 239000000571 coke Substances 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000005915 ammonolysis reaction Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 24
- 238000005121 nitriding Methods 0.000 abstract description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 11
- 229910018626 Al(OH) Inorganic materials 0.000 abstract description 6
- 230000002194 synthesizing effect Effects 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 9
- 229910017089 AlO(OH) Inorganic materials 0.000 description 5
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- -1 Aluminum nitrate Ammonium hydroxide Aluminum oxide Carbon Chemical compound 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000036314 physical performance Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Abstract
本发明属陶瓷材料领域,具体涉及一种AlN陶瓷粉体的合成制备方法。材料制备工艺方法主要包括:碳酸铝氨凝胶的制备、配合料湿法混合、粉体料块制备和高温氮化反应合成。由Al(NO3)3·9H2O和(NH4)2CO3制备碳酸铝氨凝胶,将其与碳素材料和添加剂湿法混合并经干燥后获得粉体料块A;将纳米Al(OH)3或纳米Al2O3与碳素材料湿法混合并经干燥后可获得粉体料块B;将粉体料块A或粉体料块B在高温氮气下进行碳热还原和氮化反应合成AlN粉体,反应合成温度为1400-1600℃,保温时间为2h-6h,可获得AlN纯度>60%的AlN陶瓷粉体。本发明是一种采用纳米颗粒合成制备AlN陶瓷粉体的制备方法。The invention belongs to the field of ceramic materials, and in particular relates to a method for synthesizing and preparing AlN ceramic powder. The material preparation process mainly includes: preparation of aluminum carbonate ammonia gel, wet mixing of batch materials, preparation of powder blocks and high temperature nitriding reaction synthesis. Prepare aluminum carbonate ammonia gel from Al(NO 3 ) 3 9H 2 O and (NH 4 ) 2 CO 3 , wet mix it with carbon materials and additives and dry to obtain powder block A; Al(OH) 3 or nano-Al 2 O 3 is wet mixed with carbon material and dried to obtain powder block B; powder block A or powder block B is subjected to carbon thermal reduction under high temperature nitrogen Synthesize AlN powder with nitriding reaction, the reaction synthesis temperature is 1400-1600°C, the holding time is 2h-6h, and AlN ceramic powder with AlN purity > 60% can be obtained. The invention relates to a method for preparing AlN ceramic powder by synthesizing nano particles.
Description
【技术领域】【Technical field】
本发明属陶瓷材料领域,具体涉及一种AlN陶瓷粉体的合成制备工艺方法。The invention belongs to the field of ceramic materials, and in particular relates to a synthesis preparation method of AlN ceramic powder.
【背景技术】【Background technique】
由于AlN陶瓷具有耐高温、抗腐蚀、高热导率、低热膨胀系数、耐热冲击等良好的性能,同时又有很高的电绝缘性,因而成为近年来发展起来的优异的集成电路基片材料、电子元件的封装材料以及耐受高温的新型高抗热震性陶瓷结构材料。Because AlN ceramics have good properties such as high temperature resistance, corrosion resistance, high thermal conductivity, low thermal expansion coefficient, thermal shock resistance, and high electrical insulation, they have become excellent integrated circuit substrate materials developed in recent years. , packaging materials for electronic components and new high thermal shock resistance ceramic structural materials that can withstand high temperatures.
制备AlN陶瓷的关键在于合成制备出AlN含量高、结晶特性良好的氮化铝粉体材料,目前合成AlN的方法主要有:直接氮化法、碳热还原法、电弧熔炼法、气相反应法、离子体法、裂解法、微波合成法、自蔓延高温合成法和高能球磨法等。其中,可实现工业化生产的方法主要有直接氮化法和碳热还原法。The key to preparing AlN ceramics is to synthesize and prepare aluminum nitride powder materials with high AlN content and good crystallization properties. At present, the main methods of synthesizing AlN include: direct nitriding method, carbothermal reduction method, arc melting method, gas phase reaction method, Plasma method, pyrolysis method, microwave synthesis method, self-propagating high-temperature synthesis method and high-energy ball milling method, etc. Among them, the methods that can realize industrial production mainly include direct nitriding method and carbothermal reduction method.
直接氮化法是以铝粉为原料,在高温下通入氮气,直接化合生成AlN方法,反应温度一般为800-1200℃。由于氮化反应为强烈放热反应,反应过程难以控制,产品质量不稳定,制得的AlN粉末往往有自烧结现象,且铝粉氮化表面形成的AlN层会阻碍反应的进行,需长时间才能反应完全。用直接氮化法制备AlN粉末,为得到高纯度的AlN,就需要使用高纯度的原料,相应的成本也就增高,这是制约直接氮化法推广的主要因素。The direct nitriding method is based on aluminum powder as raw material, nitrogen gas is introduced at high temperature, and the method is directly combined to form AlN. The reaction temperature is generally 800-1200°C. Since the nitriding reaction is a strong exothermic reaction, the reaction process is difficult to control, and the product quality is unstable. The AlN powder produced often has a self-sintering phenomenon, and the AlN layer formed on the surface of the aluminum powder nitriding will hinder the progress of the reaction, which takes a long time. to fully respond. To prepare AlN powder by direct nitriding method, in order to obtain high-purity AlN, it is necessary to use high-purity raw materials, and the corresponding cost will increase, which is the main factor restricting the promotion of direct nitriding method.
碳热还原法是另一商业化制取AlN粉末的方法。通常它是将α-Al2O3或γ-Al2O3与碳黑混合,氮气条件下一般需要1600-1800℃保温12h来合成制备AlN粉末。此法可制得尺寸均一和几乎无团聚的AlN粉末。但是,采用α-Al2O3或γ-Al2O3碳热还原法合成制备AlN粉需较高的反应温度和保温时间。Carbothermal reduction is another commercial method for producing AlN powder. Usually it is to mix α-Al 2 O 3 or γ-Al 2 O 3 with carbon black, and generally need 1600-1800°C for 12 hours under nitrogen conditions to synthesize and prepare AlN powder. This method can produce AlN powder with uniform size and almost no agglomeration. However, the preparation of AlN powder by α-Al 2 O 3 or γ-Al 2 O 3 carbothermal reduction requires relatively high reaction temperature and holding time.
针对上述直接氮化法或碳热还原法合成制备AlN粉末的不足,亟待解决的问题是使AlN的合成过程稳定以及降低合成制备温度和减少保温时间。本发明的主要特征是以较低的合成温度和较少的保温时间用于合成AlN陶瓷粉体。In view of the shortcomings of the above-mentioned direct nitriding method or carbothermal reduction method for the synthesis and preparation of AlN powder, the problems to be solved are to stabilize the synthesis process of AlN, reduce the synthesis preparation temperature and reduce the holding time. The main feature of the invention is that it is used for synthesizing AlN ceramic powder with lower synthesis temperature and less heat preservation time.
【发明内容】【Content of invention】
本发明的目的是为了克服现有技术中的不足,提供一种AlN陶瓷粉体的合成制备方法。The object of the present invention is to provide a method for the synthesis and preparation of AlN ceramic powder in order to overcome the deficiencies in the prior art.
本发明的技术方案:Technical scheme of the present invention:
一种AlN陶瓷粉体的合成制备方法,其特征在于包括以下步骤:碳酸铝氨凝胶的制备、配合料湿法混合、粉体料块制备和高温氮化反应合成。A synthesis and preparation method of AlN ceramic powder is characterized in that it comprises the following steps: preparation of aluminum carbonate ammonium gel, wet mixing of batch materials, preparation of powder block and high temperature nitriding reaction synthesis.
碳酸铝氨凝胶的制备是将分析纯Al(NO3)3·9H2O和(NH4)2CO3用去离子水分别配制成浓度为0.5mol.L-1和2.5mol.L-1的溶液;在(35±4)℃恒温及不断搅拌条件下,按(NH4)2CO3∶Al(NO3)3=2.5∶1摩尔量的比例,将Al(NO3)3溶液匀速滴加到(NH4)2CO3溶液中;滴加完毕后,继续搅拌30min,再用去离子水洗涤3次,即可制得碳酸铝铵〔NH4AlO(OH)HCO3〕凝胶。The preparation of aluminum carbonate ammonia gel is to prepare analytically pure Al(NO 3 ) 3 9H 2 O and (NH 4 ) 2 CO 3 with deionized water to a concentration of 0.5mol.L -1 and 2.5mol.L - 1 solution; under the condition of (35±4)℃ constant temperature and constant stirring, according to the molar ratio of (NH 4 ) 2 CO 3 : Al(NO 3 ) 3 =2.5:1, Al(NO 3 ) 3 solution Add it dropwise to the (NH 4 ) 2 CO 3 solution at a constant speed; after the dropwise addition, continue to stir for 30 minutes, and then wash with deionized water for 3 times to obtain the ammonium aluminum carbonate [NH 4 AlO(OH)HCO 3 ] glue.
配合料湿法混合方法之一是将制得的碳酸铝铵凝胶加入适量的去离子水进行稀释,制成碳酸铝铵凝胶稀释浆料;然后将碳素材料和添加剂加入到碳酸铝氨凝胶稀释浆料中进行湿法混合,混合时间1~3h,获得混合料浆A;碳素材料和添加剂的粒经均<5μm;碳素材料为碳黑或焦炭或石墨,碳素材料的加入量为碳酸铝铵摩尔量的100-120%;添加剂为SrCO3或CaF2-SrCO3或CaF2,添加剂的加入量为碳酸铝铵重量的2.5-3.5%。One of the wet mixing methods of batch materials is to add an appropriate amount of deionized water to the prepared ammonium aluminum carbonate gel to dilute to make ammonium aluminum carbonate gel dilution slurry; then add carbon materials and additives to the ammonium aluminum carbonate gel Wet mixing is carried out in the gel dilution slurry, and the mixing time is 1 to 3 hours to obtain the mixed slurry A; the particle size of the carbon material and the additive is less than 5 μm; the carbon material is carbon black or coke or graphite, and the carbon material The added amount is 100-120% of the molar weight of the aluminum ammonium carbonate; the additive is SrCO 3 or CaF 2 -SrCO 3 or CaF 2 , and the added amount of the additive is 2.5-3.5% of the weight of the aluminum ammonium carbonate.
配合料湿法混合方法之二是将纳米Al(OH)3或纳米Al2O3与碳素材料的配合料进行湿法混合,混合时间1~3h,获得混合料浆B;碳素材料为碳黑或焦炭或石墨,碳素材料粒径均<5μm;纳米Al(OH)3或纳米Al2O3的粒径均<0.1μm,纳米Al(OH)3的加入量为碳素材料摩尔量的75-80%,纳米Al2O3的加入量为碳素材料摩尔量的145-160%。The second method of wet mixing of batch materials is to wet mix the batch materials of nano-Al(OH) 3 or nano-Al 2 O 3 and carbon materials, and the mixing time is 1-3 hours to obtain the mixed slurry B; the carbon materials are Carbon black or coke or graphite, the particle size of the carbon material is less than 5 μm; the particle size of nano-Al(OH) 3 or nano-Al 2 O 3 is less than 0.1 μm, and the amount of nano-Al(OH) 3 added is the carbon material mole 75-80% of the molar weight of the carbon material, and 145-160% of the molar weight of the carbon material.
料块制备是将上述的混合料浆A或混合料浆B分别置于110℃条件下干燥24h,获得用于合成AlN的粉体料块A或粉体料块B。The block preparation is to dry the above-mentioned mixed slurry A or mixed slurry B at 110° C. for 24 hours to obtain powder block A or powder block B for synthesizing AlN.
将上述粉体料块A或粉体料块B分别进行AlN粉体的高温合成,高温碳热还原和氮化反应合成AlN粉体的气氛是氮气气氛,合成温度控制为1400-1600℃,保温时间为2h-6h。The above-mentioned powder block A or powder block B is subjected to high-temperature synthesis of AlN powder respectively. The atmosphere for synthesis of AlN powder by high-temperature carbothermal reduction and nitriding reaction is a nitrogen atmosphere, and the synthesis temperature is controlled at 1400-1600 ° C. The time is 2h-6h.
本发明的主要技术特征是采用纳米材料技术用于AlN粉体的合成,本发明合成AlN粉体所用原料技术要求示于表1,合成AlN粉体的物理性能检测结果示于表2。AlN粉体的显微结构及物相分别示于附图1和附图2。由表1、表2、附图1、附图2和实施例可知,本发明是一种采用纳米颗粒技术合成AlN粉体具有实用性的制备方法。The main technical feature of the present invention is that nanomaterial technology is used for the synthesis of AlN powder. The raw material technical requirements for the synthesis of AlN powder in the present invention are shown in Table 1, and the physical performance test results of the synthesized AlN powder are shown in Table 2. The microstructure and phase of AlN powder are shown in Figure 1 and Figure 2 respectively. It can be seen from Table 1, Table 2, accompanying
表1合成AlN粉体所用原料的技术要求Table 1 Technical requirements for raw materials used in the synthesis of AlN powder
表2合成AlN粉体的物理性能检测结果Table 2 Physical performance test results of synthesized AlN powder
【附图说明】【Description of drawings】
图1是本发明AN-1粉体试样的AlN结晶形貌SEM照片Fig. 1 is the SEM photograph of the AlN crystal morphology of the AN-1 powder sample of the present invention
图2是本发明AN-1粉体试样物相的XRD曲线图Fig. 2 is the XRD curve figure of AN-1 powder sample phase of the present invention
【具体实施方式】【Detailed ways】
实施例1Example 1
将分析纯Al(NO3)3·9H2O和(NH4)2CO3用去离子水分别配制成浓度为0.5mol.L-1和2.5mol.L-1的溶液;在(35±4)℃恒温及不断搅拌条件下,按(NH4)2CO3∶Al(NO3)3=2.5∶1摩尔量的比例,将Al(NO3)3溶液匀速滴加到(NH4)2CO3溶液中;滴加完毕后,继续搅拌30min,再用去离子水洗涤3次,获得碳酸铝铵〔NH4AlO(OH)HCO3〕凝胶。Prepare analytically pure Al(NO 3 ) 3 9H 2 O and (NH 4 ) 2 CO 3 with deionized water to prepare solutions with concentrations of 0.5mol.L -1 and 2.5mol.L -1 respectively; at (35± 4) Under the condition of constant temperature and constant stirring at ℃, according to the molar ratio of (NH 4 ) 2 CO 3 :Al(NO 3 ) 3 =2.5:1, add the Al(NO 3 ) 3 solution dropwise to the (NH 4 ) 2 CO 3 solution; after the dropwise addition, continue to stir for 30 min, and then wash with deionized water three times to obtain ammonium aluminum carbonate [NH 4 AlO(OH)HCO 3 ] gel.
将碳酸铝铵凝胶加入适量的去离子水进行稀释,然后加入按碳酸铝铵摩尔量100%的粒径<5μm的碳黑以及按碳酸铝铵重量3.0%的粒径<5μm的SrCO3;湿法搅拌混合1h,获得混合料浆;将混合料浆置于110℃条件下干燥24h,获得用于合成AlN的粉体料块;将粉体料块在氮气气氛下高温合成AlN,合成温度为1500℃,保温时间为5h。Dilute the ammonium aluminum carbonate gel by adding an appropriate amount of deionized water, then add carbon black with a particle size of <5 μm according to 100% of the molar weight of ammonium aluminum carbonate and SrCO 3 with a particle size of <5 μm by 3.0% by weight of ammonium aluminum carbonate; Wet stirring and mixing for 1 hour to obtain a mixed slurry; dry the mixed slurry at 110°C for 24 hours to obtain a powder block for the synthesis of AlN; synthesize the powder block into AlN at a high temperature under a nitrogen atmosphere, and the synthesis temperature The temperature is 1500℃, and the holding time is 5h.
本实施例合成AlN粉体中的AlN含量为75.3%The AlN content in the AlN powder synthesized in this example is 75.3%
实施例2Example 2
将分析纯Al(NO3)3·9H2O和(NH4)2CO3用去离子水分别配制成浓度为0.5mol.L-1和2.5mol.L-1的溶液;在(35±4)℃恒温及不断搅拌条件下,按(NH4)2CO3∶Al(NO3)3=2.5∶1摩尔量的比例,将Al(NO3)3溶液匀速滴加到(NH4)2CO3溶液中;滴加完毕后,继续搅拌30min,再用去离子水洗涤3次,获得碳酸铝铵〔NH4AlO(OH)HCO3〕凝胶。Prepare analytically pure Al(NO 3 ) 3 9H 2 O and (NH 4 ) 2 CO 3 with deionized water to prepare solutions with concentrations of 0.5mol.L -1 and 2.5mol.L -1 respectively; at (35± 4) Under the condition of constant temperature and constant stirring at ℃, according to the molar ratio of (NH 4 ) 2 CO 3 :Al(NO 3 ) 3 =2.5:1, add the Al(NO 3 ) 3 solution dropwise to the (NH 4 ) 2 CO 3 solution; after the dropwise addition, continue to stir for 30 min, and then wash with deionized water three times to obtain ammonium aluminum carbonate [NH 4 AlO(OH)HCO 3 ] gel.
将碳酸铝铵凝胶加入适量的去离子水进行稀释,然后加入按碳酸铝铵摩尔量120%的粒径<5μm的石墨以及按碳酸铝铵重量3.0%的粒径<5μm的CaF2;湿法搅拌混合2h,获得混合料浆;将混合料浆置于110℃条件下干燥24h,获得用于合成AlN的粉体料块;将粉体料块在氮气气氛下高温合成AlN,合成温度为1500℃,保温时间为6h。Dilute the ammonium aluminum carbonate gel by adding an appropriate amount of deionized water, then add 120% of the graphite with a particle size of <5 μm according to the molar weight of the ammonium aluminum carbonate and CaF 2 with a particle size of <5 μm at 3.0% by weight of the ammonium aluminum carbonate; Stir and mix for 2 hours to obtain a mixed slurry; dry the mixed slurry at 110°C for 24 hours to obtain a powder block for the synthesis of AlN; synthesize the powder block at a high temperature under a nitrogen atmosphere at a temperature of 1500°C, holding time is 6h.
本实施例合成AlN粉体中的AlN含量为69.5%The content of AlN in the AlN powder synthesized in this example is 69.5%
实施例3Example 3
将粒径<5μm的焦炭、粒径<70nm的Al2O3(加入量为焦炭摩尔量的150%)、粒径<5μm的SrCO3(加入量为Al2O3重量的1.0%)和粒径<5μm的CaF2(加入量为Al2O3重量的2.0%)湿法混合,混合时间3h,获得混合料浆;将混合料浆置于110℃条件下干燥24h,获得用于合成AlN的粉体料块;将粉体料块在氮气气氛下高温合成AlN,合成温度为1600℃,保温时间为6h。coke with a particle diameter of <5 μm, Al2O3 with a particle diameter of <70 nm (150% of the molar weight of the coke), SrCO3 with a particle diameter of <5 μm (1.0% of the weight of Al2O3 ) and CaF 2 with a particle size of <5 μm (the amount added is 2.0% of the weight of Al 2 O 3 ) was wet-mixed for 3 hours to obtain a mixed slurry; the mixed slurry was dried at 110°C for 24 hours to obtain AlN powder block; the powder block is synthesized at high temperature under nitrogen atmosphere, the synthesis temperature is 1600°C, and the holding time is 6h.
本实施例合成AlN粉体中的AlN含量为66.1%The AlN content in the AlN powder synthesized in this example is 66.1%
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100845224A CN100457684C (en) | 2007-02-12 | 2007-02-12 | Synthetic preparation method of A1N ceramic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100845224A CN100457684C (en) | 2007-02-12 | 2007-02-12 | Synthetic preparation method of A1N ceramic powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101113095A true CN101113095A (en) | 2008-01-30 |
CN100457684C CN100457684C (en) | 2009-02-04 |
Family
ID=39021652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100845224A Expired - Fee Related CN100457684C (en) | 2007-02-12 | 2007-02-12 | Synthetic preparation method of A1N ceramic powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100457684C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107840668A (en) * | 2017-10-29 | 2018-03-27 | 贵州喜文化艺术有限责任公司 | A kind of ceramic composition and preparation method thereof |
CN110015900A (en) * | 2019-02-22 | 2019-07-16 | 福建臻璟新材料科技有限公司 | Composite Nano aluminium nitride powder and preparation method thereof with low-temperature sintering performance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4988646A (en) * | 1988-05-12 | 1991-01-29 | International Business Machines | Method for producing a ceramic |
US5279808A (en) * | 1992-12-17 | 1994-01-18 | United Technologies Corporation | Metal nitride powders |
-
2007
- 2007-02-12 CN CNB2007100845224A patent/CN100457684C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107840668A (en) * | 2017-10-29 | 2018-03-27 | 贵州喜文化艺术有限责任公司 | A kind of ceramic composition and preparation method thereof |
CN110015900A (en) * | 2019-02-22 | 2019-07-16 | 福建臻璟新材料科技有限公司 | Composite Nano aluminium nitride powder and preparation method thereof with low-temperature sintering performance |
Also Published As
Publication number | Publication date |
---|---|
CN100457684C (en) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271665B1 (en) | Method for producing spherical aluminum nitride powder | |
CN1435371A (en) | Method for preparing aluminium nitride powder | |
JP2019531247A (en) | Method for producing spherical aluminum nitride powder | |
CN104724685A (en) | Preparation method of nano aluminium nitride powder | |
CN103979507A (en) | Method for preparing spherical aluminum nitride powder under assistance of high atmospheric pressure and fluoride additive | |
CN108101545A (en) | A kind of preparation method of nano aluminum nitride powder | |
CN109437919B (en) | Method for preparing aluminum nitride ceramic powder based on urea/melamine nitrogen source | |
CN112225566B (en) | Silicon nitride powder, preparation method and application thereof, and ceramic material | |
CN111115592B (en) | A kind of preparation method of nanometer silicon nitride powder | |
CN118878335B (en) | In-situ graded aluminum nitride powder and preparation method and application thereof | |
TWI646045B (en) | A method for producing the spherical silicon nitride powder | |
CN100457684C (en) | Synthetic preparation method of A1N ceramic powder | |
CN1631772A (en) | A method for preparing aluminum nitride powder by carbothermal reduction | |
TWI579231B (en) | A method for preparing spherical aln granules | |
CN110357050A (en) | The shaft-like beta phase silicon nitride raw powder's production technology such as a kind of | |
JP7675321B1 (en) | Manufacturing method of aluminum nitride powder | |
JPS6355108A (en) | Aluminum nitride powder and production thereof | |
CN108423647A (en) | The method that chemical vapour deposition technique prepares magnanimity hexagonal boron nitride powder | |
CN102556986B (en) | Method for synthesizing sub-micron single-phase silicon nitride powder | |
KR100872832B1 (en) | Aluminum nitride nanopowder prepared using melamine and its manufacturing method | |
CN113292053A (en) | Process for preparing high-dispersity aluminum nitride powder by carbothermic method based on polymer dispersant | |
CN113460981B (en) | Aluminum nitride powder and preparation method and application thereof | |
CN104213252A (en) | Method for preparing aluminium nitride fiber by adopting carbon fiber as template | |
Li et al. | Synthesis and characterization of nano Si3N4 powder via sol foaming and carbothermal reduction and nitridation | |
CN114634364B (en) | A kind of synthetic method of pure phase Si2N2O powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C53 | Correction of patent for invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Bo Jinglong Inventor after: Wang Ronglin Inventor after: Wang Zhifa Inventor after: Jia Cui Inventor after: Hu Chunfang Inventor after: Zhang Jian Inventor after: Wang Xibei Inventor before: Bo Jinglong Inventor before: Wang Ronglin Inventor before: Wang Zhifa Inventor before: Jia Cui Inventor before: Hu Chunfang Inventor before: Zhang Jian |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: BU JINGLONG WANG RONGLIN WANG ZHIFA JIA CUI HU CHUNFANG ZHANG JIAN TO: BU JINGLONG WANG RONGLIN WANG ZHIFA JIA CUI HU CHUNFANG ZHANG JIAN WANG XIBEI |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090204 Termination date: 20120212 |