CN101110260A - Memory Selective Precharge Circuit with Charge Compensation Structure - Google Patents
Memory Selective Precharge Circuit with Charge Compensation Structure Download PDFInfo
- Publication number
- CN101110260A CN101110260A CNA2007100353304A CN200710035330A CN101110260A CN 101110260 A CN101110260 A CN 101110260A CN A2007100353304 A CNA2007100353304 A CN A2007100353304A CN 200710035330 A CN200710035330 A CN 200710035330A CN 101110260 A CN101110260 A CN 101110260A
- Authority
- CN
- China
- Prior art keywords
- charging
- tube
- bit line
- transistor
- precharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 title claims abstract description 52
- 239000003990 capacitor Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 101000682328 Bacillus subtilis (strain 168) 50S ribosomal protein L18 Proteins 0.000 description 1
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Static Random-Access Memory (AREA)
Abstract
本发明公开了一种带充电补偿结构的存储器选择性预充电电路,它的选择性预充电单元包括预充电管Mp1和两个或两个以上的位线选择管Mpi,充电补偿单元包括充电补偿管Mp2和第二反相器inv2,预充电管Mp1的源端连接电源,漏端连接内部电路,预充电管Mp1受预充电信号Fpre控制,每个位线选择管Mni的一端连接存储阵列中的位线,另一端连接于预充电管Mp1和充电补偿管Mp2的漏端以及充电补偿单元的第二反相器inv2、输出驱动单元的第一反相器inv1的输入端,充电补偿管Mp2的源端连接电源,漏端连接内部电路,Mp2管受第二反相器inv2的输出端控制,第二反相器inv2的输入端与预充电管Mp1和充电补偿管Mp2的漏端连接。本发明结构简单、能缩短位线充电阶段的时间开销,提高存储器数据读取速度。
The invention discloses a memory selective precharging circuit with charging compensation structure, its selective precharging unit includes a precharging transistor M p1 and two or more bit line selection transistors M pi , the charging compensation unit includes The charge compensation tube M p2 and the second inverter inv 2 , the source terminal of the precharge tube M p1 is connected to the power supply, and the drain terminal is connected to the internal circuit, the precharge tube M p1 is controlled by the precharge signal F pre , and each bit line selection tube One end of M ni is connected to the bit line in the storage array, and the other end is connected to the drain end of the precharge transistor M p1 and the charge compensation transistor M p2 , the second inverter inv 2 of the charge compensation unit, and the first inverter of the output drive unit. The input terminal of the phase device inv 1 , the source terminal of the charging compensation tube M p2 is connected to the power supply, and the drain terminal is connected to the internal circuit. The M p2 tube is controlled by the output terminal of the second inverter inv 2 , and the input terminal of the second inverter inv 2 The end is connected to the drain end of the pre-charging tube M p1 and the charging compensation tube M p2 . The invention has a simple structure, can shorten the time cost of the charging stage of the bit line, and improve the data reading speed of the memory.
Description
技术领域technical field
本发明主要涉及到低功耗存储器的设计领域,特指一种带充电补偿结构的存储器选择性预充电电路。The invention mainly relates to the design field of low-power memory, in particular to a memory selective precharging circuit with a charging compensation structure.
背景技术Background technique
随着集成电路的密度和工作频率按照摩尔定律所描述的那样持续增长,低功耗系统的设计成为了设计者们所关注的焦点。在微处理器特别是SoC(系统集成芯片)中,由于存储器占据了芯片功耗的很大部分,因此低功耗存储器的设计技术对集成电路发展具有重要意义。而随着高性能处理器中嵌入式存储器的大量使用,对存储器的速度、面积和功耗三个方面的性能都有很高要求。而由于这三个参数之间的相互约束关系,存储器低功耗技术往往会引起速度和面积的开销。因此,以较低的开销换取低功耗性能是存储器低功耗技术的设计难点。As the density and operating frequency of integrated circuits continue to increase as described by Moore's Law, the design of low-power systems has become the focus of designers. In a microprocessor, especially a SoC (System on a Chip), since the memory occupies a large part of the power consumption of the chip, the design technology of the low-power memory is of great significance to the development of the integrated circuit. With the extensive use of embedded memories in high-performance processors, there are high requirements for the performance of the memory in terms of speed, area and power consumption. However, due to the mutual constraints among these three parameters, memory low-power consumption techniques often cause speed and area overhead. Therefore, it is a difficult point in the design of memory low power consumption technology to exchange low overhead for low power consumption performance.
对于存储器芯片,功耗的来源可以分为三个方面:存储器单元阵列、译码器和外围电路。其中存储单元阵列的功耗是存储器功耗的主要来源。对一个n行m列的存储器,其结构如图1所示,功耗可以用以下公式近似表示:For memory chips, the sources of power consumption can be divided into three aspects: memory cell arrays, decoders and peripheral circuits. The power consumption of the memory cell array is the main source of memory power consumption. For a memory with n rows and m columns, its structure is shown in Figure 1, and the power consumption can be approximated by the following formula:
P=VDDIDD P=V DD I DD
=(miact+m(n-1)ihld)+((n+m)CDEVintf)+(CPTVintf)=(mi act +m(n-1)i hld )+((n+m)C DE V int f)+(C PT V int f)
其中iact是被选中单元的等价有效电流,它是一个读或者写操作中流过存储单元的总电荷与读写周期的比值,ihld是不工作单元数据维持电流,Vint是内部电源电压,CDE是每个译码器的等价输出负载,CPT是外围电路的总负载,f是工作频率。Where i act is the equivalent effective current of the selected cell, which is the ratio of the total charge flowing through the memory cell in a read or write operation to the read/write cycle, i hld is the data maintenance current of the non-working cell, V int is the internal power supply voltage , C DE is the equivalent output load of each decoder, C PT is the total load of the peripheral circuit, f is the operating frequency.
在现今的芯片内嵌入式存储器中,为了实现高速低功耗的目的,存储单元阵列多是采用动态预充电结构。因此,存储器单元阵列的功耗主要是对存储单元阵列中位线电容的充放电功耗。其功耗的估算公式如下;In today's on-chip embedded memory, in order to achieve high speed and low power consumption, the memory cell array mostly adopts a dynamic precharge structure. Therefore, the power consumption of the memory cell array is mainly the power consumption of charging and discharging the bit line capacitance in the memory cell array. The estimation formula of its power consumption is as follows;
Parray=m×iact×VDD=m×Ceff×VDD 2×fP array =m×i act ×V DD =m×C eff ×V DD 2 ×f
其中,m是一次读取操作中需要被充放电的位线数目,Ceff是每个位线的等价有效电容,VDD 2是电源电压,f是工作频率。由公式可以看出,对于确定了制造工艺、容量及性能要求的存储器,要想降低存储阵列的工作功耗,只能够通过减少参与充放电过程的位线数目m来实现。Wherein, m is the number of bit lines that need to be charged and discharged in one read operation, C eff is the equivalent effective capacitance of each bit line, V DD 2 is the power supply voltage, and f is the operating frequency. It can be seen from the formula that, for a memory whose manufacturing process, capacity and performance requirements are determined, in order to reduce the power consumption of the memory array, it can only be achieved by reducing the number m of bit lines participating in the charging and discharging process.
选择性预充电结构如图2所示,图中电路10是存储单元阵列,电路20是选择性位线预充电单元,电路30是输出驱动电路。在选择性位线预充电单元中,PMOS管Mp1是传统的预充电管,Mp1的源端连接着电源,漏端连接着内部电路,Mp1受预充电信号Fpre控制,当Fpre为低电平时预充电管导通,开始对电路充电,当Fpre为高电平时预充电管关断,切断从电源到内部电路的通路。NMOS管Mn1到Mn16是位线选择管,位线选择管的数量根据存储器阵列组织形式的不同而不同,可以是两个到多个。每个位线选择管的一端连接存储阵列中的位线,另一端连接预充电管Mp1的漏端和输出驱动电路中的反相器输入端。位线选择管由列译码器的译码结果信号s1到s16控制。当存储器进入预充电阶段时,Fpre为低电平,同时列译码器进行译码工作,当列译码器完成译码后对应信号s1到s16中的一个会由低电平跳变到高电平,此时相应位线选择管被打开,将其连接的位线和预充电管Mp1连通,预充电管Mp1开始对该位线进行充电。当存储器完成预充电过程后进入读数据阶段,Fpre跳变为高电平将预充电管Mp1关断,同时,在预充电阶段被打开的位线选择管保持导通状态,存储阵列中根据存储单元存储的内容对位线进行放电或是不放电操作。如果位线被放电则位线为低电平,因此输出驱动电路中的反相器输入端为低电平,从而在输出端输出高电平的“1”信号;如果位线不放电则保持为预充电阶段的高电平状态,因此输出驱动电路中的反相器输入端为高电平,从而在输出端输出低电平的“0”信号。电路的工作时序如图3所示。The selective precharge structure is shown in FIG. 2 , in which
在图2的电路结构中,通过16选1的位线选择单元可以将参与充放电的位线数减少到普通结构的1/16,从而将存储单元阵列的工作功耗减少到只有原来的1/16左右。可见选择性预充电结构具有非常明显的功耗优化效果。但是,从工作时序图中可以看出,这种结构为了保证位线能正确预充电,会给数据读取时间带来近于一倍的开销(t2≈t1),这对于高速存储器显然是不可接受的。In the circuit structure of Figure 2, the number of bit lines involved in charging and discharging can be reduced to 1/16 of the common structure through the bit line selection unit of 16 to 1, thereby reducing the working power consumption of the memory cell array to only 1 /16 or so. It can be seen that the selective precharging structure has a very obvious power consumption optimization effect. However, it can be seen from the working timing diagram that in order to ensure that the bit line can be precharged correctly, this structure will bring nearly double the overhead of data reading time (t 2 ≈t 1 ), which is obvious for high-speed memories is unacceptable.
发明内容Contents of the invention
本发明要解决的问题就在于:针对现有技术存在的技术问题,本发明提供一种结构简单、能够大大缩短位线充电阶段的时间开销,从而提高了存储器数据读取速度的带充电补偿结构的存储器选择性预充电电路。The problem to be solved by the present invention is that: aiming at the technical problems existing in the prior art, the present invention provides a charging compensation structure with a simple structure, which can greatly shorten the time overhead of the bit line charging stage, thereby improving the memory data reading speed memory selective precharge circuit.
为解决上述技术问题,本发明提出的解决方案为:一种带充电补偿结构的存储器选择性预充电电路,其特征在于:它包括选择性预充电单元、充电补偿单元以及输出驱动单元,所述选择性预充电单元包括预充电管Mp1和两个或两个以上的位线选择管Mni,充电补偿单元包括充电补偿管Mp2和第二反相器inv2,充电补偿管Mp1的源端连接着电源,漏端连接着内部电路,充电补偿管Mp1受预充电信号Fpre控制,每个位线选择管Mni的一端连接存储阵列中的位线,另一端连接于预充电管Mp1和充电补偿管Mp2的漏端以及充电补偿单元的第二反相器inv2、输出驱动单元的第一反相器inv1的输入端,充电补偿管Mp2的源端连接着电源,漏端连接着内部电路,Mp2管受第二反相器inv2的输出端控制,第二反相器inv2的输入端与预充电管Mp1和充电补偿管Mp2的漏端连接。In order to solve the above-mentioned technical problems, the solution proposed by the present invention is: a memory selective pre-charging circuit with a charging compensation structure, characterized in that it includes a selective pre-charging unit, a charging compensation unit and an output drive unit, the The selective pre-charging unit includes a pre-charging tube M p1 and two or more bit line selection tubes M ni , the charging compensation unit includes a charging compensation tube M p2 and a second inverter inv 2 , and the charging compensation tube M p1 The source end is connected to the power supply, the drain end is connected to the internal circuit, the charge compensation transistor M p1 is controlled by the precharge signal F pre , one end of each bit line selection transistor M ni is connected to the bit line in the memory array, and the other end is connected to the precharge The drain terminals of the tube M p1 and the charging compensation tube M p2 , the second inverter inv 2 of the charging compensation unit, the input terminal of the first inverter inv 1 of the output drive unit, and the source terminal of the charging compensation tube M p2 are connected to Power supply, the drain end is connected to the internal circuit, the M p2 tube is controlled by the output end of the second inverter inv 2 , the input end of the second inverter inv 2 is connected to the drain end of the pre-charging tube M p1 and the charging compensation tube M p2 connect.
所述充电补偿单元与一等效电容Cd相连。The charging compensation unit is connected with an equivalent capacitor C d .
与现有技术相比,本发明的优点就在于:Compared with the prior art, the present invention has the advantages of:
1、由于本发明采用了充电补偿结构电路,与普通的选择性预充电结构相比,可以大大缩短位线充电阶段的时间开销t2,从而提高了存储器的数据读取速度。1. Since the present invention adopts a charging compensation structure circuit, compared with the common selective precharging structure, the time cost t 2 of the bit line charging stage can be greatly shortened, thereby improving the data reading speed of the memory.
2、通过位线选择管控制位线的充电过程,不参与数据读取的位线电容不进行充放电操作,从而避免了读取数据时的功耗浪费。2. The charging process of the bit line is controlled by the bit line selection tube, and the bit line capacitance that does not participate in data reading is not charged and discharged, thereby avoiding the waste of power consumption when reading data.
3、引入充电补偿电路,既保证预充电的正确性又缩短充电阶段的时间开销。3. Introduce a charging compensation circuit, which not only ensures the correctness of pre-charging but also shortens the time spent in the charging phase.
附图说明Description of drawings
图1是存储器结构框图及功耗来源示意图;Figure 1 is a memory structure block diagram and a schematic diagram of power consumption sources;
图2是已有选择性预充电结构电路示意图;FIG. 2 is a schematic circuit diagram of an existing selective precharging structure;
图3是已有选择性预充电电路的工作时序示意图;FIG. 3 is a schematic diagram of a working sequence of an existing selective precharging circuit;
图4是本发明的结构框架示意图;Fig. 4 is a structural framework schematic diagram of the present invention;
图5是本发明的具体电路示意图;Fig. 5 is the specific circuit diagram of the present invention;
图6是本发明的工作流程示意图Fig. 6 is a schematic diagram of the workflow of the present invention
图7是本发明电路的工作时序示意图。Fig. 7 is a schematic diagram of the working sequence of the circuit of the present invention.
具体实施方式Detailed ways
以下将结合附图和具体实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
如图4和图5所示,本发明带充电补偿结构的存储器选择性预充电电路是在传统的选择性预充电结构基础上另增设了一充电补偿单元,它包括选择性预充电单元、充电补偿单元以及输出驱动单元,所述选择性预充电单元包括预充电管Mp1和两个或两个以上的位线选择管Mni,充电补偿单元包括充电补偿管Mp2和第二反相器inv2,预充电管Mp1的源端连接着电源,漏端连接着内部电路,预充电管Mp1受预充电信号Fpre控制,每个位线选择管Mni的一端连接存储阵列中的位线,另一端连接于预充电管Mp1和充电补偿管Mp2的漏端以及充电补偿单元的第二反相器inv2、输出驱动单元的第一反相器inv1的输入端,充电补偿管Mp2的源端连接着电源,漏端连接着内部电路,Mp2管受第二反相器inv2的输出端控制,第二反相器inv2的输入端与预充电管Mp1和充电补偿管Mp2的漏端连接。As shown in Fig. 4 and Fig. 5, the memory selective precharge circuit with charge compensation structure of the present invention adds a charge compensation unit on the basis of traditional selective precharge structure, and it comprises selective precharge unit, charging A compensation unit and an output drive unit, the selective pre-charging unit includes a pre-charging transistor M p1 and two or more bit line selection transistors M ni , and the charging compensation unit includes a charging compensation transistor M p2 and a second inverter inv 2 , the source end of the precharge tube M p1 is connected to the power supply, the drain end is connected to the internal circuit, the precharge tube M p1 is controlled by the precharge signal F pre , and one end of each bit line selection transistor M ni is connected to the memory array The other end of the bit line is connected to the drain end of the pre-charging transistor M p1 and the charging compensation transistor M p2 , the second inverter inv 2 of the charging compensation unit, and the input end of the first inverter inv 1 of the output driving unit to charge The source end of the compensation tube M p2 is connected to the power supply, and the drain end is connected to the internal circuit. The M p2 tube is controlled by the output end of the second inverter inv 2 , and the input end of the second inverter inv 2 is connected to the precharge tube M p1 It is connected to the drain end of the charging compensation tube M p2 .
如图5所示,是本发明在一个16选1的位线选择结构中的应用实例,其中电路10是存储单元阵列,w1到w64是存储阵列字线,电容CBL1到CBL16表示每根存储阵列位线的等效电容。电路20是本发明提出的带充电补偿结构的选择性预充电电路。其中NMOS管Mn1到Mn16采用传统的位线选择管,根据列译码器的结果选通相应位线,电容Cd是该结构的电路等效电容。电路30是输出驱动单元的电路。As shown in Fig. 5, it is an application example of the present invention in a 16-to-1 bit line selection structure, wherein
在电路中,PMOS管Mp1是传统的预充电管,Mp1的源端连接着电源,漏端连接着内部电路,Mp1受预充电信号Fpre控制,当为Fpre为低电平时预充电管导通,开始对电路充电,当为Fpre为高电平时预充电管关断,切断从电源到内部电路的通路。NMOS管Mn1到Mn16是位线选择管,位线选择管的数量根据存储器阵列组织形式的不同而不同,可以是两个到多个。每个位线选择管的一端连接存储阵列中的位线,另一端连接预充电管Mp1和充电补偿管Mp2的漏端以及充电补偿电路的反相器inv2和输出驱动电路中的反相器inv1的输入端。位线选择管由列译码器的译码结果信号s1到s16控制。充电补偿管Mp2及其驱动反相器inv2是本发明提出的创新性结构,Mp2的连接方式与Mp1大致相同,源端连接着电源,漏端连接着内部电路,但Mp2管受反相器inv2的输出端控制,反相器inv2的输入端与预充电管Mp1和充电补偿管Mp2的漏端连接。因此,在存储器预充电阶段,反相器inv2的输入端被充电到高电平,其输出的低电平可将充电补偿管Mp2打开,进而使得在预充电管Mp1被关断后充电补偿管Mp2仍然可以对内部电路充电。In the circuit, the PMOS transistor M p1 is a traditional pre-charging tube. The source of M p1 is connected to the power supply, and the drain is connected to the internal circuit. M p1 is controlled by the pre-charging signal F pre . When F pre is low, the pre-charging The charging tube is turned on to start charging the circuit. When F pre is high level, the pre-charging tube is turned off, cutting off the path from the power supply to the internal circuit. The NMOS transistors Mn1 to Mn16 are bit line selection transistors, and the number of bit line selection transistors varies according to the organizational form of the memory array, and may be two or more. One end of each bit line selection transistor is connected to the bit line in the storage array, and the other end is connected to the drain end of the precharge transistor M p1 and the charging compensation transistor M p2 , the inverter inv 2 of the charging compensation circuit, and the inverter in the output drive circuit. The input terminal of the phase device inv 1 . The bit line selection transistors are controlled by the decoding result signals s 1 to s 16 of the column decoder. The charging compensation tube M p2 and its driving inverter inv 2 are innovative structures proposed by the present invention. The connection mode of M p2 is roughly the same as that of M p1 . The source end is connected to the power supply, and the drain end is connected to the internal circuit . Controlled by the output terminal of the inverter inv 2 , the input terminal of the inverter inv 2 is connected to the drain terminals of the pre-charging transistor M p1 and the charging compensation transistor M p2 . Therefore, in the memory pre-charging stage, the input terminal of the inverter inv2 is charged to a high level, and the low level of its output can turn on the charging compensation transistor M p2 , so that after the pre-charging transistor M p1 is turned off The charging compensation tube M p2 can still charge the internal circuit.
本发明的操作流程图6所示,电路中各信号的时序关系如图7所示,其中sn和wm分别是列译码器和行译码器译码后选中的字线和位线选择信号,CBLn是被选中位线的等效电容。如图6所示,该电路的操作流程可分为三个阶段:The operation flowchart of the present invention is shown in Figure 6, and the timing relationship of each signal in the circuit is shown in Figure 7, wherein sn and wm are word lines and bit lines selected after column decoder and row decoder decoding respectively Select signal, C BLn is the equivalent capacitance of the selected bit line. As shown in Figure 6, the operation flow of this circuit can be divided into three stages:
1.预充电管(Mp1)开启阶段(时序图中的t1):在预充电操作开始时,预充电信号(Fpre)下跳到低电平使预充电管(Mp1)开启对电路等效电容(Cd)进行预充电。此时存储器的行译码器和列译码器对地址进行译码操作,存储阵列中的字线(wm)和位线选择信号(sn)都保持为低电平。由于(sn)为低电平,所以位线选择管关闭,位线在此阶段并没有被预充电。1. Pre-charging tube (M p1 ) turn-on phase (t 1 in the timing diagram): When the pre-charging operation starts, the pre-charging signal (F pre ) jumps to a low level to turn on the pre-charging tube (M p1 ) for The circuit equivalent capacitance (C d ) is precharged. At this time, the row decoder and the column decoder of the memory decode the address, and the word line (w m ) and bit line selection signals (s n ) in the memory array are kept at low level. Since (s n ) is at low level, the bit line selection transistor is turned off, and the bit line is not precharged at this stage.
2.位线预充电阶段(时序图中的t2):列译码器先于行译码器t2时间产生结果。此时,根据列译码器结果,相应位线选择信号(si)产生上跳,其上跳沿将相应的位线选择管(Mni)开启,使预充电电路和所选中的位线连接。同时,预充电信号(Fpre)保持为低,预充电管(Mp1)继续导通并和充电补偿管(Mp2)一起对位线等效电容充电。而未被位线选择信号选中的位线则不进行充电操作。2. Bit line precharging phase (t 2 in the timing diagram): the column decoder produces a result t 2 before the row decoder. At this time, according to the result of the column decoder, the corresponding bit line selection signal (s i ) jumps up, and its jump edge turns on the corresponding bit line selection transistor (M ni ), so that the precharge circuit and the selected bit line connect. At the same time, the precharge signal (F pre ) remains low, and the precharge transistor (M p1 ) continues to conduct and charge the equivalent capacitance of the bit line together with the charge compensation transistor (M p2 ). The bit lines not selected by the bit line selection signal are not charged.
3.预充电管(Mp1)关闭阶段(时序图中的t3):行译码器完成译码操作,相应字线(wi)上跳选通存储单元。同时,预充电信号(Fpre)上跳到高电平将预充电管(Mp1)关闭。此时,如果存储单元存储的是“1”信号,则存储单元的NMOS管将位线与地线连通,开始对位线等效电容(CBLj)放电。由于存储单元的NMOS管驱动能力大于充电补偿管(Mp2),所以位线将被放电到低电平,输出驱动反相器(inv1)输出“1”信号;如果存储单元存储的是“0”信号,则位线与地线没有连接通路,由充电补偿管(Mp2)继续对位线充电到电源电压,输出驱动反相器(inv1)保持输出“0”信号。3. The pre-charge tube (M p1 ) off stage (t 3 in the timing diagram): the row decoder completes the decoding operation, and the corresponding word line (w i ) jumps up to select the memory cell. At the same time, the precharge signal (F pre ) jumps to a high level to turn off the precharge tube (M p1 ). At this time, if the memory cell stores a "1" signal, the NMOS transistor of the memory cell connects the bit line to the ground line, and starts to discharge the bit line equivalent capacitance (C BLj ). Since the drive capability of the NMOS tube of the storage unit is greater than that of the charging compensation tube (M p2 ), the bit line will be discharged to a low level, and the output drive inverter (inv 1 ) outputs a "1"signal; if the storage unit stores " 0” signal, then there is no connection path between the bit line and the ground line, the charging compensation tube (M p2 ) continues to charge the bit line to the power supply voltage, and the output drives the inverter (inv 1 ) to keep outputting a “0” signal.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710035330A CN101110260B (en) | 2007-07-10 | 2007-07-10 | Memory Selective Precharge Circuit with Charge Compensation Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710035330A CN101110260B (en) | 2007-07-10 | 2007-07-10 | Memory Selective Precharge Circuit with Charge Compensation Structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101110260A true CN101110260A (en) | 2008-01-23 |
CN101110260B CN101110260B (en) | 2010-05-19 |
Family
ID=39042279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710035330A Expired - Fee Related CN101110260B (en) | 2007-07-10 | 2007-07-10 | Memory Selective Precharge Circuit with Charge Compensation Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101110260B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104978999A (en) * | 2014-04-03 | 2015-10-14 | 晶宏半导体股份有限公司 | Bit line multiplexer with precharge |
CN115148243A (en) * | 2021-03-31 | 2022-10-04 | 长鑫存储技术有限公司 | Memory circuit, control method and equipment for memory pre-charging |
CN115236534A (en) * | 2022-07-29 | 2022-10-25 | 苏州浪潮智能科技有限公司 | Server RTC battery voltage detection device and detection method |
WO2023070337A1 (en) * | 2021-10-26 | 2023-05-04 | 华为技术有限公司 | Single-port memory |
CN117174148A (en) * | 2023-09-22 | 2023-12-05 | 百代(上海)数据技术有限公司 | Storage circuit and data writing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07130175A (en) * | 1993-09-10 | 1995-05-19 | Toshiba Corp | Semiconductor storage device |
US6215349B1 (en) * | 1999-01-05 | 2001-04-10 | International Business Machines Corp. | Capacitive coupled driver circuit |
-
2007
- 2007-07-10 CN CN200710035330A patent/CN101110260B/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104978999A (en) * | 2014-04-03 | 2015-10-14 | 晶宏半导体股份有限公司 | Bit line multiplexer with precharge |
CN115148243A (en) * | 2021-03-31 | 2022-10-04 | 长鑫存储技术有限公司 | Memory circuit, control method and equipment for memory pre-charging |
CN115148243B (en) * | 2021-03-31 | 2024-05-14 | 长鑫存储技术有限公司 | Memory circuit, memory precharge control method and apparatus |
WO2023070337A1 (en) * | 2021-10-26 | 2023-05-04 | 华为技术有限公司 | Single-port memory |
CN115236534A (en) * | 2022-07-29 | 2022-10-25 | 苏州浪潮智能科技有限公司 | Server RTC battery voltage detection device and detection method |
CN115236534B (en) * | 2022-07-29 | 2023-11-14 | 苏州浪潮智能科技有限公司 | A server RTC battery voltage detection device and detection method |
CN117174148A (en) * | 2023-09-22 | 2023-12-05 | 百代(上海)数据技术有限公司 | Storage circuit and data writing method |
CN117174148B (en) * | 2023-09-22 | 2025-02-25 | 百代(上海)数据技术有限公司 | Memory circuit and data writing method |
Also Published As
Publication number | Publication date |
---|---|
CN101110260B (en) | 2010-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9171634B2 (en) | Memory device and method of controlling leakage current within such a memory device | |
JP5642269B2 (en) | Device, method and chip for memory write processing | |
JP6308218B2 (en) | Semiconductor memory device | |
JP5441272B2 (en) | Semiconductor memory device | |
US8000156B2 (en) | Memory device with propagation circuitry in each sub-array and method thereof | |
US20110149661A1 (en) | Memory array having extended write operation | |
KR100816939B1 (en) | Method and apparatus for sensing and capturing tuning differential data in high speed memory | |
CN113808632B (en) | Memory circuit and method of controlling wake-up operation of memory array | |
CN102446545B (en) | Design method of static random access memory suitable for low-power chip | |
JP2010218649A (en) | Semiconductor storage device | |
KR102569158B1 (en) | Bit line pre-charge circuit for power management modes in multi bank sram | |
CN108962311B (en) | SRAM control circuit and method for sequentially entering and exiting low-power-consumption state | |
CN101110260A (en) | Memory Selective Precharge Circuit with Charge Compensation Structure | |
CN106205678B (en) | A kind of duplication bit line control circuit | |
CN105702281A (en) | SRAM half-select disturb elimination structure based on hierarchical bit line structure | |
KR102707728B1 (en) | Single-ended sense memory using reset-set latch | |
CN118765416A (en) | Memory with bit cell power enhancement | |
JP2773665B2 (en) | Semiconductor storage device | |
CN113140246A (en) | Pipeline SRAM and operation method thereof | |
US20090168557A1 (en) | Ultra wide voltage range register file circuit using programmable triple stacking | |
US7095673B2 (en) | Semiconductor memory device capable of operating at high speed | |
JP2773663B2 (en) | Semiconductor storage device | |
KR100765439B1 (en) | Static RAM Using Double Boost Cell Bias Technique | |
Srivastav et al. | Charge scavenging gate coupled hierarchical bitline scheme for ultra-low power srams in 65nm lstp cmos | |
CN222421372U (en) | Memory circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100519 Termination date: 20120710 |