CN101106101A - Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure - Google Patents
Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure Download PDFInfo
- Publication number
- CN101106101A CN101106101A CNA2006101030955A CN200610103095A CN101106101A CN 101106101 A CN101106101 A CN 101106101A CN A2006101030955 A CNA2006101030955 A CN A2006101030955A CN 200610103095 A CN200610103095 A CN 200610103095A CN 101106101 A CN101106101 A CN 101106101A
- Authority
- CN
- China
- Prior art keywords
- layer
- silicon oxynitride
- forming
- hard mask
- metal hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 104
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 94
- 239000010703 silicon Substances 0.000 claims abstract description 94
- 229910052751 metal Inorganic materials 0.000 claims abstract description 62
- 239000002184 metal Substances 0.000 claims abstract description 62
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 40
- 230000004888 barrier function Effects 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 230000008569 process Effects 0.000 claims description 49
- 239000000463 material Substances 0.000 claims description 47
- 230000009977 dual effect Effects 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 17
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 17
- 229910052721 tungsten Inorganic materials 0.000 claims description 17
- 239000010937 tungsten Substances 0.000 claims description 17
- 230000004048 modification Effects 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 230000003667 anti-reflective effect Effects 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 8
- -1 tungsten nitride Chemical class 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 238000005530 etching Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- DUFGEJIQSSMEIU-UHFFFAOYSA-N [N].[Si]=O Chemical compound [N].[Si]=O DUFGEJIQSSMEIU-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种内连线结构及其开口的形成方法,尤其涉及一种单镶嵌结构与双镶嵌结构及其开口的形成方法。The invention relates to a method for forming an interconnect structure and an opening thereof, in particular to a method for forming a single damascene structure and a double damascene structure and an opening thereof.
背景技术Background technique
随着半导体技术的进步,半导体元件的尺寸也不断的缩小,而进入深亚微米(Deep Sub-Micron)的领域中。当集成电路的集成度增加时,晶片的表面无法提供足够的面积来制作所需的内连线(Interconnect),因此为了配合半导体元件缩小后所增加的内连线,多层导体连线的设计,便成为超大型集成电路技术所必须采用的方式。With the advancement of semiconductor technology, the size of semiconductor components is also continuously reduced, and they enter the field of Deep Sub-Micron. When the integration of integrated circuits increases, the surface of the chip cannot provide enough area to make the required interconnection (Interconnect). , has become the method that VLSI technology must adopt.
一般而言,多重内连线大多是利用镶嵌工艺来形成,其中包括单镶嵌(single-damascene)工艺或双镶嵌(dual-damascene)工艺。目前,镶嵌工艺于介电层中定义出沟渠(或开口)的方式是,先在介电层上形成氮化钛层(TiN)。然后,在氮化钛层上形成具有沟渠(或开口)图案的光致抗蚀剂层。接着,将光致抗蚀剂层的沟渠(或开口)图案转移至氮化钛层。接着,以具有沟渠(或开口)图案的氮化钛层当作硬掩模,于介电层中定义出沟渠(或开口)。而且,由于光刻工艺的限制,在镶嵌工艺中通常会在氮化钛层上形成有一层等离子体增强式氧化层(plasma-enhanced oxide,PE-oxide),以提高工艺窗口(process window),并以氮化钛层与等离子体增强式氧化层作为镶嵌工艺中的硬掩模层。Generally speaking, multiple interconnections are mostly formed by using a damascene process, including a single-damascene process or a dual-damascene process. Currently, the damascene process defines trenches (or openings) in the dielectric layer by first forming a titanium nitride (TiN) layer on the dielectric layer. Then, a photoresist layer having a trench (or opening) pattern is formed on the titanium nitride layer. Next, the trench (or opening) pattern of the photoresist layer is transferred to the titanium nitride layer. Next, a trench (or opening) is defined in the dielectric layer by using the titanium nitride layer having a trench (or opening) pattern as a hard mask. Moreover, due to the limitations of the photolithography process, a layer of plasma-enhanced oxide (PE-oxide) is usually formed on the titanium nitride layer in the damascene process to improve the process window. And the titanium nitride layer and the plasma-enhanced oxide layer are used as the hard mask layer in the damascene process.
然而,在镶嵌工艺中仍有一些问题待解决。举例来说,在介电层中定义出沟渠(或开口)的步骤前,必须经过二次蚀刻步骤,才能够在硬掩模层中定义出沟渠(或开口)图案。所谓二次蚀刻步骤包括:第一次蚀刻步骤以及第二次蚀刻步骤。其中,第一次蚀刻步骤为,以光致抗蚀剂层为掩模,移除部分等离子体增强式氧化层,至暴露出氮化钛层表面。第二次蚀刻步骤为,蚀刻部分氮化钛层,至暴露出介电层表面。因此,现有的镶嵌工艺需经过相当多的步骤才能完成,且会耗费较多的工艺时间(cycle time)。However, there are still some issues to be solved in the damascene process. For example, before the step of defining trenches (or openings) in the dielectric layer, a second etching step is required to define trenches (or openings) in the hard mask layer. The so-called secondary etching step includes: the first etching step and the second etching step. Wherein, the first etching step is to use the photoresist layer as a mask to remove part of the plasma-enhanced oxide layer until the surface of the titanium nitride layer is exposed. The second etching step is to etch part of the titanium nitride layer until the surface of the dielectric layer is exposed. Therefore, the existing damascene process needs to go through quite a lot of steps to complete, and will consume a lot of process time (cycle time).
发明内容Contents of the invention
本发明的目的是提供一种单镶嵌开口的形成方法,能够简化工艺步骤,且可节省工艺时间。The object of the present invention is to provide a method for forming a single damascene opening, which can simplify process steps and save process time.
本发明的又一目的是提供一种单镶嵌结构,同样能够简化工艺步骤,且可节省工艺时间。Another object of the present invention is to provide a single damascene structure, which can also simplify process steps and save process time.
本发明的再一目的是提供一种双镶嵌开口的形成方法,能够简化工艺步骤,且可节省工艺时间。Another object of the present invention is to provide a method for forming dual damascene openings, which can simplify process steps and save process time.
本发明的另一目的是提供一种双镶嵌结构,能够简化工艺步骤,且可节省工艺时间。Another object of the present invention is to provide a dual damascene structure, which can simplify process steps and save process time.
本发明提出一种单镶嵌开口的形成方法。此方法是先提供基底,基底中已形成有导线。然后,于基底上依序形成阻障层、介电层、金属硬掩模层、氮氧化硅层、底部抗反射层与图案化光致抗蚀剂层。接着,直接移除未被图案化光致抗蚀剂层覆盖住的底部抗反射层、氮氧化硅层与金属硬掩模层,至暴露出部分介电层表面。之后,移除图案化光致抗蚀剂层与底部抗反射层。然后,以氮氧化硅层与金属硬掩模为掩模,移除部分的介电层与部分的阻障层,以形成暴露出导线的表面的镶嵌开口。The invention proposes a method for forming a single damascene opening. In this method, a substrate is provided first, and wires have been formed in the substrate. Then, a barrier layer, a dielectric layer, a metal hard mask layer, a silicon nitride oxide layer, a bottom anti-reflection layer and a patterned photoresist layer are sequentially formed on the substrate. Next, the bottom anti-reflection layer, the silicon oxynitride layer and the metal hard mask layer not covered by the patterned photoresist layer are directly removed to expose part of the surface of the dielectric layer. Afterwards, the patterned photoresist layer and the bottom anti-reflection layer are removed. Then, using the silicon oxynitride layer and the metal hard mask as a mask, part of the dielectric layer and part of the barrier layer are removed to form a damascene opening exposing the surface of the wire.
依照本发明的一实施例所述,上述的单镶嵌开口的形成方法中,于形成氮氧化硅层之后,以及形成底部抗反射层之前,还可以形成一层氧化硅层。在另一实施例中,也可以对氮氧化硅层进行一表面改质工艺,以于氮氧化硅层上形成一氧化层,其中表面改质工艺包括以含氧气体进行一等离子体工艺。依照本发明的一实施例所述,上述的金属镶嵌开口的形成方法中,导线的材料例如是铜。金属硬掩模层的材料例如是钽(Ta)、氮化钽(TaN)、钛(Ti)、氮化钛(TiN)、钨(W)或氮化钨(WN)。介电层的材料例如是低介电常数材料。According to an embodiment of the present invention, in the above method for forming the single damascene opening, after forming the silicon oxynitride layer and before forming the bottom anti-reflection layer, a silicon oxide layer may also be formed. In another embodiment, a surface modification process may also be performed on the silicon oxynitride layer to form an oxide layer on the silicon oxynitride layer, wherein the surface modification process includes performing a plasma process with an oxygen-containing gas. According to an embodiment of the present invention, in the above method for forming the damascene opening, the material of the wire is copper, for example. The material of the metal hard mask layer is, for example, tantalum (Ta), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN), tungsten (W) or tungsten nitride (WN). The material of the dielectric layer is, for example, a low dielectric constant material.
本发明提出一种单镶嵌结构,此单镶嵌结构包括基底、阻障层、介电层、金属硬掩模层、氮氧化硅层与导体层。其中,基底中配置有导线。阻障层位于基底上。介电层位于阻障层上。金属硬掩模层位于介电层上。氮氧化硅层位于金属硬掩模层上。其中,氮氧化硅层、金属硬掩模层、介电层与阻障层中具有暴露部分导线的表面的镶嵌开口。导体层配置于镶嵌开口中。The invention proposes a single damascene structure, which includes a substrate, a barrier layer, a dielectric layer, a metal hard mask layer, a silicon oxynitride layer and a conductor layer. Wherein, wires are arranged in the substrate. The barrier layer is on the substrate. A dielectric layer is on the barrier layer. A metal hard mask layer is on the dielectric layer. A silicon oxynitride layer is on the metal hard mask layer. Wherein, the silicon oxynitride layer, the metal hard mask layer, the dielectric layer and the barrier layer have inlaid openings exposing the surface of part of the wires. The conductor layer is disposed in the inlaid opening.
依照本发明的一实施例所述,上述的单镶嵌结构中,还可包括一层氧化硅层配置于氮氧化硅层上。在另一实施例中,还可包括一层氧化层配置于氮氧化硅层上。According to an embodiment of the present invention, the above-mentioned single damascene structure may further include a silicon oxide layer disposed on the silicon oxynitride layer. In another embodiment, an oxide layer may also be disposed on the silicon oxynitride layer.
依照本发明的一实施例所述,上述的单镶嵌结构中,介电层的材料例如是低介电常数材料。金属硬掩模层的材料例如是钽、氮化钽、钛、氮化钛、钨或氮化钨。导线的材料例如是铜。According to an embodiment of the present invention, in the above single damascene structure, the material of the dielectric layer is, for example, a low dielectric constant material. The material of the metal hard mask layer is, for example, tantalum, tantalum nitride, titanium, titanium nitride, tungsten or tungsten nitride. The material of the wire is, for example, copper.
本发明提出一种双镶嵌开口的形成方法,此方法是先提供一基底,基底中已形成有一导线。然后,于基底上依序形成阻障层、介电层、金属硬掩模层、氮氧化硅层、第一底部抗反射层与第一图案化光致抗蚀剂层。接着,直接移除未被第一图案化光致抗蚀剂层覆盖住的第一底部抗反射层、氮氧化硅层以及金属硬掩模层,以形成暴露出部分介电层表面的一第一开口。之后,移除第一图案化光致抗蚀剂层与第一底部抗反射层。然后,于基底上方形成第二图案化光致抗蚀剂层,覆盖氮氧化硅层以及部分介电层。而后,以第二图案化光致抗蚀剂层为掩模,移除部分的介电层,以于介电层中形成第二开口。接着,移除第二图案化光致抗蚀剂层。随后,以氮氧化硅层与金属硬掩模层为掩模,移除部分的介电层与部分的阻障层,以形成暴露出导线表面的双镶嵌开口。The invention proposes a method for forming dual damascene openings. In the method, a substrate is provided first, and a wire is formed in the substrate. Then, a barrier layer, a dielectric layer, a metal hard mask layer, a silicon nitride oxide layer, a first bottom anti-reflection layer and a first patterned photoresist layer are sequentially formed on the substrate. Next, the first bottom anti-reflection layer, the silicon oxynitride layer and the metal hard mask layer not covered by the first patterned photoresist layer are directly removed to form a first part of the surface of the dielectric layer exposed. Open your mouth. Afterwards, the first patterned photoresist layer and the first bottom anti-reflection layer are removed. Then, a second patterned photoresist layer is formed on the substrate to cover the silicon oxynitride layer and part of the dielectric layer. Then, using the second patterned photoresist layer as a mask, part of the dielectric layer is removed to form a second opening in the dielectric layer. Next, the second patterned photoresist layer is removed. Subsequently, using the silicon oxynitride layer and the metal hard mask layer as a mask, part of the dielectric layer and part of the barrier layer are removed to form a dual damascene opening exposing the surface of the wire.
依照本发明的一实施例所述,上述的双镶嵌开口的形成方法中,于形成氮氧化硅层之后,以及形成第一底部抗反射层之前,还可以形成一层氧化硅层。在另一实施例中,也可以对氮氧化硅层进行一表面改质工艺。以于氮氧化硅层上形成一氧化层,其中表面改质工艺包括以含氧气体进行一等离子体工艺。According to an embodiment of the present invention, in the above-mentioned method for forming the dual damascene opening, after forming the silicon oxynitride layer and before forming the first bottom anti-reflection layer, a silicon oxide layer may also be formed. In another embodiment, a surface modification process may also be performed on the silicon oxynitride layer. An oxide layer is formed on the silicon oxynitride layer, wherein the surface modification process includes performing a plasma process with an oxygen-containing gas.
依照本发明的一实施例所述,上述的双镶嵌开口的形成方法中,导线的材料例如是铜。金属硬掩模层的材料例如是钽、氮化钽、钛、氮化钛、钨或氮化钨。介电层的材料例如是低介电常数材料。According to an embodiment of the present invention, in the above method for forming the dual damascene opening, the material of the wire is copper, for example. The material of the metal hard mask layer is, for example, tantalum, tantalum nitride, titanium, titanium nitride, tungsten or tungsten nitride. The material of the dielectric layer is, for example, a low dielectric constant material.
本发明提出一种双镶嵌结构,此双镶嵌结构包括基底、阻障层、介电层、金属硬掩模、氮氧化硅层与导体层。其中,基底中配置有导线。阻障层位于基底上。介电层位于阻障层上。金属硬掩模层位于介电层上。氮氧化硅层位于金属硬掩模层上。其中,氮氧化硅层、金属硬掩模层与介电层中具有暴露出导线的表面的双镶嵌开口。导体层配置于双镶嵌开口中。The present invention proposes a dual damascene structure, which includes a substrate, a barrier layer, a dielectric layer, a metal hard mask, a silicon oxynitride layer and a conductor layer. Wherein, wires are arranged in the substrate. The barrier layer is on the substrate. A dielectric layer is on the barrier layer. A metal hard mask layer is on the dielectric layer. A silicon oxynitride layer is on the metal hard mask layer. Wherein, the silicon oxynitride layer, the metal hard mask layer and the dielectric layer have dual damascene openings exposing the surfaces of the wires. The conductor layer is disposed in the dual damascene opening.
依照本发明的一实施例所述,上述的双镶嵌结构中,还可包括一层氧化硅层配置于氮氧化硅层上。在另一实施例中,也可包括一层氧化层配置于氮氧化硅层上。According to an embodiment of the present invention, the above-mentioned dual damascene structure may further include a silicon oxide layer disposed on the silicon oxynitride layer. In another embodiment, an oxide layer may also be disposed on the silicon oxynitride layer.
依照本发明的一实施例所述,上述的双镶嵌结构中,介电层的材料例如是低介电常数材料。金属硬掩模层的材料例如是钽、氮化钽、钛、氮化钛、钨或氮化钨。导线的材料例如是铜。According to an embodiment of the present invention, in the aforementioned dual damascene structure, the material of the dielectric layer is, for example, a low dielectric constant material. The material of the metal hard mask layer is, for example, tantalum, tantalum nitride, titanium, titanium nitride, tungsten or tungsten nitride. The material of the wire is, for example, copper.
本发明的方法与结构是以氮氧化硅层取代现有的等离子体增强式氧化层(PE-oxide),而本发明在介电层中定义出沟渠(或开口)的步骤之前,只需单一蚀刻步骤,即可在硬掩模层中定义出沟渠(或开口)图案。因此,本发明的方法与结构能够简化工艺步骤,且可节省工艺时间。The method and structure of the present invention replace the existing plasma-enhanced oxide layer (PE-oxide) with a silicon oxynitride layer, and before the step of defining a trench (or opening) in the dielectric layer, only a single The etching step defines a pattern of trenches (or openings) in the hard mask layer. Therefore, the method and structure of the present invention can simplify process steps and save process time.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail together with accompanying drawings.
附图说明Description of drawings
图1A至图1D为依照本发明的一实施例所绘示的一种单镶嵌开口的形成流程的结构剖面示意图;1A to 1D are structural cross-sectional schematic diagrams illustrating a process of forming a single damascene opening according to an embodiment of the present invention;
图2A至图2G为依照本发明的一实施例所绘示的一种双镶嵌开口的形成流程的结构剖面示意图。2A to 2G are structural cross-sectional schematic diagrams illustrating a formation process of a dual damascene opening according to an embodiment of the present invention.
主要元件符号说明Description of main component symbols
100:基底100: base
102:导线102: wire
104:阻障层104: barrier layer
106:介电层106: Dielectric layer
108:金属硬掩模层108: metal hard mask layer
110:氮氧化硅层110: Silicon oxynitride layer
112:底部抗反射层112: Bottom anti-reflection layer
114、122:图案化光致抗蚀剂层114, 122: Patterned photoresist layer
116:镶嵌开口116: Mosaic opening
118、128:导体层118, 128: conductor layer
120、121:沟渠120, 121: ditches
123:开口图案123: opening pattern
124、125:开口124, 125: opening
126:双镶嵌开口126: Double inlay opening
具体实施方式Detailed ways
图1A至图1D为依照本发明的一实施例所绘示的单镶嵌开口的形成方法的流程剖面示意图。1A to FIG. 1D are schematic cross-sectional views of a process for forming a single damascene opening according to an embodiment of the present invention.
首先,请参照图1A,提供一基底100。此基底100中已形成有导线102,导线102的材料例如是铜。First, please refer to FIG. 1A , a
接着,请继续参照图1A,于基底100上依序形成阻障层104、介电层106、金属硬掩模层108、氮氧化硅层110、底部抗反射层112以及图案化光致抗蚀剂层114。Next, please continue to refer to FIG. 1A , a
其中,阻障层104的材料例如是氮化硅(SiN)或其他合适的材料,其形成方法例如是化学气相沉积法。阻障层104可以避免铜表面氧化及避免铜扩散到介电层106。介电层106例如是低介电常数介电层,低介电常数介电层的材料例如是低介电常数材料包括无机类的材料,例如氢化硅倍半氧化物(HSQ)、掺氟的氧化硅(FSG)等,以及有机类的材料,例如聚芳香烯醚(Flare)、芳香族碳氢化合物(SILK)、聚亚芳香基醚(Parylene)等。介电层106的形成方法例如是化学气相沉积法。在一实施例中,介电层106还可例如是由一层低介电常数介电层与一层绝缘层所构成。此绝缘层的材质例如是以四乙氧基硅烷(TEOS)为反应气体源形成的氧化硅,而其形成方法例如是化学气相沉积法。绝缘层又可作为化学机械抛光终止层,以避免进行化学机械抛光法(CMP)时,可能会有抛光到介电层106之虞。金属硬掩模层108的材料例如是钽、氮化钽、钛、氮化钛、钨或氮化钨,其形成方法例如是化学气相沉积法。底部抗反射层112例如是有机底部抗反射层或无机底部抗反射层,其中无机抗反射层的形成方法例如是化学气相沉积法,而其材质可包括非晶相碳膜、氮化硅、氮氧化硅和氧化钛等。Wherein, the material of the
在一实施例中,在氮氧化硅层110形成之后,以及底部抗反射层112形成之前,还可以于氮氧化硅层110上形成一层氧化硅层(未绘示),以使氮氧化硅层110的折射率(n)与介电常数(k)不会随着时间而有变化。In one embodiment, after the formation of the
在另一实施例中,在氮氧化硅层110形成之后,以及底部抗反射层112形成之前,还可以对氮氧化硅层110进行表面改质工艺,以于氮氧化硅层110上形成一氧化层(未绘示),以维持氮氧化硅层110的折射率与介电常数。表面改质工艺例如是以含氧气体对氮氧化硅层110的表面进行一等离子体工艺。In another embodiment, after the
特别是,氮氧化硅层110可减少底下的反射材质(金属硬掩模层108)的反射光,因此有助于光刻工艺的进行。In particular, the
然后,请参照图1B,直接移除未被图案化光致抗蚀剂层114覆盖住的底部抗反射层112、氮氧化硅层110与金属硬掩模层108,至暴露出部分介电层106的表面。更详细而言,上述直接移除未被图案化光致抗蚀剂层114覆盖住的底部抗反射层112、氮氧化硅层110与金属硬掩模层108的方法是进行一次蚀刻工艺即完成,亦即是仅进行单一蚀刻步骤。Then, referring to FIG. 1B , the bottom
然后,请参照图1C,移除图案化光致抗蚀剂层114与底部抗反射层112,其移除方法例如是进行一蚀刻工艺。之后,以氮氧化硅层110与金属硬掩模层108为掩模,移除部分的介电层106与部分的阻障层104,以形成暴露出导线102的表面的镶嵌开口116。上述,移除部分介电层106与部分阻障层104的方法例如是,先移除未被氮氧化硅层110与金属硬掩模层108覆盖住的介电层106,其移除方法例如是进行一蚀刻工艺。之后,再移除暴露的阻障层104,其移除方法例如是进行一蚀刻工艺。Then, referring to FIG. 1C , the patterned
随后,请参照图1D,于镶嵌开口116中填入导体层118,并配合化学机械抛光(CMP)法磨去多余的金属,以形成单镶嵌结构。导体层118的材料例如是金属材料或多晶硅。Then, referring to FIG. 1D , the
值得一提的是,本发明在介电层中定义出开口的步骤之前,只需单一蚀刻步骤,即可在硬掩模层中定义出开口图案,因此能够简化工艺步骤,以及可节省工艺时间。It is worth mentioning that before the step of defining the opening in the dielectric layer, the present invention only needs a single etching step to define the opening pattern in the hard mask layer, thus simplifying the process steps and saving process time .
以下,说明利用本发明的方法所形成的单镶嵌结构。其中,所有构件的材料,已于上述实施例中说明,故于此不再赘述。Hereinafter, a single damascene structure formed by the method of the present invention will be described. Wherein, the materials of all the components have been described in the above-mentioned embodiments, so no more details are given here.
请再次参照图1D,单镶嵌结构包括,基底100、阻障层104、介电层106、金属硬掩模层108、氮氧化硅层110以及导体层118。其中,基底100中配置有导线102。阻障层104位于基底100上。介电层106位于阻障层104上。金属硬掩模层108位于介电层106上。氮氧化硅层110位于金属硬掩模层108上。其中,氮氧化硅层110、金属硬掩模层108、介电层106与阻障层104中具有暴露部分导线102的表面的镶嵌开口116。导体层118配置于镶嵌开口116中。Referring to FIG. 1D again, the single damascene structure includes a
在一实施例中,本发明的单镶嵌结构还可包括有一氧化硅层(未绘示),其配置于氮氧化硅层110上。In an embodiment, the single damascene structure of the present invention may further include a silicon oxide layer (not shown), which is disposed on the
在另一实施例中,本发明的单镶嵌结构还可包括有一氧化层(未绘示),其配置于氮氧化硅层110上,且此氧化层是以利用进行一等离子体工艺,对氮氧化硅层110表面进行改质所形成的。上述的氧化硅层与氧化层的作用为可维持氮氧化硅层110的折射率与介电常数,使其不会随时间改变。In another embodiment, the single damascene structure of the present invention may further include an oxide layer (not shown), which is disposed on the
图2A至图2G为依照本发明一实施例所绘示的双镶嵌开口的形成方法的流程剖面示意图。在图2A至图2G中省略与图1A至图1D的相同构件的说明,且以相同标号表示。2A to 2G are schematic cross-sectional flow diagrams of a method for forming dual damascene openings according to an embodiment of the present invention. In FIGS. 2A to 2G , the description of the same components as those in FIGS. 1A to 1D is omitted, and they are denoted by the same reference numerals.
首先,请参照图2A,提供一基底100。基底100中已形成有导线102,金属102的材料例如是铜。First, please refer to FIG. 2A , a
接着,请继续参照图2A,于基底100上依序形成阻障层104、介电层106、金属硬掩模层108、氮氧化硅层110、底部抗反射层112以及图案化光致抗蚀剂层114。Next, please continue referring to FIG. 2A , a
在一实施例中,在氮氧化硅层110形成之后,以及底部抗反射层112形成之前,还可以于氮氧化硅层110上形成一层氧化硅层(未绘示),以使氮氧化硅层110的折射率与介电常数不会随着时间而有变化。In one embodiment, after the formation of the
在另一实施例中,在氮氧化硅层110形成之后,以及底部抗反射层112形成之前,还可以对氮氧化硅层110进行表面改质工艺,以于氮氧化硅层110上形成一氧化层(未绘示),以维持氮氧化硅层110的折射率与介电常数。表面改质工艺例如是以含氧气体对氮氧化硅层110的表面进行一等离子体工艺。In another embodiment, after the
接着,请参照图2B,直接移除未被图案化光致抗蚀剂层114覆盖住的底部抗反射层112、氮氧化硅层110以及金属硬掩模层108,以形成暴露出部分介电层106表面的沟渠120。Next, referring to FIG. 2B , the bottom
同样地,氮氧化硅层110与金属硬掩模层108可以用同一蚀刻条件移除,不需如现有技术中因金属硬掩模层与其上的膜层的材料特性不同,而需以两种不同蚀刻工艺条件移除。因此可以简化工艺步骤,以节省时间,进而可提高产能。Similarly, the
然后,请参照图2C,移除图案化光致抗蚀剂层114与底部抗反射层112。之后,于基底100上方形成一图案化光致抗蚀剂层122,覆盖住氮氧化硅层110以及部分的介电层106。此图案化光致抗蚀剂层122中具有一开口图案123。Then, referring to FIG. 2C , the patterned
在一实施例中,还可在图案化光致抗蚀剂层122形成之前,于基底100上方形成一层底部抗反射层(未绘示),覆盖住氮氧化硅层110以及介电层106。In one embodiment, before the patterned
然后,请参照图2D。以图案化光致抗蚀剂层122为掩模,移除部分的介电层106,以于介电层106中形成开口124。Then, please refer to Figure 2D. Using the patterned
然后,请参照图2E,移除图案化光致抗蚀剂层122。移除图案化光致抗蚀剂层122的方法例如是进行一蚀刻工艺。Then, referring to FIG. 2E , the patterned
随后,请参照图2F,以氮氧化硅层110与金属硬掩模层108为掩模,移除部分的介电层106与部分的阻障层104,至暴露出导线102表面,以形成沟渠121以及开口125。而沟渠121以及开口125是作为双镶嵌开口126。Subsequently, referring to FIG. 2F , using the
之后,请参照图2G,于双镶嵌开口126中填入导体层128,并配合化学机械抛光磨去多余的金属,以分别于沟渠121中形成导线,以及于开口125中形成插塞,而导线与插塞构成一双镶嵌结构。导体层128的材料例如是金属材料或多晶硅。Afterwards, please refer to FIG. 2G , fill the
以下,说明利用本发明的方法所形成的双镶嵌结构。其中,所有构件的材料,已于上述实施例中说明,故于此不再赘述。Hereinafter, the dual damascene structure formed by the method of the present invention will be described. Wherein, the materials of all the components have been described in the above-mentioned embodiments, so no more details are given here.
请再次参照图2G,双镶嵌结构主要包括:基底100、阻障层104、介电层106、金属硬掩模层108、氮氧化硅层110与导体层128。其中,基底100中配置有导线102。阻障层104位于基底100上。介电层106位于阻障层104上。金属硬掩模层108位于介电层106上。氮氧化硅层110位于金属硬掩模层108上。其中,氮氧化硅层110、金属硬掩模层108与介电层106中具有暴露部分导线102的表面的双镶嵌开口126。导体层128配置于双镶嵌开口126中。Referring to FIG. 2G again, the dual damascene structure mainly includes: a
在一实施例中,本发明的双镶嵌结构还可包括有一氧化硅层(未绘示),其配置于氮氧化硅层110上。In an embodiment, the dual damascene structure of the present invention may further include a silicon oxide layer (not shown), which is disposed on the
在另一实施例中,本发明的双镶嵌结构还可包括有一氧化层(未绘示),其配置于氮氧化硅层110上,且此氧化层是以利用进行一等离子体工艺,对氮氧化硅层110表面进行改质所形成的。上述的氧化硅层与氧化层的作用为可维持氮氧化硅层110的折射率与介电常数,使其不会随时间改变。In another embodiment, the dual damascene structure of the present invention may further include an oxide layer (not shown), which is disposed on the
综上所述,本发明在介电层中定义出沟渠(或开口)的步骤之前,只需单一蚀刻步骤,即可在硬掩模层中定义出沟渠(或开口)图案。因此,本发明的方法与结构能够简化工艺步骤,且可节省工艺时间。另一方面,氮氧化硅层还可以吸收来自金属硬掩模层的反射光,而有助于光刻工艺的进行。To sum up, before the step of defining the trench (or opening) in the dielectric layer, the present invention only needs a single etching step to define the pattern of the trench (or opening) in the hard mask layer. Therefore, the method and structure of the present invention can simplify process steps and save process time. On the other hand, the silicon oxynitride layer can also absorb reflected light from the metal hard mask layer, thereby facilitating the photolithography process.
虽然本发明已以优选实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围的前提下,可作些许的更动与润饰,因此本发明的保护范围当视所附权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection of the invention should be defined by the appended claims.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101030955A CN100536107C (en) | 2006-07-10 | 2006-07-10 | Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101030955A CN100536107C (en) | 2006-07-10 | 2006-07-10 | Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101106101A true CN101106101A (en) | 2008-01-16 |
CN100536107C CN100536107C (en) | 2009-09-02 |
Family
ID=38999920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101030955A Active CN100536107C (en) | 2006-07-10 | 2006-07-10 | Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100536107C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315163A (en) * | 2011-09-28 | 2012-01-11 | 上海华力微电子有限公司 | Manufacturing method of ultralow-dielectric-constant film copper-interconnecting layer |
CN102820254A (en) * | 2011-06-07 | 2012-12-12 | 联华电子股份有限公司 | Method for manufacturing semiconductor integrated circuit |
CN101937868B (en) * | 2009-06-30 | 2013-02-13 | 上海华虹Nec电子有限公司 | Method for making through hole in integrated circuit |
CN102054753B (en) * | 2009-11-10 | 2013-03-13 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for dual-inlay structure |
CN104008996A (en) * | 2013-02-27 | 2014-08-27 | 格罗方德半导体公司 | Integrated circuits and methods for fabricating integrated circuits with capping layers between metal contacts and interconnects |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103456A (en) * | 1998-07-22 | 2000-08-15 | Siemens Aktiengesellschaft | Prevention of photoresist poisoning from dielectric antireflective coating in semiconductor fabrication |
US6309962B1 (en) * | 1999-09-15 | 2001-10-30 | Taiwan Semiconductor Manufacturing Company | Film stack and etching sequence for dual damascene |
US20030096496A1 (en) * | 2001-11-20 | 2003-05-22 | I-Hsiung Huang | Method of forming dual damascene structure |
US6638871B2 (en) * | 2002-01-10 | 2003-10-28 | United Microlectronics Corp. | Method for forming openings in low dielectric constant material layer |
US7157366B2 (en) * | 2002-04-02 | 2007-01-02 | Samsung Electronics Co., Ltd. | Method of forming metal interconnection layer of semiconductor device |
TW580756B (en) * | 2003-01-07 | 2004-03-21 | United Microelectronics Corp | Dual damascene process |
US20040219796A1 (en) * | 2003-05-01 | 2004-11-04 | Chih-Ning Wu | Plasma etching process |
-
2006
- 2006-07-10 CN CNB2006101030955A patent/CN100536107C/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937868B (en) * | 2009-06-30 | 2013-02-13 | 上海华虹Nec电子有限公司 | Method for making through hole in integrated circuit |
CN102054753B (en) * | 2009-11-10 | 2013-03-13 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for dual-inlay structure |
CN102820254A (en) * | 2011-06-07 | 2012-12-12 | 联华电子股份有限公司 | Method for manufacturing semiconductor integrated circuit |
CN102820254B (en) * | 2011-06-07 | 2017-03-01 | 联华电子股份有限公司 | Manufacturing method of semiconductor integrated circuit |
CN102315163A (en) * | 2011-09-28 | 2012-01-11 | 上海华力微电子有限公司 | Manufacturing method of ultralow-dielectric-constant film copper-interconnecting layer |
CN104008996A (en) * | 2013-02-27 | 2014-08-27 | 格罗方德半导体公司 | Integrated circuits and methods for fabricating integrated circuits with capping layers between metal contacts and interconnects |
Also Published As
Publication number | Publication date |
---|---|
CN100536107C (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10978389B2 (en) | Semiconductor device and manufacturing method thereof | |
US7550377B2 (en) | Method for fabricating single-damascene structure, dual damascene structure, and opening thereof | |
US7064059B2 (en) | Method of forming dual damascene metal interconnection employing sacrificial metal oxide layer | |
US9613880B2 (en) | Semiconductor structure and fabrication method thereof | |
CN100373612C (en) | Semiconductor device and method for forming dummy via | |
CN100549820C (en) | Method for improving dual damascene etching profile | |
US7410897B2 (en) | Contact plug processing and a contact plug | |
US6495448B1 (en) | Dual damascene process | |
US6159661A (en) | Dual damascene process | |
US20040219796A1 (en) | Plasma etching process | |
US6589881B2 (en) | Method of forming dual damascene structure | |
TW200421498A (en) | Method for forming thick copper self-aligned dual damascene | |
CN101106101A (en) | Single-damascene structure, dual-damascene structure and method for forming opening of single-damascene structure and dual-damascene structure | |
US20060183346A1 (en) | Multilayer anti-reflective coating for semiconductor lithography and the method for forming the same | |
TWI744897B (en) | Method of forming semiconductor device structure | |
CN101231968A (en) | Damascene interconnect structure and dual damascene process | |
CN102034733A (en) | Interconnecting structure and forming method thereof | |
US20040121604A1 (en) | Method of etching a low-k dielectric layer | |
CN101996927A (en) | Multilayer interconnection structure and forming method thereof | |
TWI509740B (en) | Dual damascene process | |
CN102044471A (en) | Interconnecting structure and forming method thereof | |
TW565908B (en) | Manufacturing method of dual damanscene structure | |
CN113314401A (en) | Method for forming semiconductor structure | |
TW202324513A (en) | Method of forming semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |