CN101105345A - Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex - Google Patents
Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex Download PDFInfo
- Publication number
- CN101105345A CN101105345A CNA2007100695941A CN200710069594A CN101105345A CN 101105345 A CN101105345 A CN 101105345A CN A2007100695941 A CNA2007100695941 A CN A2007100695941A CN 200710069594 A CN200710069594 A CN 200710069594A CN 101105345 A CN101105345 A CN 101105345A
- Authority
- CN
- China
- Prior art keywords
- helium
- stage
- pulse tube
- regenerator
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 239000001307 helium Substances 0.000 title claims abstract description 29
- 229910052734 helium Inorganic materials 0.000 title claims abstract description 29
- 239000007788 liquid Substances 0.000 title claims abstract description 17
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 claims abstract description 28
- 230000007246 mechanism Effects 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims description 8
- 230000002792 vascular Effects 0.000 claims 23
- 239000012530 fluid Substances 0.000 abstract description 16
- 238000005057 refrigeration Methods 0.000 abstract description 9
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102100038194 Destrin Human genes 0.000 description 1
- 101000883470 Homo sapiens Destrin Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1408—Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1421—Pulse-tube cycles characterised by details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1424—Pulse tubes with basic schematic including an orifice and a reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
本发明公开了一种采用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机。氦4压缩机经第一级回热器与第二级回热器相连接,第一级回热器经冷头与第一级脉管、第一级调相机构相连接,第二级回热器冷头经第二级脉管与第二级调相机构相连接,第二级脉管冷头经热桥与第三级回热器中部相连接,第三级回热器热端与氦3压缩机相连接,第三级回热器冷头与第三级脉管冷头相连接,第三级脉管热端与第三级调相机构相连接,第三级脉管热端经热桥与第三级回热器中部相连接。本发明在第一、第二级采用工质氦4,在制冷温度最低的第三级采用性能更好的工质氦3,从而节省了氦3的用量,降低了成本。同时比完全采用氦4为工质的方案达到更好的效果。
The invention discloses a liquid helium temperature zone Stirling multistage pulse tube refrigerator using helium 3-helium 4 duplex. The helium 4 compressor is connected to the second-stage regenerator through the first-stage regenerator, the first-stage regenerator is connected to the first-stage pulse tube and the first-stage phasing mechanism through the cold head, and the second-stage regenerator The cold head of the heater is connected to the second-stage phase adjustment mechanism through the second-stage pulse tube, the cold head of the second-stage pulse tube is connected to the middle part of the third-stage regenerator through a thermal bridge, and the hot end of the third-stage regenerator is connected to the middle part of the third-stage regenerator. The helium 3 compressor is connected, the cold head of the third-stage regenerator is connected with the cold head of the third-stage pulse tube, the hot end of the third-stage pulse tube is connected with the third-stage phasing mechanism, and the hot end of the third-stage pulse tube It is connected to the middle part of the third-stage regenerator through a heat bridge. In the present invention, the working fluid helium 4 is used in the first and second stages, and the working fluid helium 3 with better performance is used in the third stage with the lowest refrigeration temperature, thereby saving the amount of helium 3 and reducing the cost. At the same time, it achieves better results than the scheme that completely uses helium 4 as the working fluid.
Description
技术领域technical field
本发明涉及一种采用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机。它适用于要求达到液氦温区的紧凑型脉管制冷机。The invention relates to a liquid helium temperature zone Stirling multistage pulse tube refrigerator using helium 3-helium 4 duplex. It is suitable for compact pulse tube refrigerators requiring to reach the temperature range of liquid helium.
背景技术Background technique
脉管制冷机是世界各国最近十几年重点研究的一种回热式制冷机,主要由回热器、脉管、室温端换热器、冷端换热器、导流器以及调相机构组成,由于消除了低温下的排出器,所以比传统的G-M和斯特林型制冷机更加简单可靠,平均无故障运行时间大大延长,因此在空间应用方面具有更广阔的前景。The pulse tube refrigerator is a recuperative refrigerator that has been researched by countries all over the world in the past ten years. Composition, due to the elimination of the ejector at low temperature, it is simpler and more reliable than the traditional G-M and Stirling type refrigerators, and the mean time between failures is greatly extended, so it has broader prospects in space applications.
按照配气型式,脉管制冷机分为G-M型脉管制冷机和斯特林型脉管制冷机。前者在机械压缩机和脉管制冷机之间采用切换阀门连接,通过对高低压端阀门的控制实现脉管制冷机内气体的压缩和膨胀过程,从而在制冷机的冷端产生制冷效应,工作频率一般在1-2Hz,是目前获得液氦温区制冷的主要方法,但是,由于压缩机部分采用的是油润滑结构,配有油分离和吸附装置,因此体积较为笨重并且需要定期维护。同时,有阀结构产生的压力波存在较大的转化损失,因此效率相对较低,以致很难在空间和军事上获得应用。与此相比,斯特林型脉管制冷机则通过无阀压缩机提供高频压力波(30~60Hz),随着板弹簧支撑、间隙密封和动圈式(或动磁式)线性压缩等技术的发展,其压缩机的电功转换效率通常能达到80%以上。总体而言,斯特林型脉管制冷机较G-M型具有效率高(2~5倍)、体积小和重量轻(小于20%)等优势,在空间和军事方面具有重要的应用价值。无论是G-M型还是斯特林型,都需要使用具有优越的热力性质的气体作为工质。目前绝大多数采用氦4为工质,另外在一定的温区也有一些学者使用其他气体或者混合工质进行研究。According to the gas distribution type, pulse tube refrigerators are divided into G-M type pulse tube refrigerators and Stirling type pulse tube refrigerators. The former uses a switch valve connection between the mechanical compressor and the pulse tube refrigerator, and realizes the compression and expansion process of the gas in the pulse tube refrigerator through the control of the high and low pressure end valves, thereby generating a cooling effect at the cold end of the refrigerator. The frequency is generally 1-2Hz, which is currently the main method to obtain liquid helium temperature zone refrigeration. However, since the compressor part adopts an oil-lubricated structure and is equipped with an oil separation and adsorption device, it is relatively bulky and requires regular maintenance. At the same time, there is a large conversion loss in the pressure wave generated by the valve structure, so the efficiency is relatively low, so that it is difficult to obtain applications in space and military. In contrast, the Stirling-type pulse tube refrigerator provides high-frequency pressure waves (30-60Hz) through a valveless compressor, with leaf spring support, gap seals, and moving coil (or moving magnet) linear compression With the development of other technologies, the electric power conversion efficiency of the compressor can usually reach more than 80%. Generally speaking, the Stirling-type pulse tube refrigerator has the advantages of high efficiency (2 to 5 times), small size and light weight (less than 20%) compared with the G-M type, and has important application value in space and military aspects. Whether it is G-M type or Stirling type, it is necessary to use gas with superior thermodynamic properties as the working medium. At present, most of them use helium 4 as the working fluid, and some scholars use other gases or mixed working fluids for research in certain temperature ranges.
为了达到液氦温区以及在该温区具有更好的制冷性能,近期的理论和研究表明,氦3工质具有比氦4工质更优的低温特性,浙江大学蒋宁在一台具有独立气体回路的液氦温区G-M型二级脉管制冷机上,采用氦3为第二级制冷工质,获得了1.27K的最低无负荷制冷温度。与两级均采用氦4工质的情况相比,在相同的条件下(相同的压缩机耗功),第二级采用氦3为工质,使得该二级脉管制冷机在4.2K的制冷量提高了40.5%。In order to achieve better refrigeration performance in the liquid helium temperature range and in this temperature range, recent theories and researches have shown that
在液氦温区,一方面由于低温下工质非理想性的影响——伴随λ相变的比热容急剧增大将造成回热器失效,工质性质将成为限制回热式低温制冷机性能的瓶颈之一。已知氦4λ相变温度为2.171K,而氦3λ相变温度在mK温区,在20K以下,氦4的比热容明显比氦3的大。另一方面,当工质的热膨胀系数αp=0时,则绝热压缩或膨胀不会导致任何温度的变化,制冷机将无法产生任何制冷量。事实上,氦4的热膨胀系数αp=0的温度在其λ相变温度附近,氦3在更低的温度下(1K左右)热膨胀系数αp变为0。因此,上面两方面因素限制了以氦4为工质的低温制冷机低温下的性能。而以氦3为工质的脉管制冷机则有望达到更低的制冷温度、更大的制冷量和更高的效率。In the liquid helium temperature range, on the one hand, due to the influence of the non-ideality of the working medium at low temperatures - the sharp increase in the specific heat capacity accompanied by the λ phase transition will cause the regenerator to fail, and the nature of the working medium will become a bottleneck that limits the performance of the regenerative cryogenic refrigerator one. It is known that the 4λ phase transition temperature of helium is 2.171K, while the 3λ phase transition temperature of helium is in the mK temperature range. Below 20K, the specific heat capacity of helium 4 is significantly larger than that of
目前能达到液氦温区的斯特林型脉管制冷机,比如The Lockheed MartinAdvanced Technology Center(LMATC)所设计制造的一台四级脉管制冷机ACTDP 4-stage,用线性压缩机驱动,完全采用氦3为工质,达到了最低无负荷制冷温度3.8k。At present, the Stirling-type pulse tube refrigerator that can reach the temperature range of liquid helium, such as a four-stage pulse tube refrigerator ACTDP 4-stage designed and manufactured by The Lockheed Martin Advanced Technology Center (LMATC), is driven by a linear compressor. Using
发明内容Contents of the invention
本发明的目的是提供一种采用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机。The object of the present invention is to provide a Stirling type multi-stage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex.
它包括第一级脉管制冷机、第二级脉管制冷机、第三级脉管制冷机,第一、二级脉管制冷机包括第二级脉管、第二级调相机构、第一级回热器、氦4压缩机、第一级调相机构、第一级脉管、第二级回热器,第三级脉管制冷机包括第三级脉管、第三级调相机构、第三级回热器、氦3压缩机,氦4压缩机经第一级回热器与第二级回热器相连接,第一级回热器经冷头与第一级脉管、第一级调相机构相连接,第二级回热器冷头经第二级脉管与第二级调相机构相连接,第二级脉管冷头经热桥与第三级回热器中部相连接,第三级回热器热端与氦3压缩机相连接,第三级回热器冷头与第三级脉管冷头相连接,第三级脉管热端与第三级调相机构相连接,第三级脉管热端经热桥与第三级回热器中部相连接。It includes the first-stage pulse tube refrigerator, the second-stage pulse tube refrigerator, and the third-stage pulse tube refrigerator. The first and second-stage pulse tube refrigerators include the second-stage pulse tube, the second-stage First stage regenerator, helium 4 compressor, first stage phase adjustment mechanism, first stage pulse tube, second stage regenerator, third stage pulse tube refrigerator including third stage pulse tube, third stage phase modulation Mechanism, third-stage regenerator, helium-3 compressor, helium-4 compressor is connected to the second-stage regenerator through the first-stage regenerator, and the first-stage regenerator is connected to the first-stage pulse tube through the cold head , The first-stage phase-modulating mechanism is connected, the cold head of the second-stage regenerator is connected with the second-stage phase-modulating mechanism through the second-stage pulse tube, and the second-stage pulse tube cold head is connected with the third-stage regenerator through the heat bridge The middle part of the regenerator is connected, the hot end of the third-stage regenerator is connected with the
所述的第一级脉管制冷机、第二级脉管制冷机采用氦4为工质。第三级脉管制冷机采用氦3为工质。The first-stage pulse tube refrigerator and the second-stage pulse tube refrigerator use helium 4 as a working fluid. The third-stage pulse tube refrigerator uses
无论是理论还是实践都证明氦3在液氦温区具有比氦4具有更好的热力性能。由于氦3气体非常稀缺,价格昂贵,而在较高温度区域,同位素氦3与氦4物性差距很小,从已有的实验结果来看,氦3相对于氦4的优势并不明显。在体积较小、制冷温度最低的第三级采用性能更好的工质氦3,使制冷机性能得到更好地提升。同时在前端级(预冷级),也是体积较大的部分,采用价格相对低廉的工质氦4,从而大大节省了氦3的用量,降低了成本。Both theory and practice have proved that
附图说明Description of drawings
附图是采用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机系统示意图。图中:第二级脉管1、第二级调相机构2、第一级回热器3、氦4压缩机4、第一级调相机构5、第一级脉管6、第二级回热器7、热桥8、第三级脉管9、第三级调相机构10、第三级回热器11、氦3压缩机12。The accompanying drawing is a schematic diagram of a Stirling-type multi-stage pulse tube refrigerator system in the liquid helium temperature zone using helium 3-helium 4 duplex. In the figure: second-stage pulse tube 1, second-stage phase modulation mechanism 2, first-
具体实施方式Detailed ways
如附图所示,采用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机,包括第一级脉管制冷机、第二级脉管制冷机、第三级脉管制冷机,第一、二级脉管制冷机包括第二级脉管1、第二级调相机构2、第一级回热器3、氦4压缩机4、第一级调相机构5、第一级脉管6、第二级回热器7,第三级脉管制冷机包括第三级脉管9、第三级调相机构10、第三级回热器11、氦3压缩机12,氦4压缩机4经第一级回热器3与第二级回热器7相连接,第一级回热器3经冷头与第一级脉管6、第一级调相机构5相连接,第二级回热器7冷头经第二级脉管1与第二级调相机构2相连接,第二级脉管1冷头经热桥8与第三级回热器11中部相连接,第三级回热器11热端与氦3压缩机12相连接,第三级回热器11冷头与第三级脉管9冷头相连接,第三级脉管9热端与第三级调相机构10相连接,第三级脉管9热端经热桥与第三级回热器11中部相连接。As shown in the attached figure, the Stirling-type multi-stage pulse tube refrigerator in the liquid helium temperature zone using helium 3-helium 4 duplex includes a first-stage pulse tube refrigerator, a second-stage pulse tube refrigerator, and a third-stage pulse tube refrigerator. The first and second stage pulse tube refrigerators include the second stage pulse tube 1, the second stage phase modulation mechanism 2, the
所述的第一级脉管制冷机、第二级脉管制冷机采用氦4为工质。第三级脉管制冷机采用氦3为工质。The first-stage pulse tube refrigerator and the second-stage pulse tube refrigerator use helium 4 as a working fluid. The third-stage pulse tube refrigerator uses
热桥8的作用是把第三级脉管制冷机回热器中部及脉管热端散热器的热量通过热传导传至第二级脉管制冷机冷头,从而实现预冷作用。The function of the thermal bridge 8 is to transfer the heat from the middle part of the regenerator of the third-stage pulse tube refrigerator and the radiator at the hot end of the pulse tube to the cold head of the second-stage pulse tube refrigerator through heat conduction, thereby realizing the precooling effect.
具体的装配方法是,首先将氦4压缩机4和第一、二级斯特林型脉管制冷机回热器3相连;其次,将氦3压缩机12和第三级斯特林型脉管制冷机回热器11相连;最后用一个热桥8将第二级脉管制冷机冷头与第三级脉管制冷机回热器中部及脉管热端散热器连接起来。The specific assembly method is to first connect the helium 4 compressor 4 with the first and second stage Stirling type pulse
把整个制冷系统装配完成后,打开氦4压缩机,第一、二级脉管制冷机开始制冷,冷头温度开始下降,并对第三级脉管制冷机进行预冷;同时打开氦3压缩机,第三级脉管制冷机开始制冷,由于其回热器中部及脉管热端散热器与第二级脉管制冷机冷头相连,所以回热器上部从室温降到与第二级脉管制冷机冷头相近的温度,一般两者相差小于10K,下半部分从这个中间温度开始下降,一直到第三级脉管制冷机的冷头的温度。After assembling the entire refrigeration system, turn on the helium-4 compressor, the first and second-stage pulse tube refrigerators start to refrigerate, the temperature of the cold head begins to drop, and pre-cool the third-stage pulse tube refrigerator; at the same time, turn on the helium-3 compression The third-stage pulse tube refrigerator starts to refrigerate. Since the middle part of the regenerator and the heat sink at the hot end of the pulse tube are connected to the cold head of the second-stage pulse tube refrigerator, the upper part of the regenerator drops from room temperature to the temperature of the second-stage The temperature of the cold head of the pulse tube refrigerator is similar, and generally the difference between the two is less than 10K. The lower half begins to drop from this intermediate temperature until it reaches the temperature of the cold head of the third-stage pulse tube refrigerator.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100695941A CN101105345A (en) | 2007-08-03 | 2007-08-03 | Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100695941A CN101105345A (en) | 2007-08-03 | 2007-08-03 | Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101105345A true CN101105345A (en) | 2008-01-16 |
Family
ID=38999354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100695941A Pending CN101105345A (en) | 2007-08-03 | 2007-08-03 | Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101105345A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102563993A (en) * | 2012-01-13 | 2012-07-11 | 中国科学院物理研究所 | Absorption type low-temperature thermal switch with normal-pressure sealed helium |
CN102980321A (en) * | 2012-12-11 | 2013-03-20 | 浙江大学 | Multi-stage pulse tube refrigerator adopting relay linear compressor |
CN103512258A (en) * | 2012-06-19 | 2014-01-15 | 中国科学院理化技术研究所 | Pulse tube refrigerator driven by V-M type thermal compressor in liquid helium temperature zone |
CN104006564A (en) * | 2013-02-21 | 2014-08-27 | 朱绍伟 | Pulse tube refrigerator |
CN104697231A (en) * | 2015-02-10 | 2015-06-10 | 浙江大学 | Multistage cascaded pulse tube refrigerator with adjustable stage number |
CN112378111A (en) * | 2020-08-31 | 2021-02-19 | 中国科学院紫金山天文台 | 300mK adsorption refrigeration automatic cooling optimization control method based on CRC-GL7 refrigerator |
CN113280572A (en) * | 2021-06-02 | 2021-08-20 | 中国科学院理化技术研究所 | System and method for purifying helium 3 on lunar surface |
-
2007
- 2007-08-03 CN CNA2007100695941A patent/CN101105345A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102563993A (en) * | 2012-01-13 | 2012-07-11 | 中国科学院物理研究所 | Absorption type low-temperature thermal switch with normal-pressure sealed helium |
CN103512258A (en) * | 2012-06-19 | 2014-01-15 | 中国科学院理化技术研究所 | Pulse tube refrigerator driven by V-M type thermal compressor in liquid helium temperature zone |
CN103512258B (en) * | 2012-06-19 | 2015-07-08 | 中国科学院理化技术研究所 | Pulse tube refrigerator driven by V-M type thermal compressor in liquid helium temperature zone |
CN102980321A (en) * | 2012-12-11 | 2013-03-20 | 浙江大学 | Multi-stage pulse tube refrigerator adopting relay linear compressor |
CN104006564A (en) * | 2013-02-21 | 2014-08-27 | 朱绍伟 | Pulse tube refrigerator |
CN104006564B (en) * | 2013-02-21 | 2018-08-10 | 朱绍伟 | A kind of vascular refrigerator |
CN104697231A (en) * | 2015-02-10 | 2015-06-10 | 浙江大学 | Multistage cascaded pulse tube refrigerator with adjustable stage number |
CN104697231B (en) * | 2015-02-10 | 2017-03-01 | 浙江大学 | A kind of adjustable multi-stage cascade type vascular refrigerator of series |
CN112378111A (en) * | 2020-08-31 | 2021-02-19 | 中国科学院紫金山天文台 | 300mK adsorption refrigeration automatic cooling optimization control method based on CRC-GL7 refrigerator |
CN112378111B (en) * | 2020-08-31 | 2021-11-02 | 中国科学院紫金山天文台 | Optimal control method for automatic cooling of 300mK adsorption refrigeration based on CRC-GL7 refrigerator |
CN113280572A (en) * | 2021-06-02 | 2021-08-20 | 中国科学院理化技术研究所 | System and method for purifying helium 3 on lunar surface |
CN113280572B (en) * | 2021-06-02 | 2022-12-20 | 中国科学院理化技术研究所 | System and method for purifying helium 3 on lunar surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103808056B (en) | The vascular of recovery sound merit and the compound Cryo Refrigerator of J-T throttling | |
CN104654648B (en) | A kind of multi-stage stirling type vascular refrigerator | |
CN101158518A (en) | 1-4K Temperature Zone Pulse Tube Refrigerator Using Helium 3-Helium 4 Mixed Working Fluid | |
CN101105345A (en) | Stirling-type multistage pulse tube refrigerator in liquid helium temperature zone using helium 3-helium 4 duplex | |
CN107940790B (en) | A mixed cycle cryogenic refrigerator | |
CN103062952B (en) | Pulse tube/Stirling gas coupling composite multi-stage refrigerator | |
CN201110668Y (en) | Liquid Helium Temperature Zone Stirling Multistage Pulse Tube Refrigerator Using Helium 3-Helium 4 Duplex | |
CN102313395B (en) | Two-stage Stirling and single-stage pulse tube gas coupling cascaded multi-stage low temperature refrigerator | |
CN103047788B (en) | J-T throttling refrigeration circulating system driven by low-temperature linear compressor | |
CN104792056B (en) | A kind of JT j-t refrigerators coupled with philip refrigerator gas | |
CN203258916U (en) | Free piston type pulse tube refrigerator | |
CN104390383A (en) | Separated arrangement type two-stage Stirling low-temperature refrigerating machine with dual expansion machines driven by single compressor | |
CN101655291B (en) | High-pressure-ratio thermoacoustic drive pulse tube refrigerating device adopting liquid-column sound pressure amplifier | |
CN103216966B (en) | Free piston type pulse tube refrigerator | |
CN104534721B (en) | Refrigerating system adopting multistage thermal coupling V-M type pulse tube refrigerator | |
CN203132192U (en) | J-T throttle cooling cycle system driven by low-temperature linear compressor | |
CN218565805U (en) | Pulse tube refrigerator with low-temperature auxiliary phase modulation | |
CN203190707U (en) | Aqueduct/Stirling gas coupled composite type multistage refrigerating machine | |
CN103267383A (en) | Free-piston pulse tube refrigerator using all-carbon aerogel regenerative filler | |
CN106091463A (en) | 4K thermal coupling regenerating type low-temperature refrigerator based on controlled heat pipe and refrigerating method thereof | |
CN206094628U (en) | By cryocooler of transmission union coupling compressor arrangement with regenerator | |
Wang et al. | Experimental study of staging method for two-stage pulse tube refrigerators for liquid 4He temperatures | |
CN105509361B (en) | The multistage philip refrigerator of sound work(transmission part with barrier flowing | |
CN103808057B (en) | A kind of cascade connection type vascular refrigerator reclaiming sound merit | |
CN104819593B (en) | Up to the two-stage Stirling cycle refrigerator of liquid helium region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |