CN101104924A - Method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalyzed chemical vapor deposition - Google Patents
Method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalyzed chemical vapor deposition Download PDFInfo
- Publication number
- CN101104924A CN101104924A CNA2007100586253A CN200710058625A CN101104924A CN 101104924 A CN101104924 A CN 101104924A CN A2007100586253 A CNA2007100586253 A CN A2007100586253A CN 200710058625 A CN200710058625 A CN 200710058625A CN 101104924 A CN101104924 A CN 101104924A
- Authority
- CN
- China
- Prior art keywords
- cobalt
- carbon
- reactor
- coated
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010941 cobalt Substances 0.000 title claims abstract description 49
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 49
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 36
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 7
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 17
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 21
- 238000004523 catalytic cracking Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 239000012716 precipitator Substances 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000004050 hot filament vapor deposition Methods 0.000 abstract description 2
- 238000001556 precipitation Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 229910001873 dinitrogen Inorganic materials 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000035484 reaction time Effects 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种以钴/铝催化化学气相沉积制备碳包覆钴纳米颗粒的方法。属于碳包覆钴纳米颗粒制备技术。该方法过程包括:以六水硝酸钴和铝粉为原料按一定质量比采用沉积-沉淀法制备成Co/Al催化剂前驱体CoO/Al,利用该CoO/Al催化剂前驱体在反应器中以氮气或氢气和甲烷为反应气采用化学气相沉积法在一定温度下制备碳包覆钴纳米颗粒。本发明的优点在于:所采用的Co/Al催化剂在制备过程中可对钴含量进行精确确定,从而能对碳包覆钴纳米颗粒的产率加以控制;在化学气相沉积过程中通过对反应参数进行调节,实现对碳包覆钴纳米颗粒形态和尺寸的控制,因此,所制得的碳包覆钴纳米颗粒具有产物纯度高、分散性好、尺寸均匀等特点。
The invention relates to a method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalytic chemical vapor deposition. It belongs to the preparation technology of carbon-coated cobalt nanoparticles. The process of the method comprises: using cobalt nitrate hexahydrate and aluminum powder as raw materials to prepare a Co/Al catalyst precursor CoO/Al by a deposition-precipitation method according to a certain mass ratio, using the CoO/Al catalyst precursor in a reactor with nitrogen gas Or hydrogen and methane are used as reaction gases to prepare carbon-coated cobalt nanoparticles at a certain temperature by chemical vapor deposition. The present invention has the advantages that: the Co/Al catalyst used can accurately determine the cobalt content during the preparation process, thereby controlling the yield of carbon-coated cobalt nanoparticles; Adjustment is performed to control the morphology and size of carbon-coated cobalt nanoparticles. Therefore, the prepared carbon-coated cobalt nanoparticles have the characteristics of high product purity, good dispersion, and uniform size.
Description
技术领域 technical field
本发明涉及一种以钴/铝催化化学气相沉积制备碳包覆钴纳米颗粒的方法。属于碳包覆钴纳米颗粒制备技术。The invention relates to a method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalytic chemical vapor deposition. It belongs to the preparation technology of carbon-coated cobalt nanoparticles.
背景技术 Background technique
碳包覆钴纳米颗粒是一种新型纳米碳/钴复合材料,其中多层石墨片层紧密环绕钴纳米颗粒有序排列形成类洋葱结构,钴纳米粒子处于碳包覆层的核心。碳包覆钴纳米颗粒避免了环境对钴纳米颗粒的影响,保持了钴纳米颗粒的稳定性,提高了钴纳米颗粒的生物相容性,可用作电波屏蔽材料、磁记录材料、电池负极材料、核废料处理材料、精细陶瓷材料和抗菌材料等。目前,制备碳包覆钴纳米颗粒的方法主要有电弧放电法、热解法、液相浸渍法和爆炸法等,但上述方法在制备碳包覆钴纳米颗粒的过程中存在所需温度高、能量大、工艺复杂、可控性差等问题。Carbon-coated cobalt nanoparticles are a new type of nano-carbon/cobalt composite material, in which multilayer graphite sheets are closely arranged around the cobalt nanoparticles to form an onion-like structure, and the cobalt nanoparticles are at the core of the carbon coating. Carbon-coated cobalt nanoparticles avoid the influence of the environment on cobalt nanoparticles, maintain the stability of cobalt nanoparticles, improve the biocompatibility of cobalt nanoparticles, and can be used as radio wave shielding materials, magnetic recording materials, battery negative materials , nuclear waste treatment materials, fine ceramic materials and antibacterial materials, etc. At present, the methods for preparing carbon-coated cobalt nanoparticles mainly include arc discharge method, pyrolysis method, liquid phase impregnation method and explosion method, etc. Large energy, complex process, poor controllability and other problems.
发明内容 Contents of the invention
本发明旨在提供一种以钴/铝催化化学气相沉积制备碳包覆钴纳米颗粒的方法,该方法过程简单,所制得的碳包覆钴纳米颗粒纯度高、分散性好、颗粒尺寸均匀。The present invention aims to provide a method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalyzed chemical vapor deposition. The process is simple, and the prepared carbon-coated cobalt nanoparticles have high purity, good dispersibility and uniform particle size .
本发明是通过以下技术方案加以实现的:一种以钴/铝催化剂化学气相沉积碳包覆钴纳米颗粒的制备方法,其特征在于包括以下过程,The present invention is achieved through the following technical solutions: a preparation method for cobalt/aluminum catalyst chemical vapor deposition carbon-coated cobalt nanoparticles is characterized in that it comprises the following process,
1)沉积-沉淀法制备Co/Al催化剂前驱体1) Preparation of Co/Al catalyst precursor by deposition-precipitation method
将六水硝酸钴和铝粉按质量比为(0.05-1.23)∶1的比例加入到去离子水中,配制成浓度为0.01-1mol/L含有铝粉的六水硝酸钴溶液,向溶液中滴加氢氧化钠或氨水使溶液呈中性并加以沉淀,制得Co/Al质量比为(0.01-0.25)∶1的Co(OH)2/Al二元胶体;将该Co(OH)2/Al二元胶体在150℃-300℃、氮气氛围下脱水,并在350℃-500℃温度下煅烧,得到Co/Al催化剂前驱体CoO/Al。Add cobalt nitrate hexahydrate and aluminum powder into deionized water at a mass ratio of (0.05-1.23): 1 to prepare a cobalt nitrate hexahydrate solution containing aluminum powder at a concentration of 0.01-1mol/L, and drop Add sodium hydroxide or ammonia water to make the solution neutral and precipitate to prepare Co(OH) 2 /Al binary colloid with a Co/Al mass ratio of (0.01-0.25): 1; the Co(OH) 2 / The Al binary colloid is dehydrated at 150°C-300°C under a nitrogen atmosphere, and calcined at a temperature of 350°C-500°C to obtain Co/Al catalyst precursor CoO/Al.
2)化学气相沉积法制备碳包覆钴纳米颗粒2) Preparation of carbon-coated cobalt nanoparticles by chemical vapor deposition
将步骤1)制得的Co/Al催化剂前驱体粉末铺在石英舟中,再将石英舟置于反应器恒温区;通入氮气置换空气,然后反应器升温至400℃-650℃,并以25-400ml/min向反应器通入氢气,并保持0.5-6小时,之后关闭氢气,以体积比为(1-12)∶1的氮气与甲烷的混合气,或是以体积比为(1-12)∶1的氢气与甲烷的混合气,或是以体积比为(1-12)∶1的氮气和氢气与甲烷的混合气,以120-780ml/min混合气通入反应器,在400℃-650℃下进行催化裂解反应0.1h-6h,之后反应器在氮气氛围下冷至室温,制得粒径为25-70nm的碳包覆钴纳米颗粒。Spread the Co/Al catalyst precursor powder prepared in step 1) in a quartz boat, then place the quartz boat in the constant temperature zone of the reactor; replace the air with nitrogen, then raise the temperature of the reactor to 400°C-650°C, and 25-400ml/min feeds hydrogen into the reactor, and keeps it for 0.5-6 hours, then closes the hydrogen, with a volume ratio of (1-12): 1 mixture of nitrogen and methane, or with a volume ratio of (1 -12): the mixed gas of hydrogen and methane of 1, or the mixed gas of nitrogen and hydrogen and methane with the volume ratio of (1-12): 1, feed the reactor with the mixed gas of 120-780ml/min, in The catalytic cracking reaction is carried out at 400°C-650°C for 0.1h-6h, and then the reactor is cooled to room temperature under a nitrogen atmosphere to prepare carbon-coated cobalt nanoparticles with a particle size of 25-70nm.
本发明具有以下优点:所采用的Co/Al催化剂在制备过程中可对钴含量进行精确确定,从而能对碳包覆钴纳米颗粒的产率加以控制;在化学气相沉积过程中通过对反应参数进行调节,从而可以实现对碳包覆钴纳米颗粒形态和尺寸的控制,因此,采用本发明制备碳包覆钴纳米颗粒具有产物纯度高、分散性好、尺寸均匀等特点。另外,本发明工艺过程简单。The present invention has the following advantages: the Co/Al catalyst used can accurately determine the cobalt content during the preparation process, thereby controlling the yield of carbon-coated cobalt nanoparticles; By adjusting, the shape and size of carbon-coated cobalt nanoparticles can be controlled. Therefore, the preparation of carbon-coated cobalt nanoparticles by the present invention has the characteristics of high product purity, good dispersion, and uniform size. In addition, the process of the invention is simple.
附图说明 Description of drawings
图1为本发明实例2所制得的碳包覆钴纳米颗粒的TEM图。FIG. 1 is a TEM image of carbon-coated cobalt nanoparticles prepared in Example 2 of the present invention.
图2为本发明实例2所制得的碳包覆钴纳米颗粒的HRTEM图。Fig. 2 is an HRTEM image of carbon-coated cobalt nanoparticles prepared in Example 2 of the present invention.
图中所显示的中心黑色区域为钴纳米颗粒,其外侧包覆的层状区域为碳层。The central black area shown in the figure is the cobalt nanoparticle, and the layered area covered by it is the carbon layer.
具体实施方式 Detailed ways
下面结合实施例详细说明本发明,这些实施例只用于说明本发明,并不限制本发明。The present invention will be described in detail below in conjunction with the examples, and these examples are only used to illustrate the present invention, and do not limit the present invention.
使用原料:六水硝酸钴,市售,纯度>96%;铝粉,市售,400目。Raw materials: cobalt nitrate hexahydrate, commercially available, purity>96%; aluminum powder, commercially available, 400 mesh.
实施例1Example 1
将六水硝酸钴和铝粉按质量比为0.05∶1的比例加入到去离子水中,配制成浓度为0.01mol/L含有铝粉的六水硝酸钴溶液,向溶液中滴加氢氧化钠使溶液呈中性并加以沉淀,制得Co/Al质量比为0.01∶1的Co(OH)2/Al二元胶体;将该二元胶体在240℃、氮气氛围下脱水,并在400℃温度下煅烧,得到Co/Al催化剂前驱体CoO/Al;将所得的Co/Al催化剂前驱体粉末铺在石英舟中,再将石英舟置于反应器恒温区;通入氮气置换管内的空气,然后反应器升温至600℃,并以200ml/min向反应器通入氢气,并保持2小时,之后关闭氢气,以480ml/min将体积比为7∶1的氮气与甲烷的混合气通入反应器,在600℃下进行催化裂解反应0.5h,之后反应器在氮气氛围下冷至室温,制得产率为0.08%、平均粒径为30nm的碳包覆钴颗粒。Add cobalt nitrate hexahydrate and aluminum powder into deionized water in a mass ratio of 0.05: 1 to prepare a cobalt nitrate hexahydrate solution containing aluminum powder at a concentration of 0.01mol/L, and add sodium hydroxide dropwise to the solution to make The solution was neutral and precipitated to obtain a Co(OH) 2 /Al binary colloid with a Co/Al mass ratio of 0.01:1; calcining to obtain the Co/Al catalyst precursor CoO/Al; the resulting Co/Al catalyst precursor powder is spread in a quartz boat, and then the quartz boat is placed in the constant temperature zone of the reactor; the air in the nitrogen replacement tube is introduced, and then The reactor was heated up to 600°C, and hydrogen gas was introduced into the reactor at 200ml/min, and kept for 2 hours, then the hydrogen gas was closed, and a mixture of nitrogen and methane with a volume ratio of 7:1 was passed into the reactor at 480ml/min , the catalytic cracking reaction was carried out at 600° C. for 0.5 h, and then the reactor was cooled to room temperature under a nitrogen atmosphere to obtain carbon-coated cobalt particles with a yield of 0.08% and an average particle size of 30 nm.
实施例2Example 2
本实施例的实验条件和过程同实施例1,不同之处在于催化裂解反应时间为1h,制得产率为0.2%、平均粒径为36nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as those of Example 1, except that the catalytic cracking reaction time is 1 h, and the yield rate is 0.2%, and the carbon-coated cobalt particles with an average particle size of 36 nm are produced.
实施例3Example 3
本实施例的实验条件和过程同实施例1,不同之处在于催化裂解反应时间为2h,制得产率为0.35%、平均粒径为45nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as those of Example 1, except that the catalytic cracking reaction time is 2 hours, and the yield rate is 0.35%, and the carbon-coated cobalt particles with an average particle size of 45nm are obtained.
实施例4Example 4
将六水硝酸钴和铝粉按质量比为0.55∶1的比例加入到去离子水中,配制成浓度为0.1mol/L含有铝粉的六水硝酸钴溶液,向溶液中滴加氢氧化钠使溶液呈中性并加以沉淀,制得Co/Al质量比为0.11∶1的Co(OH)2/Al二元胶体;以下步骤和条件与实施例1相同,制得产率为0.9%、平均粒径为35nm的碳包覆钴颗粒。Cobalt nitrate hexahydrate and aluminum powder are added to deionized water in a ratio of 0.55: 1 by mass ratio to prepare a 0.1mol/L cobalt nitrate hexahydrate solution containing aluminum powder, and sodium hydroxide is added dropwise to the solution to make The solution was neutral and precipitated to obtain a Co(OH) 2 /Al binary colloid with a Co/Al mass ratio of 0.11:1; the following steps and conditions were the same as in Example 1, and the yield was 0.9%, with an average Carbon-coated cobalt particles with a particle size of 35 nm.
实施例5Example 5
本实施例的实验条件和过程同实施例4,不同之处在于催化裂解反应时间为1h,制得产率为1.6%、平均粒径为42nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as those of Example 4, except that the catalytic cracking reaction time is 1 h, and the yield rate is 1.6%, and the carbon-coated cobalt particles with an average particle size of 42nm are produced.
实施例6Example 6
本实施例的实验条件和过程同实施例4,不同之处在于催化裂解反应时间为2h,制得产率为3%、平均粒径为50nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as those of Example 4, except that the catalytic cracking reaction time is 2 hours, and carbon-coated cobalt particles with a yield of 3% and an average particle size of 50 nm are produced.
实施例7Example 7
将六水硝酸钴和铝粉按质量比为1.23∶1的比例加入到去离子水中,配制成浓度为1mol/L含有铝粉的六水硝酸钴溶液,向溶液中滴加氢氧化钠使溶液呈中性并加以沉淀,制得Co/Al质量比为0.25∶1的Co(OH)2/Al二元胶体;以下步骤和条件与实施例1相同,不同之处在于催化裂解反应时间为1h,制得产率为2.8%、平均粒径为52nm的碳包覆钴颗粒。Add cobalt nitrate hexahydrate and aluminum powder into deionized water in a mass ratio of 1.23:1 to prepare a cobalt nitrate hexahydrate solution containing aluminum powder at a concentration of 1mol/L, and add sodium hydroxide dropwise to the solution to make the solution It is neutral and precipitated to obtain a Co(OH) 2 /Al binary colloid with a Co/Al mass ratio of 0.25: 1; the following steps and conditions are the same as in Example 1, except that the catalytic cracking reaction time is 1h , the yield rate was 2.8%, and the carbon-coated cobalt particles with an average particle size of 52 nm were obtained.
实施例8Example 8
本实施例的实验条件和过程同实施例7,不同之处在于催化裂解反应时间为2h,制得产率为5.4%、平均粒径为61nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as those of Example 7, except that the catalytic cracking reaction time is 2 hours, and the yield rate is 5.4%, and the carbon-coated cobalt particles with an average particle size of 61 nm are obtained.
实施例9Example 9
本实施例的实验条件和过程同实施例1,不同之处在于采用体积比为7∶1的氢气与甲烷的混合气,制得产率为0.07%、平均粒径为27nm的碳包覆钴颗粒。The experimental conditions and process of this example are the same as in Example 1, except that a mixture of hydrogen and methane with a volume ratio of 7:1 is used to produce carbon-coated cobalt with a yield of 0.07% and an average particle size of 27 nm. particles.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100586253A CN100497729C (en) | 2007-08-08 | 2007-08-08 | Method for preparing carbon coating cobalt nano particle by cobalt/aluminum catalytic chemical gaseous phase deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100586253A CN100497729C (en) | 2007-08-08 | 2007-08-08 | Method for preparing carbon coating cobalt nano particle by cobalt/aluminum catalytic chemical gaseous phase deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101104924A true CN101104924A (en) | 2008-01-16 |
CN100497729C CN100497729C (en) | 2009-06-10 |
Family
ID=38999002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100586253A Expired - Fee Related CN100497729C (en) | 2007-08-08 | 2007-08-08 | Method for preparing carbon coating cobalt nano particle by cobalt/aluminum catalytic chemical gaseous phase deposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100497729C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103695864A (en) * | 2014-01-06 | 2014-04-02 | 河北工业大学 | Preparation method of carbon-coated cobalt metal nano-particles |
CN107824785A (en) * | 2017-09-29 | 2018-03-23 | 中国航发北京航空材料研究院 | A kind of low laser reflectivity powder particle and preparation method |
-
2007
- 2007-08-08 CN CNB2007100586253A patent/CN100497729C/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103695864A (en) * | 2014-01-06 | 2014-04-02 | 河北工业大学 | Preparation method of carbon-coated cobalt metal nano-particles |
CN103695864B (en) * | 2014-01-06 | 2016-05-11 | 河北工业大学 | The preparation method of carbon coating cobalt metal nanoparticle |
CN107824785A (en) * | 2017-09-29 | 2018-03-23 | 中国航发北京航空材料研究院 | A kind of low laser reflectivity powder particle and preparation method |
CN107824785B (en) * | 2017-09-29 | 2019-06-04 | 中国航发北京航空材料研究院 | A kind of powder particle with low laser reflectivity and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100497729C (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO | |
KR101303061B1 (en) | A catalyst composition for the synthesis of multi-walled carbon nanotubes | |
CN101531362B (en) | Method for one-step growth of carbon nanotube by taking carbon composite as catalyst | |
CN101891182B (en) | Method for preparing carbon nano-onions with core-shell structure by using gamma-Fe-Ni alloy as catalyst | |
CN106587010B (en) | A kind of carbon nano-tube material and preparation method thereof using carbon-clad metal catalyst preparation | |
CN103695864B (en) | The preparation method of carbon coating cobalt metal nanoparticle | |
JP2008519679A (en) | Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts | |
CN113135562B (en) | Method and device for preparing carbon nano tube and hydrogen | |
CN109126844B (en) | A kind of molybdenum carbide nanosheet and its preparation method and application | |
KR101018660B1 (en) | Catalyst Composition for Manufacturing Multi-walled Carbon Nanotubes | |
CN113798504B (en) | Preparation method of rare earth oxide dispersion reinforced tungsten powder for 3D printing | |
CN101759178A (en) | Preparation method for hollow carbon hemisphere | |
CN1935662A (en) | Nano crystal constructed porous copper oxide aggregate and its preparing method | |
CN101279729A (en) | Method for preparing carbon nanotubes with nickel/titanium catalyst in-situ chemical vapor deposition | |
CN103072987A (en) | Method for preparing metal carbide or carbon coated metal carbide | |
Yue et al. | Enhanced stability of Ni-CaO catalysts by perovskite-type stabilizer in biomass pyrolysis for hydrogen production | |
CN102059113B (en) | Use of stratiform bimetal hydroxide for growing carbon nano-fibers | |
CN101234347A (en) | Preparation method of niobate composite metal oxide nanoparticles | |
CN102320601B (en) | Multistage porous carbon-tungsten compound micro-nano powder and preparation method thereof | |
CN105110381A (en) | A method for preparing nanoporous α-Fe2O3 | |
CN101323446A (en) | A kind of preparation method of carbon nanosphere | |
CN101104924A (en) | Method for preparing carbon-coated cobalt nanoparticles by cobalt/aluminum catalyzed chemical vapor deposition | |
CN103332937B (en) | A method for preparing Al2O3 composite powder with carbon nanotubes uniformly dispersed by in-situ synthesis method | |
CN114349060A (en) | Preparation method of carbon-supported magnetic nanoparticle nitrogen-doped magnetic graphene | |
CN101302005A (en) | One-step synthesis method of surface loaded magnetic Fe2O3 nano-particle colloidal carbon ball |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: DEYANG KURSCHNICK CO., LTD. Free format text: FORMER OWNER: TIANJIN UNIVERSITY Effective date: 20110915 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 300072 NANKAI, TIANJIN TO: 618000 DEYANG, SICHUAN PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20110915 Address after: 618000 Sichuan Province Economic and Technological Development Zone Deyang Jingyang East Road Patentee after: Technology Co., Ltd. Deyang deep Czech Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92 Patentee before: Tianjin University |
|
DD01 | Delivery of document by public notice |
Addressee: Jia Guijiang Document name: Notification of Passing Examination on Formalities |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160825 Address after: 618000 Chengdu Province, Qingyang City District, Cheung Street, No. 32, No. Patentee after: CHENGDU SHENJIA MACHINERY MANUFACTURING CO., LTD. Address before: 618000 Sichuan Province Economic and Technological Development Zone Deyang Jingyang East Road Patentee before: Technology Co., Ltd. Deyang deep Czech |
|
C56 | Change in the name or address of the patentee | ||
CP03 | Change of name, title or address |
Address after: 610000 Chengdu Province, Qingyang City District, Cheung Street, No. 32, No. Patentee after: Chengdu Jia Jia Technology Co., Ltd. Address before: 618000 Chengdu Province, Qingyang City District, Cheung Street, No. 32, No. Patentee before: CHENGDU SHENJIA MACHINERY MANUFACTURING CO., LTD. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090610 Termination date: 20190808 |