CN101097988A - 包括n+界面层的可变电阻随机存取存储器 - Google Patents
包括n+界面层的可变电阻随机存取存储器 Download PDFInfo
- Publication number
- CN101097988A CN101097988A CNA2006101603995A CN200610160399A CN101097988A CN 101097988 A CN101097988 A CN 101097988A CN A2006101603995 A CNA2006101603995 A CN A2006101603995A CN 200610160399 A CN200610160399 A CN 200610160399A CN 101097988 A CN101097988 A CN 101097988A
- Authority
- CN
- China
- Prior art keywords
- variable resistance
- layer
- memory
- random access
- access memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 10
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910003087 TiOx Inorganic materials 0.000 claims description 4
- 229910007667 ZnOx Inorganic materials 0.000 claims description 4
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 230000015654 memory Effects 0.000 description 60
- 238000010586 diagram Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 229910019897 RuOx Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/90—Bulk effect device making
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供一种具有n+界面层的可变电阻随机存取存储器。该可变电阻随机存取存储器包括下电极、形成在所述下电极上的n+界面层、形成在所述n+界面层上的缓冲层、形成在所述缓冲层上并具有可变电阻特性的氧化物层、及形成在所述氧化物层上的上电极。
Description
技术领域
本发明涉及非易失性存储器,更特别地,涉及通过在由普通金属形成的下电极与缓冲层之间包括n+界面层而以低操作电压操作的可变电阻随机存取存储器。
背景技术
具有高集成密度、高速操作特性、和低操作电压的半导体存储器是更优越的。
常规存储器包括连接到存储单元的多个电路。在作为半导体存储器的代表的动态随机存取存储器(DRAM)的情况下,单位存储单元通常包括一个开关和一个电容器。DRAM具有高集成密度和高操作速度。然而,所存储的数据在关闭电源后被擦除。
非易失性存储器在电源被关闭后能保持所存储的数据,这样的非易失性存储器的例子是闪存(flash memory)。闪存是非易失性存储器,其与易失性存储器的区别在于非易失性存储器比DRAM具有较低的集成密度和较慢的操作速度。
正在对非易失性存储器进行很多研究,包括磁随机存取存储器(MRAM)、铁电随机存取存储器(FRAM)、相变随机存取存储器(PRAM)、及电阻随机存取存储器(RRAM)。
上述非易失性存储器中,RRAM主要利用取决于过渡氧化物的电压的可变电阻特性。
图1A是横截面图,示出使用可变电阻材料的具有常规结构的RRAM的结构。使用过渡金属氧化物作为可变电阻材料的RRAM器件具有开关特性以用作存储器。
参照图1A,RRAM具有其中下电极12、氧化物层14、和上电极16顺序形成在衬底10上的结构。下电极12和上电极16由普通导电金属形成,氧化物层14由具有可变电阻特性的过渡金属氧化物形成。该过渡金属氧化物包括ZnO、TiO2、Nb2O5、ZrO2、NiO等。
图1B是曲线图,示出图1A所示的非易失性可变电阻存储器的操作特性。更具体地,电流通过对样品施加电压来测量,样品中下电极12由Ru形成,氧化物层14由NiO形成,上电极16由Ru形成。参照图1B,当在第一开关周期施加约0.7V到样品时,重置电流为约3mA。然而,在50个开关周期之后,重置电流增加到约50mA。随着开关周期被重复,氧化物层14的电阻状态继续改变,操作电压和重置电压增大,因而降低了非易失性可变电阻存储器的可靠性。因此,需要能具有稳定操作特性的存储器的结构。
由于在闪存器件中高集成是结构上困难的,所以对交叉点(cross-point)型存储器进行了很多研究。因此,需要开发利用可变电阻材料的具有新结构的交叉点型存储器。
另外,还需要具有使用普通金属代替昂贵的贵金属的下电极的存储器。
发明内容
本发明提供一种非易失性存储器,通过在下电极和可变电阻氧化物层之间包括缓冲层且在该缓冲层和该下电极之间包括n+界面层,即使重复进行开关操作时该非易失性存储器也具有稳定的重置电流。
本发明还提供通过使用普通金属作为下电极而具有低制造成本的高集成存储器。
根据本发明的一个方面,提供一种可变电阻随机存取存储器,包括:下电极;n+界面层,其形成在所述下电极上;形成在所述n+界面层上的缓冲层;氧化物层,其形成在所述缓冲层上并具有可变电阻特性;以及上电极,其形成在所述氧化物层上。
所述氧化物层可由p型过渡金属氧化物形成。
所述氧化物层可以是Ni氧化物层。
所述n+界面层可以由选自包括ZnOx、TiOx和IZOx的欠氧(oxygendeficicent)氧化物、及包括ZnO、TiO和IZO的高度掺杂以n型杂质的氧化物构成的组的至少一种形成。
该下电极可以由选自包括Ni、Co、Cr、W、Cu、Ti、或这些金属的合金的组的一种形成。
所述缓冲层可以由n型氧化物形成。
所述缓冲层可以由选自包括Ir氧化物、Ru氧化物、Zn氧化物、和IZO的组的至少一种形成。
所述n+界面层和所述缓冲层可以由相同材料形成。
附图说明
通过参照附图详细描述其示例性实施例,本发明的上述和其它特征及优点将变得更加明显,附图中:
图1A是横截面图,示出了使用可变电阻材料具有常规结构的电阻随机存取存储器(RRAM)的结构;
图1B是曲线图,示出了图1A所示的非易失性可变电阻存储器的操作特性;
图2是曲线图,示出了其中缓冲层形成在下电极上的RRAM的重置电流根据开关周期数目的变化;
图3是曲线图,示出使用钨作为下电极的RRAM器件的电流特性;
图4是横截面图,示出根据本发明一实施例具有n+界面层的可变电阻随机存取存储器;
图5是能带图,示出n-IZO(缓冲层)和W(下电极)之间的肖特基接触;
图6是当n+界面层形成在n-缓冲层和由普通金属形成的下电极之间时的能带图;
图7是散点图,示出根据本发明一实施例的存储器件的重置电流变化与开关周期数目的关系;
图8是曲线图,示出根据本发明一实施例使用可变电阻的存储器的操作原理。
具体实施方式
下面将参照附图描述根据本发明的具有n+界面层的可变电阻随机存取存储器。附图中,为清晰起见,层和区域的厚度和宽度被放大。
图2是曲线图,示出其中缓冲层形成在下电极上的电阻随机存取存储器(RRAM)的重置电流变化与开关周期数目的关系。
参照图2,RRAM器件包括由Ru形成的下电极、由ZnO形成的缓冲层、和由NiO形成的可变电阻氧化物层。该RRAM器件具有4.5mA的平均重置电流,其是较低重置电流,且具有比常规RRAM(参照图1B)低的重置电流偏差。
图3是曲线图,示出包括普通金属钨形成的下电极的RRAM器件的电流特性。由IZO形成的缓冲层、由NiO形成的可变电阻氧化物层、和由Ni形成的上电极顺序形成在下电极上。
参照图3,较高电压(6V)施加到使用W形成的下电极的RRAM器件后,当重置电流增加时发生存储节点击穿。因此,当下电极简单地由普通金属形成时该RRAM器件不能作为存储器工作。
图4是横截面图,示出了根据本发明一实施例具有n+界面层的可变电阻随机存取存储器。
参照图4,根据本发明一实施例的具有n+界面层的可变电阻随机存取存储器包括下电极20。n+界面层22、n型缓冲层24、可变电阻氧化物层26、和上电极28顺序形成在下电极20上。
下电极20可以由普通金属诸如Ni、Co、Cr、W、Cu、Ti或这些金属的合金形成。当在下电极20中使用普通金属时,可降低存储器的制造成本。在本实施例中,普通金属用在下电极20中,但本发明不限于此,即,下电极20也可以由贵金属形成。
n+界面层22可由欠氧n型氧化物半导体诸如IZOx、ZnOx、或TiOx形成。另外,n+界面层22可由高度掺杂以掺杂剂的IZO、ZnO、或TiO形成。
n型缓冲层24是n型氧化物,且可以由欠氧氧化物诸如IZOx、IrOx、RuOx、ZnOx、或TiOx,或者掺杂以掺杂剂的氧化物诸如IZO、IrO、RuO、ZnO、或TiO形成。
n+界面层22和n型缓冲层24可由相同材料形成从而降低制造成本,且n+界面层22被掺杂以比掺杂到n型缓冲层24的掺杂剂高几个数量级的掺杂剂。
可变电阻氧化物层26可以由上述诸如ZnO、TiO2、Nb2O5、ZrO2、或NiO的过渡金属氧化物形成。
上电极28可由Pt或Ti形成。
当下电极20由普通金属诸如钨(W)形成时,下电极22的功函数较低。在该情况下,肖特基接触形成在下电极20与缓冲层24例如n-IZO层之间的界面处。当肖特基接触形成在下电极20和缓冲层24之间时,由于结电阻而会产生电压降和存储节点退化。结果,存储器的操作特性削弱,或者如图3所示,会发生存储节点的击穿。图5是能带图,示出n-IZO(缓冲层)和W(下电极)之间的肖特基接触。
图6是当n+界面层22形成在n-缓冲层24和由普通金属形成的下电极20之间时的能带图。可形成由n-IZO层/n+IZO层/W层的复合物构成的结层。
参照图6,下电极20的功函数比n+IZO层(n+界面层22)大。因此,n+IZO层与W层之间形成欧姆接触。结果,由于下电极20和n型缓冲层24之间的势垒(barrier)形成地薄,所以电阻能够在下电极20和n型缓冲层24之间自由转移。
图7是散点图,示出根据本发明一实施例的存储器件的重置电流变化与开关周期数目的关系。更具体地,根据本发明一实施例的存储器包括顺序形成在由具有20nm厚度的W形成的下电极20上的具有20nm厚度的n+IZO界面层、由具有20nm厚度的n-IZO形成的缓冲层、具有50nm厚度的p-NiO层、和由具有20nm厚度的Ni形成的上层28。参照图7,存储器具有非常低的重置电流变化,并具有1.2mA的重置电流水平。如图6所示,低重置电流解释为根据本发明在下电极20和n型缓冲层24之间n+界面层22的形成减小了下电极20和n型缓冲层24之间势垒的厚度,因此,电子穿过非常薄的势垒在下电极20和n型缓冲层24之间容易地转移。
上述根据本发明的包括可变电阻材料的非易失性存储器可通过诸如溅射、原子层沉积(ALD)法的PVD法或化学气相沉积(CVD)法制造。下电极20、n+界面层22、n型缓冲层24、可变电阻氧化物层26、和上电极28的厚度不被限制,可以形成为从数纳米到数微米。在图2中,示出了单位器件的结构,但根据本发明的包括可变电阻材料的非易失性存储器可用在交叉点型阵列中。
使用可变电阻的存储器具有两种电阻状态,现在将参照图8说明该存储器的操作原理。
图8是曲线图,示出根据本发明一实施例使用可变电阻的存储器的操作原理。参照图8,当向存储器施加的电压从0V逐渐增加时,电流沿曲线G1与所施加的电压成比例地增加。然而,当施加比V1高的电压时,电流由于存储器电阻的快速增大而降低。当V1与V2之间范围内的电压被施加时,电流沿曲线G2增加。当高于V2的电压例如电压V3被施加到存储器时,由于存储器电阻的快速降低而电流回到沿曲线G1增加。当施加小于V1的电压时,向存储器施加的高于V1的电压影响存储器的电特性,现在将对其进行说明。
V1到V2范围内的电压施加到存储器之后,小于V1的电压再次施加到存储器,则存储器的电流遵循曲线G2。另一方面,当高于V2的电压例如V3施加到存储器之后,小于V1的电压施加到存储器,则电流如图8所示遵循G1。从该结果可以看出,存储器的电特性根据施加到存储器的电压的大小(在V1到V2或大于V2的范围)而受到影响。结果看出,具有可变电阻材料即过渡金属氧化物的存储器可以应用到非易失性存储器。例如,通过指定当如图8所示V1到V2范围内的电压施加到存储器时存储器的状态为“0”,并指定当大于V2的电压被施加时存储器的状态为“1”,数据被记录到存储器中。再现数据时,通过向存储器施加小于V1的电压测量氧化物层中的电流,这样,能够确定存储在存储器中的数据处于“0”状态或“1”状态。状态“1”和状态“0”的指定可以反过来。
根据本发明的存储器具有简单的结构和稳定的开关特性,并且由于该存储器可用作交叉点型存储器而对于高集成是有利的。另外,通过在下电极和n缓冲层之间包括n+界面层,该存储器具有稳定的操作特性。此外,下电极可以由便宜的普通金属形成,因而降低了制造成本。
尽管本发明参照其实施例进行了特定示出和描述,本领域技术人员能够理解,在不脱离本发明的权利要求所定义的精神和范围的情况下可以进行形式和细节上的各种改变。
Claims (8)
1.一种可变电阻随机存取存储器,包括:
下电极;
n+界面层,形成在所述下电极上;
形成在所述n+界面层上的缓冲层;
氧化物层,其形成在所述缓冲层上并具有可变电阻特性;及
上电极,形成在所述氧化物层上。
2.如权利要求1的可变电阻随机存取存储器,其中所述氧化物层由p型过渡金属氧化物形成。
3.如权利要求1的可变电阻随机存取存储器,其中所述氧化物层是Ni氧化物层。
4.如权利要求1的可变电阻随机存取存储器,其中所述n+界面层由选自包括ZnOx、TiOx和IZOx的欠氧氧化物,及包括ZnO、TiO和IZO的高度掺杂以n型杂质的氧化物构成的组的至少一种形成。
5.如权利要求1的可变电阻随机存取存储器,其中所述下电极由选自Ni、Co、Cr、W、Cu、Ti、或这些金属的合金构成的组的一种形成。
6.如权利要求1的可变电阻随机存取存储器,其中所述缓冲层由n型氧化物形成。
7.如权利要求6的可变电阻随机存取存储器,其中所述缓冲层由选自Ir氧化物、Ru氧化物、Zn氧化物、和IZO构成的组的至少一种形成。
8.如权利要求1的可变电阻随机存取存储器,其中所述n+界面层和所述缓冲层由相同材料形成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060058098A KR101159075B1 (ko) | 2006-06-27 | 2006-06-27 | n+ 계면층을 구비한 가변 저항 랜덤 액세스 메모리 소자 |
KR58098/06 | 2006-06-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101097988A true CN101097988A (zh) | 2008-01-02 |
CN101097988B CN101097988B (zh) | 2010-09-15 |
Family
ID=38872728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101603995A Active CN101097988B (zh) | 2006-06-27 | 2006-11-15 | 包括n+界面层的可变电阻随机存取存储器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7498600B2 (zh) |
JP (1) | JP5154138B2 (zh) |
KR (1) | KR101159075B1 (zh) |
CN (1) | CN101097988B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011000316A1 (zh) * | 2009-07-02 | 2011-01-06 | 黑龙江大学 | 纳米结构快速开关忆阻器及其制造方法 |
CN103904212A (zh) * | 2012-12-26 | 2014-07-02 | 华邦电子股份有限公司 | 非挥发性存储器 |
CN112054117A (zh) * | 2019-06-05 | 2020-12-08 | 联华电子股份有限公司 | 存储器元件的结构及其制造方法 |
Families Citing this family (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060171200A1 (en) | 2004-02-06 | 2006-08-03 | Unity Semiconductor Corporation | Memory using mixed valence conductive oxides |
US7082052B2 (en) | 2004-02-06 | 2006-07-25 | Unity Semiconductor Corporation | Multi-resistive state element with reactive metal |
US8559209B2 (en) | 2011-06-10 | 2013-10-15 | Unity Semiconductor Corporation | Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements |
US8565003B2 (en) | 2011-06-28 | 2013-10-22 | Unity Semiconductor Corporation | Multilayer cross-point memory array having reduced disturb susceptibility |
US20130082232A1 (en) | 2011-09-30 | 2013-04-04 | Unity Semiconductor Corporation | Multi Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two Terminal Memory Cells |
US8270193B2 (en) | 2010-01-29 | 2012-09-18 | Unity Semiconductor Corporation | Local bit lines and methods of selecting the same to access memory elements in cross-point arrays |
US8937292B2 (en) | 2011-08-15 | 2015-01-20 | Unity Semiconductor Corporation | Vertical cross point arrays for ultra high density memory applications |
JP4857014B2 (ja) * | 2006-04-19 | 2012-01-18 | パナソニック株式会社 | 抵抗変化素子とそれを用いた抵抗変化型メモリ |
KR100785021B1 (ko) * | 2006-06-13 | 2007-12-11 | 삼성전자주식회사 | Cu2O를 포함한 비휘발성 가변 저항 메모리 소자 |
KR100898897B1 (ko) | 2007-02-16 | 2009-05-27 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 형성방법 |
US7629198B2 (en) * | 2007-03-05 | 2009-12-08 | Intermolecular, Inc. | Methods for forming nonvolatile memory elements with resistive-switching metal oxides |
US8344375B2 (en) * | 2007-03-05 | 2013-01-01 | Intermolecular, Inc. | Nonvolatile memory elements with metal deficient resistive switching metal oxides |
US8097878B2 (en) * | 2007-03-05 | 2012-01-17 | Intermolecular, Inc. | Nonvolatile memory elements with metal-deficient resistive-switching metal oxides |
US8975613B1 (en) | 2007-05-09 | 2015-03-10 | Intermolecular, Inc. | Resistive-switching memory elements having improved switching characteristics |
US8154003B2 (en) * | 2007-08-09 | 2012-04-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistive non-volatile memory device |
WO2009025037A1 (ja) * | 2007-08-22 | 2009-02-26 | Fujitsu Limited | 抵抗変化型素子 |
US7768812B2 (en) | 2008-01-15 | 2010-08-03 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US9048414B2 (en) * | 2008-01-22 | 2015-06-02 | The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology | Nonvolatile memory device and processing method |
US8343813B2 (en) * | 2009-04-10 | 2013-01-01 | Intermolecular, Inc. | Resistive-switching memory elements having improved switching characteristics |
US7960216B2 (en) * | 2008-05-10 | 2011-06-14 | Intermolecular, Inc. | Confinement techniques for non-volatile resistive-switching memories |
US8183553B2 (en) * | 2009-04-10 | 2012-05-22 | Intermolecular, Inc. | Resistive switching memory element including doped silicon electrode |
US8034655B2 (en) * | 2008-04-08 | 2011-10-11 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8129704B2 (en) * | 2008-05-01 | 2012-03-06 | Intermolecular, Inc. | Non-volatile resistive-switching memories |
US8551809B2 (en) * | 2008-05-01 | 2013-10-08 | Intermolecular, Inc. | Reduction of forming voltage in semiconductor devices |
US8211743B2 (en) | 2008-05-02 | 2012-07-03 | Micron Technology, Inc. | Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes |
US7977152B2 (en) * | 2008-05-10 | 2011-07-12 | Intermolecular, Inc. | Non-volatile resistive-switching memories formed using anodization |
US8008096B2 (en) * | 2008-06-05 | 2011-08-30 | Intermolecular, Inc. | ALD processing techniques for forming non-volatile resistive-switching memories |
US8134137B2 (en) | 2008-06-18 | 2012-03-13 | Micron Technology, Inc. | Memory device constructions, memory cell forming methods, and semiconductor construction forming methods |
US9343665B2 (en) | 2008-07-02 | 2016-05-17 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
KR100960013B1 (ko) * | 2008-07-24 | 2010-05-28 | 주식회사 하이닉스반도체 | 저항성 메모리 소자 및 그 제조 방법 |
JP5476686B2 (ja) * | 2008-07-24 | 2014-04-23 | 富士通株式会社 | 抵抗変化型素子および抵抗変化型素子製造方法 |
US8362454B2 (en) | 2008-08-12 | 2013-01-29 | Industrial Technology Research Institute | Resistive random access memory having metal oxide layer with oxygen vacancies and method for fabricating the same |
US9385314B2 (en) | 2008-08-12 | 2016-07-05 | Industrial Technology Research Institute | Memory cell of resistive random access memory and manufacturing method thereof |
US8049305B1 (en) | 2008-10-16 | 2011-11-01 | Intermolecular, Inc. | Stress-engineered resistance-change memory device |
WO2010074685A1 (en) * | 2008-12-23 | 2010-07-01 | Hewlett-Packard Development Company, L.P. | Memristive device having a porous dopant diffusion element |
US8420478B2 (en) * | 2009-03-31 | 2013-04-16 | Intermolecular, Inc. | Controlled localized defect paths for resistive memories |
US8072795B1 (en) | 2009-10-28 | 2011-12-06 | Intermolecular, Inc. | Biploar resistive-switching memory with a single diode per memory cell |
KR20110072920A (ko) | 2009-12-23 | 2011-06-29 | 삼성전자주식회사 | 저항성 메모리 소자 |
US8638584B2 (en) * | 2010-02-02 | 2014-01-28 | Unity Semiconductor Corporation | Memory architectures and techniques to enhance throughput for cross-point arrays |
US8411477B2 (en) | 2010-04-22 | 2013-04-02 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8427859B2 (en) | 2010-04-22 | 2013-04-23 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
KR20110132125A (ko) | 2010-06-01 | 2011-12-07 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 비휘발성 메모리 소자의 형성방법 |
US8289763B2 (en) | 2010-06-07 | 2012-10-16 | Micron Technology, Inc. | Memory arrays |
US9012307B2 (en) | 2010-07-13 | 2015-04-21 | Crossbar, Inc. | Two terminal resistive switching device structure and method of fabricating |
US9601692B1 (en) | 2010-07-13 | 2017-03-21 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
US8946046B1 (en) | 2012-05-02 | 2015-02-03 | Crossbar, Inc. | Guided path for forming a conductive filament in RRAM |
US9570678B1 (en) | 2010-06-08 | 2017-02-14 | Crossbar, Inc. | Resistive RAM with preferental filament formation region and methods |
CN103081093B (zh) | 2010-06-11 | 2015-06-03 | 科洛斯巴股份有限公司 | 存储器件的柱结构以及方法 |
US8374018B2 (en) | 2010-07-09 | 2013-02-12 | Crossbar, Inc. | Resistive memory using SiGe material |
US8168506B2 (en) | 2010-07-13 | 2012-05-01 | Crossbar, Inc. | On/off ratio for non-volatile memory device and method |
US8947908B2 (en) | 2010-11-04 | 2015-02-03 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
US8884261B2 (en) | 2010-08-23 | 2014-11-11 | Crossbar, Inc. | Device switching using layered device structure |
US8569172B1 (en) | 2012-08-14 | 2013-10-29 | Crossbar, Inc. | Noble metal/non-noble metal electrode for RRAM applications |
US8889521B1 (en) | 2012-09-14 | 2014-11-18 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US9401475B1 (en) | 2010-08-23 | 2016-07-26 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US8492195B2 (en) | 2010-08-23 | 2013-07-23 | Crossbar, Inc. | Method for forming stackable non-volatile resistive switching memory devices |
US8351242B2 (en) | 2010-09-29 | 2013-01-08 | Micron Technology, Inc. | Electronic devices, memory devices and memory arrays |
US8558212B2 (en) | 2010-09-29 | 2013-10-15 | Crossbar, Inc. | Conductive path in switching material in a resistive random access memory device and control |
US8325507B2 (en) * | 2010-09-29 | 2012-12-04 | Hewlett-Packard Development Company, L.P. | Memristors with an electrode metal reservoir for dopants |
US8759809B2 (en) | 2010-10-21 | 2014-06-24 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer |
US8796661B2 (en) | 2010-11-01 | 2014-08-05 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cell |
US8526213B2 (en) | 2010-11-01 | 2013-09-03 | Micron Technology, Inc. | Memory cells, methods of programming memory cells, and methods of forming memory cells |
US8502185B2 (en) | 2011-05-31 | 2013-08-06 | Crossbar, Inc. | Switching device having a non-linear element |
USRE46335E1 (en) | 2010-11-04 | 2017-03-07 | Crossbar, Inc. | Switching device having a non-linear element |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
US9214628B2 (en) * | 2010-12-03 | 2015-12-15 | Panasonic Intellectual Property Management Co., Ltd. | Nonvolatile memory element, nonvolatile memory device, and manufacturing method for the same |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8930174B2 (en) | 2010-12-28 | 2015-01-06 | Crossbar, Inc. | Modeling technique for resistive random access memory (RRAM) cells |
US8791010B1 (en) | 2010-12-31 | 2014-07-29 | Crossbar, Inc. | Silver interconnects for stacked non-volatile memory device and method |
US8815696B1 (en) | 2010-12-31 | 2014-08-26 | Crossbar, Inc. | Disturb-resistant non-volatile memory device using via-fill and etchback technique |
US9153623B1 (en) | 2010-12-31 | 2015-10-06 | Crossbar, Inc. | Thin film transistor steering element for a non-volatile memory device |
US8791447B2 (en) | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8488365B2 (en) | 2011-02-24 | 2013-07-16 | Micron Technology, Inc. | Memory cells |
US8537592B2 (en) | 2011-04-15 | 2013-09-17 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US9620206B2 (en) | 2011-05-31 | 2017-04-11 | Crossbar, Inc. | Memory array architecture with two-terminal memory cells |
JP5502803B2 (ja) | 2011-06-02 | 2014-05-28 | 株式会社東芝 | 不揮発性抵抗変化素子 |
US10566056B2 (en) | 2011-06-10 | 2020-02-18 | Unity Semiconductor Corporation | Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations |
US8891276B2 (en) | 2011-06-10 | 2014-11-18 | Unity Semiconductor Corporation | Memory array with local bitlines and local-to-global bitline pass gates and gain stages |
US9117495B2 (en) | 2011-06-10 | 2015-08-25 | Unity Semiconductor Corporation | Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations |
US8619459B1 (en) | 2011-06-23 | 2013-12-31 | Crossbar, Inc. | High operating speed resistive random access memory |
US9564587B1 (en) | 2011-06-30 | 2017-02-07 | Crossbar, Inc. | Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects |
US9627443B2 (en) | 2011-06-30 | 2017-04-18 | Crossbar, Inc. | Three-dimensional oblique two-terminal memory with enhanced electric field |
US9166163B2 (en) | 2011-06-30 | 2015-10-20 | Crossbar, Inc. | Sub-oxide interface layer for two-terminal memory |
US8946669B1 (en) | 2012-04-05 | 2015-02-03 | Crossbar, Inc. | Resistive memory device and fabrication methods |
JP2013026459A (ja) * | 2011-07-21 | 2013-02-04 | Toshiba Corp | 不揮発性抵抗変化素子 |
EP2735028A4 (en) | 2011-07-22 | 2015-05-06 | Crossbar Inc | SEALING LAYER FOR SILICON-GERMANIUM P + MATERIAL FOR REMAINING MEMORY DEVICE AND ASSOCIATED METHOD |
US9729155B2 (en) | 2011-07-29 | 2017-08-08 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US10056907B1 (en) | 2011-07-29 | 2018-08-21 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US8674724B2 (en) | 2011-07-29 | 2014-03-18 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
TWI501234B (zh) * | 2011-09-23 | 2015-09-21 | Univ Nat Sun Yat Sen | 具二氧化矽絕緣層之電阻式隨機存取記憶體構造 |
TWI496146B (zh) * | 2011-09-23 | 2015-08-11 | Univ Nat Sun Yat Sen | 具氮化矽絕緣層之電阻式隨機存取記憶體構造 |
US9087576B1 (en) | 2012-03-29 | 2015-07-21 | Crossbar, Inc. | Low temperature fabrication method for a three-dimensional memory device and structure |
US9685608B2 (en) | 2012-04-13 | 2017-06-20 | Crossbar, Inc. | Reduced diffusion in metal electrode for two-terminal memory |
US8658476B1 (en) | 2012-04-20 | 2014-02-25 | Crossbar, Inc. | Low temperature P+ polycrystalline silicon material for non-volatile memory device |
US8796658B1 (en) | 2012-05-07 | 2014-08-05 | Crossbar, Inc. | Filamentary based non-volatile resistive memory device and method |
US9583701B1 (en) | 2012-08-14 | 2017-02-28 | Crossbar, Inc. | Methods for fabricating resistive memory device switching material using ion implantation |
US9741765B1 (en) | 2012-08-14 | 2017-08-22 | Crossbar, Inc. | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
US8946673B1 (en) | 2012-08-24 | 2015-02-03 | Crossbar, Inc. | Resistive switching device structure with improved data retention for non-volatile memory device and method |
US9312483B2 (en) | 2012-09-24 | 2016-04-12 | Crossbar, Inc. | Electrode structure for a non-volatile memory device and method |
US9576616B2 (en) | 2012-10-10 | 2017-02-21 | Crossbar, Inc. | Non-volatile memory with overwrite capability and low write amplification |
US11068620B2 (en) | 2012-11-09 | 2021-07-20 | Crossbar, Inc. | Secure circuit integrated with memory layer |
US8982647B2 (en) | 2012-11-14 | 2015-03-17 | Crossbar, Inc. | Resistive random access memory equalization and sensing |
US9412790B1 (en) | 2012-12-04 | 2016-08-09 | Crossbar, Inc. | Scalable RRAM device architecture for a non-volatile memory device and method |
US9406379B2 (en) | 2013-01-03 | 2016-08-02 | Crossbar, Inc. | Resistive random access memory with non-linear current-voltage relationship |
US9112145B1 (en) | 2013-01-31 | 2015-08-18 | Crossbar, Inc. | Rectified switching of two-terminal memory via real time filament formation |
US9324942B1 (en) | 2013-01-31 | 2016-04-26 | Crossbar, Inc. | Resistive memory cell with solid state diode |
JP5650855B2 (ja) * | 2013-02-08 | 2015-01-07 | パナソニックIpマネジメント株式会社 | 不揮発性記憶素子の製造方法、不揮発性記憶素子及び不揮発性記憶装置 |
US9343668B2 (en) * | 2013-03-14 | 2016-05-17 | Crossbar, Inc. | Low temperature in-situ doped silicon-based conductor material for memory cell |
KR101977271B1 (ko) * | 2013-04-05 | 2019-05-10 | 에스케이하이닉스 주식회사 | 반도체 장치의 제조 방법 |
US10290801B2 (en) | 2014-02-07 | 2019-05-14 | Crossbar, Inc. | Scalable silicon based resistive memory device |
JP5755782B2 (ja) * | 2014-05-26 | 2015-07-29 | 株式会社東芝 | 不揮発性抵抗変化素子 |
KR20160006028A (ko) * | 2014-07-08 | 2016-01-18 | 삼성전자주식회사 | 저항 변화 메모리 장치 |
CN104979363A (zh) * | 2015-06-19 | 2015-10-14 | 北京科技大学 | 一种电化学沉积制备薄膜构建的忆阻器及其制备方法 |
US10050192B2 (en) * | 2015-12-11 | 2018-08-14 | Imec Vzw | Magnetic memory device having buffer layer |
CN107887507A (zh) * | 2016-09-29 | 2018-04-06 | 华邦电子股份有限公司 | 电阻式随机存取存储器、其制造方法及其操作方法 |
KR102154477B1 (ko) * | 2018-12-07 | 2020-09-10 | 충북대학교 산학협력단 | 용액 공정 기반의 다층 채널 구조 izo 저항 변화형 메모리 및 그 제작 방법 |
US11283014B2 (en) | 2019-08-28 | 2022-03-22 | Tetramem Inc. | RRAM crossbar array circuits with specialized interface layers for low current operation |
KR102675933B1 (ko) * | 2019-11-01 | 2024-06-18 | 삼성전자주식회사 | 반도체 메모리 소자 및 그의 제조 방법 |
US11723294B2 (en) | 2020-06-25 | 2023-08-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Memory device and method for fabricating the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4022783B2 (ja) * | 1996-04-19 | 2007-12-19 | 富士通株式会社 | 酸化物電子装置 |
JP2000340520A (ja) * | 1999-05-26 | 2000-12-08 | Denso Corp | 半導体装置及びその製造方法 |
SE0301350D0 (sv) * | 2003-05-08 | 2003-05-08 | Forskarpatent I Uppsala Ab | A thin-film solar cell |
JP4212413B2 (ja) | 2003-05-27 | 2009-01-21 | シャープ株式会社 | 酸化物半導体発光素子 |
KR100578799B1 (ko) * | 2003-12-12 | 2006-05-11 | 삼성에스디아이 주식회사 | 염료감응 태양전지의 제조방법 |
TWI355661B (en) * | 2003-12-18 | 2012-01-01 | Panasonic Corp | Method for using a variable-resistance material as |
KR101051704B1 (ko) * | 2004-04-28 | 2011-07-25 | 삼성전자주식회사 | 저항 구배를 지닌 다층막을 이용한 메모리 소자 |
JP4365737B2 (ja) * | 2004-06-30 | 2009-11-18 | シャープ株式会社 | 可変抵抗素子の駆動方法及び記憶装置 |
KR100609699B1 (ko) * | 2004-07-15 | 2006-08-08 | 한국전자통신연구원 | 급격한 금속-절연체 전이 반도체 물질을 이용한 2단자반도체 소자 및 그 제조 방법 |
KR100657911B1 (ko) * | 2004-11-10 | 2006-12-14 | 삼성전자주식회사 | 한 개의 저항체와 한 개의 다이오드를 지닌 비휘발성메모리 소자 |
JP4848633B2 (ja) * | 2004-12-14 | 2011-12-28 | ソニー株式会社 | 記憶素子及び記憶装置 |
-
2006
- 2006-06-27 KR KR1020060058098A patent/KR101159075B1/ko not_active IP Right Cessation
- 2006-11-15 CN CN2006101603995A patent/CN101097988B/zh active Active
-
2007
- 2007-02-06 US US11/702,623 patent/US7498600B2/en active Active
- 2007-05-10 JP JP2007125946A patent/JP5154138B2/ja active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011000316A1 (zh) * | 2009-07-02 | 2011-01-06 | 黑龙江大学 | 纳米结构快速开关忆阻器及其制造方法 |
CN103904212A (zh) * | 2012-12-26 | 2014-07-02 | 华邦电子股份有限公司 | 非挥发性存储器 |
CN103904212B (zh) * | 2012-12-26 | 2016-08-10 | 华邦电子股份有限公司 | 非挥发性存储器 |
CN112054117A (zh) * | 2019-06-05 | 2020-12-08 | 联华电子股份有限公司 | 存储器元件的结构及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20070295950A1 (en) | 2007-12-27 |
CN101097988B (zh) | 2010-09-15 |
KR20080000358A (ko) | 2008-01-02 |
US7498600B2 (en) | 2009-03-03 |
JP5154138B2 (ja) | 2013-02-27 |
KR101159075B1 (ko) | 2012-06-25 |
JP2008010836A (ja) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154138B2 (ja) | n+界面層を備えた可変抵抗ランダムアクセスメモリ素子 | |
CN101068038B (zh) | 在下电极上具有缓冲层的可变电阻存储器件 | |
US8125021B2 (en) | Non-volatile memory devices including variable resistance material | |
JP5213370B2 (ja) | 可変抵抗物質を含む不揮発性メモリ素子 | |
JP4938493B2 (ja) | 二つの酸化層を利用した不揮発性メモリ素子 | |
JP5230955B2 (ja) | 抵抗性メモリ素子 | |
CN102412309B (zh) | 开关器件和包括所述开关器件的存储器件 | |
KR20090126530A (ko) | 저항성 메모리 소자 | |
US20150037959A1 (en) | Bipolar Multistate Nonvolatile Memory | |
US9177998B2 (en) | Method of forming an asymmetric MIMCAP or a Schottky device as a selector element for a cross-bar memory array | |
US9978941B2 (en) | Self-rectifying resistive random access memory cell structure | |
US9000407B2 (en) | ReRAM materials stack for low-operating-power and high-density applications | |
KR102464065B1 (ko) | 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치 | |
KR100976424B1 (ko) | 저항변화기록소자에 이용되는 스위칭 다이오드 및 이를이용한 저항변화기록소자와 저항변화 랜덤 액세스 메모리 | |
KR100785021B1 (ko) | Cu2O를 포함한 비휘발성 가변 저항 메모리 소자 | |
KR100902504B1 (ko) | 비정질 고체 전해질층을 포함하는 저항성 메모리 소자 및그 동작 방법 | |
KR20100034635A (ko) | 저항성 메모리 소자 | |
Lee et al. | Effect of TiO x-based tunnel barrier on non-linearity and switching reliability of resistive random access memory | |
KR101179133B1 (ko) | 전하 충전층을 구비하는 비휘발성 저항 변화 메모리 소자 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |