CN101093211B - Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube - Google Patents
Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube Download PDFInfo
- Publication number
- CN101093211B CN101093211B CN200610089347A CN200610089347A CN101093211B CN 101093211 B CN101093211 B CN 101093211B CN 200610089347 A CN200610089347 A CN 200610089347A CN 200610089347 A CN200610089347 A CN 200610089347A CN 101093211 B CN101093211 B CN 101093211B
- Authority
- CN
- China
- Prior art keywords
- drift
- electric field
- electrode
- ion
- transient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明一种用于离子迁移率谱仪漂移管的瞬态漂移电场方法,涉及检测技术,其使用瞬态电场作为离子迁移率谱仪(IMS)漂移管中的漂移电场,即在时刻(T+mΔT)到(T+(m+1)ΔT)之间,离子团全部漂移到第m+1、第m+2、第m+3个漂移电极之间的区域,于漂移管第m+1、第m+2和第m+3个漂移电极上分别加电压V(m+1)(m+1)、V(m+1)(m+2)和V(m+1)(m+3)满足V(m+1)(m+1)-V(m+1)(m+2)=V(m+1)(m+2)-V(m+1)(m+3)=EL,在漂移管第m+1、第m+2和第m+3个漂移电极之间的区域构成强度为E的瞬态电场。本发明的瞬态漂移电场方法,可以大大降低所需电压,有利于离子迁移率谱仪电路的集成化,以及离子迁移率谱仪微型漂移管与电路的集成。
The present invention is a kind of transient electric field method for drift tube of ion mobility spectrometer, relates to detection technology, and it uses transient electric field as the drift electric field in the drift tube of ion mobility spectrometer (IMS), namely at time (T +mΔT) to (T+(m+1)ΔT), the ion clusters all drift to the area between the m+1th, m+2th, and m+3th drift electrodes. , m+2th and m+3th drift electrodes respectively apply voltages V (m+1)(m+1) , V (m+1)(m+2) and V (m+1)(m+ 3) Satisfy V (m+1)(m+1) -V (m+1)(m+2) = V (m+1)(m+2) -V (m+1)(m+3) =EL, the region between the m+1th, m+2th and m+3th drift electrodes of the drift tube constitutes a transient electric field with an intensity of E. The transient drift electric field method of the invention can greatly reduce the required voltage, and is beneficial to the integration of the ion mobility spectrometer circuit, and the integration of the ion mobility spectrometer micro-drift tube and the circuit.
Description
技术领域technical field
本发明涉及检测技术领域,属于离子迁移率谱仪(IMS:Ion MobilitySpectrometer)技术,尤其涉及一种用于离子迁移率谱仪漂移管的瞬态漂移电场和瞬态漂移电场产生方法。The invention relates to the technical field of detection, belongs to ion mobility spectrometer (IMS: Ion Mobility Spectrometer) technology, and in particular relates to a transient electric field and a method for generating a transient electric field used in a drift tube of an ion mobility spectrometer.
背景技术Background technique
离子迁移率谱仪(ion mobility spectrometry)是从二十世纪六十年代末发展起来的一种新的检测技术,它与飞行时间质谱有些类似,但离子迁移率谱不像质谱那样需要高真空条件,而是在大气压下工作。离子迁移率谱仪选择性好,检测灵敏度高,是检测痕量爆炸物、毒品、生化战剂的有效工具。Ion mobility spectrometry is a new detection technology developed in the late 1960s. It is somewhat similar to time-of-flight mass spectrometry, but ion mobility spectrometry does not require high vacuum conditions like mass spectrometry , but work at atmospheric pressure. Ion mobility spectrometer has good selectivity and high detection sensitivity, and is an effective tool for detecting trace explosives, drugs, and biochemical warfare agents.
离子迁移率谱仪是根据大气压下离子在弱电场中(约200V/cm量级)迁移率的不同来分离不同物质。它主要由漂移管和外围电路及气路系统、进样系统组成。漂移管是离子形成和漂移的场所,是离子迁移率谱仪(IMS)中最重要的特种器件,它的性能直接决定了整个离子迁移率谱仪的指标;气路系统、进样系统提供了离子迁移率谱仪工作的环境和条件;外围电路完成离子迁移率谱仪过程控制、信号采集及数据处理功能。The ion mobility spectrometer separates different substances according to the difference in the mobility of ions in a weak electric field (about 200V/cm order) under atmospheric pressure. It is mainly composed of drift tube, peripheral circuit, gas system and sampling system. The drift tube is the place where ions form and drift, and is the most important special device in the ion mobility spectrometer (IMS). Its performance directly determines the index of the entire ion mobility spectrometer; the gas circuit system and the sampling system provide The working environment and conditions of the ion mobility spectrometer; the peripheral circuit completes the process control, signal acquisition and data processing functions of the ion mobility spectrometer.
漂移管主要由四部分组成:1离化室;2离子漂移区;3位于离化室与离子漂移区之间的离子控制门;4作为离子检测器的法拉第盘。使用离子迁移率谱仪(IMS)检测样品时,首先使被测物(可以是气体或者微粒)在离化室离化形成带电离子,然后离子通过离子控制门进入离子漂移区,在电场作用下经过一定时间漂移至法拉第盘,测量离子通过离子漂移区所需的时间可以计算出离子的迁移率。离子迁移率受漂移气体、温度、压强等外界因素影响,在一定条件下,小离子的迁移率主要取决于它的分子量,而大离子的迁移率主要由碰撞截面决定。由于在一定条件下各种物质离子的迁移率互不相同,测量漂移时间可间接得到样品的有关信息。The drift tube is mainly composed of four parts: 1 ionization chamber; 2 ion drift region; 3 ion control gate located between the ionization chamber and ion drift region; 4 Faraday disk as ion detector. When using an ion mobility spectrometer (IMS) to detect a sample, the analyte (which can be a gas or a particle) is first ionized in the ionization chamber to form charged ions, and then the ions enter the ion drift region through the ion control gate, under the action of an electric field After a certain time of drifting to the Faraday disk, the ion mobility can be calculated by measuring the time it takes for the ion to pass through the ion drift region. Ion mobility is affected by external factors such as drift gas, temperature, and pressure. Under certain conditions, the mobility of small ions mainly depends on its molecular weight, while the mobility of large ions is mainly determined by the collision cross section. Since the mobilities of ions of various substances are different under certain conditions, the relevant information of the sample can be indirectly obtained by measuring the drift time.
与一般化学分析仪器相比,离子迁移率谱仪(IMS)有体积小、重量轻、功耗低的优点,它对炸药、毒品等物质的探测灵敏度高达10-8-10-14g或者ppb(10-9)-ppt(10-12)量级,特别适合用于行李包裹的实时检测。Compared with general chemical analysis instruments, ion mobility spectrometer (IMS) has the advantages of small size, light weight, and low power consumption. Its detection sensitivity for explosives, drugs and other substances is as high as 10 -8 -10 -14 g or ppb (10 -9 )-ppt(10 -12 ) level, especially suitable for real-time detection of luggage packages.
在图1所示的离子迁移率谱仪(IMS)原理图中,离子漂移区中有多个漂移电极,传统结构的离子迁移率谱仪(IMS)仪器是在各漂移电极加上恒定电压,在漂移区的整个空间建立所需强度约200V/cm的漂移电场,这就需要使用1000V量级的高压电源,电路不易集成,更难以利用比较成熟的IC技术实现。In the schematic diagram of the ion mobility spectrometer (IMS) shown in Figure 1, there are multiple drift electrodes in the ion drift region, and the ion mobility spectrometer (IMS) instrument of the traditional structure is to add a constant voltage to each drift electrode, Establish a drift electric field with a required strength of about 200V/cm in the entire space of the drift region, which requires the use of a high-voltage power supply of the order of 1000V. The circuit is not easy to integrate, and it is even more difficult to use relatively mature IC technology to achieve.
发明内容Contents of the invention
本发明的目的是提供一种用于离子迁移率谱仪(IMS)漂移管的瞬态漂移电场思想和产生的方法.使用本发明可以将离子迁移率谱仪(IMS)漂移管中产生漂移电场所需电压降低到几十伏甚至几伏,可以比较容易地利用普通IC电路产生漂移电场,这对离子迁移率谱仪(IMS)电路的集成化,以及离子迁移率谱仪(IMS)微型漂移管与电路的集成,具有重要的意义.The purpose of the present invention is to provide a kind of transient electric field idea and the method that produce for ion mobility spectrometer (IMS) drift tube. Using the present invention can produce drift electric field in ion mobility spectrometer (IMS) drift tube The required voltage is reduced to tens of volts or even several volts, and it is relatively easy to use ordinary IC circuits to generate drift electric fields, which is beneficial to the integration of ion mobility spectrometer (IMS) circuits and the miniature drift of ion mobility spectrometers (IMS). The integration of tubes and circuits is of great significance.
为达到上述目的,本发明的技术解决方案是提供一种用于离子迁移率谱仪漂移管的瞬态漂移电场方法,其使用瞬态电场作为离子迁移率谱仪漂移管中的漂移电场,即在时刻(T+mΔT)到(T+(m+1)ΔT)之间,离子团全部漂移到第m+1、第m+2、第m+3个漂移电极之间的区域,于漂移管第m+1、第m+2和第m+3个漂移电极上分别加电压V(m+1)(m+1)、V(m+1)(m+2)和V(m+1)(m+3),V(m+1)(m+1)、V(m+1)(m+2)和V(m+1)(m+3)满足V(m+1)(m+1)-V(m+1)(m+2)=V(m+1)(m+2)-V(m+1)(m+3)=EL,在漂移管第m+1、第m+2和第m+3个漂移电极之间的区域构成强度为E的瞬态电场。In order to achieve the above object, the technical solution of the present invention is to provide a kind of transient electric field method for ion mobility spectrometer drift tube, it uses transient electric field as the drift electric field in the ion mobility spectrometer drift tube, i.e. Between the time (T+mΔT) and (T+(m+1)ΔT), the ion clusters all drift to the area between the m+1th, m+2, and m+3th drift electrodes, where the drift tube Voltages V (m+1)(m+1), V (m+1)(m+2) and V ( m+1) are applied to the m+1, m+2 and m +3 drift electrodes respectively )(m+3) , V (m+1)(m+1) , V (m+1)(m+2) and V (m+1)(m+3) satisfy V (m+1)( m+1) -V (m+1)(m+2) =V (m+1)(m+2) -V (m+1)(m+3) =EL, in the m+1th drift tube , The region between the m+2th and m+3th drift electrodes constitutes a transient electric field with a strength E.
所述的瞬态漂移电场方法,其步骤是:Described transient drift electric field method, its steps are:
S1、在强度为E的漂移电场作用下,需要检测的离子通过间距为L的相邻漂移电极之间区域所需时间为ΔT=L/EK,其中K为离子的迁移率,则在时刻T到(T+ΔT)之间,于漂移管第一、第二、第三个漂移电极上分别加电压V11、V12和V13,V11、V12和V13满足V11-V12=V12-V13=EL,在漂移管第一、第二、第三个漂移电极之间的区域构成强度为E的瞬态电场,在这段时间需要检测的离子团位于漂移管第一、第二、第三个漂移电极之间的区域内并受到该瞬态电场作用,所述T为离子团全部进入离子漂移区的时刻;S1. Under the action of a drift electric field with an intensity of E, the time required for the ions to be detected to pass through the area between adjacent drift electrodes with a distance of L is ΔT=L/EK, where K is the mobility of ions, then at time T Between (T+ΔT), apply voltages V 11 , V 12 and
S2、在时刻(T+ΔT)到(T+2ΔT)之间,离子团漂移到第二、第三、第四个漂移电极之间的区域,于漂移管第二、第三和第四个漂移电极上分别加电压V22、V23和V24,V22、V23和V24满足V22-V23=V23-V24=EL,在漂移管第二、第三、第四个漂移电极之间的区域构成强度为E的瞬态电场;S2. Between the time (T+ΔT) and (T+2ΔT), the ion cluster drifts to the area between the second, third, and fourth drift electrodes, where the second, third, and fourth electrodes of the drift tube Voltages V 22 , V 23 and V 24 are respectively applied to the drift electrodes, and V 22 , V 23 and V 24 satisfy V 22 -V 23 =V 23 -V 24 =EL, in the second, third and fourth of the drift tube The region between the drift electrodes constitutes a transient electric field with a strength E;
S3、在时刻(T+2ΔT)到(T+3ΔT)之间,离子团漂移到第三、第四、第五个漂移电极之间的区域,于漂移管第三、第四和第五个漂移电极上分别加电压V33、V34和V35,V33、V34和V35满足V33-V34=V34-V35=EL,在漂移管第三、第四、第五个漂移电极之间的区域构成强度为E的瞬态电场;S3. Between the time (T+2ΔT) and (T+3ΔT), the ion cluster drifts to the area between the third, fourth, and fifth drift electrodes, where the third, fourth, and fifth electrodes of the drift tube Voltages V 33 , V 34 and V 35 are respectively applied to the drift electrodes . V 33 , V 34 and V 35 satisfy V 33 -V 34 =V 34 -V 35 =EL. The region between the drift electrodes constitutes a transient electric field with a strength E;
S4、重复以上S1、S2、S3步骤,控制相邻三个漂移电极的电压以在其之间的区域构成强度为E的瞬态电场,每经过ΔT的时间,受控制的漂移电极就向后顺序推移1个,使需要检测的离子团所在的空间区域总有强度为E的瞬态电场存在;S4. Repeat steps S1, S2, and S3 above to control the voltages of three adjacent drift electrodes to form a transient electric field with an intensity of E in the area between them. Every time ΔT passes, the controlled drift electrodes move backward Move one in order, so that the space region where the ion cluster to be detected always has a transient electric field with an intensity of E;
S5、使需要检测的离子团全部漂移到法拉第盘。S5. Make all the ion clusters to be detected drift to the Faraday disk.
所述的瞬态漂移电场方法,其所述加在不同漂移电极上的电压,其波形是方波、三角波、锯齿波、正弦波,或是上述各种波形的叠加,或是不规则的波形。In the described transient drift electric field method, the voltage applied to different drift electrodes has a waveform of a square wave, a triangular wave, a sawtooth wave, a sine wave, or a superposition of the above-mentioned various waveforms, or an irregular waveform .
本发明使用低电压产生随被测物质离子漂移而移动的瞬态电场代替传统离子迁移率谱仪(IMS)中使用高电压产生的稳态漂移电场。本发明在漂移管不同漂移电极加上瞬态电压产生所需的漂移电场,其所述加在漂移区漂移电极上的电压,其频率由被测物的迁移率及漂移区的尺寸决定,其大小由所需要产生的漂移电场强度和漂移电极的间距决定,其所述加在漂移区漂移电极上的电压的波形及不同漂移电极上电压的相位关系可根据理论分析和实验数据进行调整。The invention uses a low voltage to generate a transient electric field that moves with the ion drift of the measured substance to replace the steady state drift electric field generated by a high voltage in a traditional ion mobility spectrometer (IMS). The present invention adds transient voltages to different drift electrodes of the drift tube to generate the required drift electric field. The frequency of the voltage applied to the drift electrodes in the drift region is determined by the mobility of the measured object and the size of the drift region. The size is determined by the required drift electric field strength and the distance between the drift electrodes. The waveform of the voltage applied to the drift electrodes in the drift region and the phase relationship of the voltages on different drift electrodes can be adjusted according to theoretical analysis and experimental data.
本发明所提出的瞬态漂移电场的思想及方法大大降低离子迁移率谱仪(IMS)建立漂移电场所需电压,有利于离子迁移率谱仪(IMS)电路的集成化。The idea and method of the transient drift electric field proposed by the present invention greatly reduce the voltage required by the ion mobility spectrometer (IMS) to establish the drift electric field, which is beneficial to the integration of the ion mobility spectrometer (IMS) circuit.
附图说明Description of drawings
图1为离子迁移率谱仪(IMS)结构示意图;Fig. 1 is the structure diagram of ion mobility spectrometer (IMS);
图2为传统离子迁移率谱仪(IMS)漂移电极上所加电压示意图;Fig. 2 is the schematic diagram of voltage applied on the drift electrode of traditional ion mobility spectrometer (IMS);
图3是一种说明本发明方法瞬态漂移电场基本原理的离子迁移率谱仪(IMS)漂移管各漂移电极所加电压示意图;Fig. 3 is a kind of schematic diagram of voltage applied to each drift electrode of the ion mobility spectrometer (IMS) drift tube illustrating the basic principle of the transient drift electric field of the method of the present invention;
图4为本发明方法一种实现瞬态漂移电场的离子迁移率谱仪(IMS)漂移管各漂移电极所加电压示意图;Fig. 4 is a schematic diagram of voltages applied to each drift electrode of an ion mobility spectrometer (IMS) drift tube that realizes a transient drift electric field according to the method of the present invention;
图5为本发明方法另外一种实现瞬态漂移电场的离子迁移率谱仪(IMS)漂移管各漂移电极所加电压示意图;Fig. 5 is another kind of ion mobility spectrometer (IMS) drift tube voltage schematic diagram that realizes the drift electric field of another kind of the present invention;
图6为本发明方法一种改进的实现瞬态漂移电场的离子迁移率谱仪(IMS)漂移管各漂移电极所加电压示意图。Fig. 6 is a schematic diagram of the voltages applied to each drift electrode of the drift tube of an ion mobility spectrometer (IMS) improved by the method of the present invention to realize the transient drift electric field.
具体实施方式Detailed ways
本发明用于离子迁移率谱仪漂移管的瞬态漂移电场方法原理为:The principle of the transient electric field method used in the ion mobility spectrometer drift tube of the present invention is as follows:
带电离子在漂移电场作用下加速向前运动时,会和中性漂移气体分子发生碰撞而减速,然后离子继续被电场加速,再碰撞后减速,如此反复运动。这种离子微观上的运动在宏观上表现为离子获得一平均的漂移速度vd,在弱电场情况下,它和电场强度E成正比:vd=KE,式中的比例常数K为离子的迁移率,它是和离子以及漂移气体分子的质量、大小、碰撞截面以及偶极矩等因素有关的物理量,它还受到温度、气压等外界因素的影响。离子迁移率K是化合物(或者功能基团、离子)的特性,它与迁移气体有关,在低电场强度下,特定离子的迁移率可以根据Mason-Schamp方程[E A Mason,Ion mobility:Its role in plasma chromartograhpy,TW Carr,Ed.,New York:Plenum Press,1984,43]等理论和实验数据确定。When the charged ions are accelerated and moved forward under the action of the drift electric field, they will collide with the neutral drift gas molecules and decelerate, and then the ions will continue to be accelerated by the electric field, and then decelerate after collision, and so on. This microscopic movement of ions is manifested in the macroscopic view that ions obtain an average drift velocity v d , in the case of a weak electric field, it is proportional to the electric field strength E: v d =KE, the proportionality constant K in the formula is the ion's Mobility is a physical quantity related to factors such as the mass, size, collision cross section, and dipole moment of ions and drift gas molecules. It is also affected by external factors such as temperature and air pressure. The ion mobility K is a characteristic of a compound (or a functional group, an ion), which is related to a moving gas. Under a low electric field strength, the mobility of a specific ion can be calculated according to the Mason-Schamp equation [E A Mason, Ion mobility: Its role in plasma chromartograhpy, TW Carr, Ed., New York: Plenum Press, 1984, 43] and other theoretical and experimental data to determine.
离子在漂移电场中的运动情况由离子的受力情况决定,而离子在一个时刻所受到的电场力只与它此时刻所在区域的电场有关。即从理论上讲,如果在漂移过程中能够保证每个时刻离子所在区域的电场强度总为E,则离子的运动情况与在一个强度为E的稳恒均匀电场中的运动情况是一样的。根据此原理,并不需要在漂移的全过程中保持整个离子漂移区的电场,而只需保持离子所在区域的漂移电场即可。离子在离子漂移区中运动的宏观表现已为人们所熟知,根据离子漂移区电场强度及特定离子的迁移率K可以知道离子某时刻在离子漂移区的位置,只在该区域建立所需的漂移电场即可保证离子的漂移,这样可以显著降低建立漂移电场所需的电压。The movement of ions in the drifting electric field is determined by the force on the ions, and the electric field force on the ions at a moment is only related to the electric field in the area where it is at this moment. That is to say, theoretically, if the electric field strength in the region where the ions are located is always E at each moment during the drift process, the movement of the ions is the same as that in a steady and uniform electric field with the strength E. According to this principle, it is not necessary to maintain the electric field of the entire ion drift region during the whole process of drifting, but only need to maintain the drift electric field of the region where the ion is located. The macroscopic performance of ions moving in the ion drift region is well known. According to the electric field strength of the ion drift region and the mobility K of a specific ion, the position of the ion in the ion drift region at a certain moment can be known, and only the required drift can be established in this region. The electric field is enough to ensure the drift of the ions, which can significantly reduce the voltage required to establish the drift electric field.
为了方便论述,参见图1,假设图1所示离子迁移率谱仪(IMS)漂移管中共有N个漂移电极6均匀排列,相互之间的距离为L。我们需要检测的某种特定离子的迁移率为K。则在强度为E的漂移电场作用下,离子通过相邻电极6之间区域所需时间ΔT=L/KE。For the convenience of discussion, referring to FIG. 1 , it is assumed that there are
考虑一个迁移率为K的特定离子在漂移电场中的运动情况。Consider the motion of a specific ion with mobility K in a drift electric field.
在传统的离子迁移率谱仪(IMS)中,通过在第n个电极6上加恒定电压(V0-nEL)(式中n=1,2,3……N,V0为一常量)来获得强度为E的漂移电场,需要使用电压至少为((N-1)EL)的电源。而在本发明的方法中,在时刻T到(T+ΔT)之间,离子处于第一、第二个电极6之间的区域,在这段时间于第一、第二个电极6上分别加电压V11、V12,V11和V12满足V11-V12=EL;在时刻(T+ΔT)到(T+2ΔT)之间,离子已经运动到第二、第三个电极6之间的区域,在这段时间于第二、第三个电极6上分别加电压V22、V23,V22和V23满足V22-V23=EL;……在时刻(T+(n-1)ΔT)到(T+nΔT)之间,离子运动到第n、第(n+1)个漂移电极6之间的区域,在时刻(T+(n-1)ΔT)到(T+nΔT)的时间于第n、第(n+1)个漂移电极6上分别加电压Vnn、Vn(n+1),Vnn和Vn(n+1)满足Vnn-Vn(n+1)=EL(式中n=1,2,3……N),这样所需使用的电源电压只需高于(EL),仅为传统方法中所使用电压的1/N-1。In a traditional ion mobility spectrometer (IMS), by applying a constant voltage (V 0 -nEL) to the nth electrode 6 (where n=1, 2, 3...N, V 0 is a constant) To obtain a drift electric field of strength E requires a power supply with a voltage of at least ((N-1)EL). And in the method of the present invention, between moment T to (T+ΔT), ion is in the region between the first, the
以上论述只是本发明的基本原理,实际由于离子团分布在一定空间中,而且漂移电极6上电压的切换需要一定时间,所以只在两个相邻漂移电极6之间建立漂移电场的离子迁移率谱仪(IMS)性能很差,只能使离子团中的极少数离子完成漂移过程。从离子团分布、电压切换以及漂移电场均匀性等方面考虑,应在至少三个相邻漂移电极之间建立漂移电场。本发明用于离子迁移率谱仪漂移管的瞬态漂移电场方法,在三个相邻漂移电极之间建立漂移电场的步骤是:The above discussion is only the basic principle of the present invention. In fact, because the ion clusters are distributed in a certain space, and the switching of the voltage on the
S1、因在强度为E的漂移电场作用下,需要检测的离子通过间距为L的相邻漂移电极之间区域所需时间为ΔT=L/KE,其中K为离子的迁移率,则在时刻T到(T+ΔT)之间,于漂移管第一、第二、第三个漂移电极6上分别加电压V11、V12和V13,V11、V12和V13满足V11-V12=V12-V13=EL,在漂移管第一、第二、第三个漂移电极6之间的区域构成强度为E的瞬态电场,在这段时间需要检测的离子团位于漂移管第一、第二、第三个漂移电极6之间的区域内并受到该瞬态电场作用。在漂移管除第一、第二、第三个漂移电极6以外的其它漂移电极6上可加任意电压或处于悬浮状态。所述T为离子团全部进入离子漂移区的时刻。S1. Under the action of a drift electric field with an intensity of E, the time required for the ions to be detected to pass through the area between adjacent drift electrodes with a distance of L is ΔT=L/KE, where K is the mobility of ions, then at time Between T and (T+ΔT), voltages V 11 , V 12 and
S2、在时刻(T+ΔT)到(T+2ΔT)之间,离子团漂移到第二、第三、第四个漂移电极6之间的区域,于漂移管第二、第三和第四个漂移电极6上分别加电压V22、V23和V24,V22、V23和V24满足V22-V23=V23-V24=EL,在漂移管第二、第三、第四个漂移电极6之间的区域构成强度为E的瞬态电场。在漂移管除第二、第三、第四个漂移电极6以外的其它漂移电极6上可加任意电压或处于悬浮状态。S2. Between the time (T+ΔT) and (T+2ΔT), the ion cluster drifts to the area between the second, third and
S3、在时刻(T+2ΔT)到(T+3ΔT)之间,离子团漂移到第三、第四、第五个漂移电极6之间的区域,于漂移管第三、第四和第五个漂移电极6上分别加电压V33、V34和V35,V33、V34和V35满足V33-V34=V34-V35=EL,在漂移管第三、第四、第五个漂移电极6之间的区域构成强度为E的瞬态电场。在漂移管除第三、第四、第五个漂移电极6以外的其它漂移电极6上可加任意电压或处于悬浮状态。S3. Between the time (T+2ΔT) and (T+3ΔT), the ion cluster drifts to the area between the third, fourth and
S4、重复以上步骤,控制相邻三个漂移电极的电压以在其之间的区域构成强度为E的瞬态电场,每经过ΔT的时间,受控制的漂移电极就向后顺序推移1个,使需要检测的离子团所在的空间区域总有强度为E的瞬态电场存在。S4. Repeat the above steps to control the voltages of the three adjacent drift electrodes to form a transient electric field with an intensity E in the area between them. Every time ΔT passes, the controlled drift electrodes will move backward one by one, A transient electric field with an intensity E always exists in the spatial region where the ion cluster to be detected is located.
即在时刻(T+mΔT)到(T+(m+1)ΔT)之间,离子团漂移到第m+1、第m+2、第m+3个漂移电极之的区域,于漂移管第m+1、第m+2和第m+3个漂移电极6上分别加电压V(m+1)(m+1)、V(m+1)(m+2)和V(m+1)(m+3),V(m+1)(m+1)、V(m+1)(m+2)和V(m+1)(m+3)满足V(m+1)(m+1)-V(m+1)(m+2)=V(m+1)(m+2)-V(m+1)(m+3)=EL,在漂移管第m+1、第m+2、第m+3个漂移电极6之间的区域构成强度为E的瞬态电场。在漂移管除第m+1、第m+2、第m+3个漂移电极6以外的其它漂移电极6上可加任意电压或处于悬浮状态。That is, between the time (T+mΔT) and (T+(m+1)ΔT), the ion cluster drifts to the area between the m+1th, m+2th, and m+3th drift electrodes, where Voltages V (m+1)(m+1), V (m+1)(m+2) and V (m+1) are respectively applied to the m+1, m+2 and m +3
S5、使需要检测的离子团全部漂移到法拉第盘7。S5 , causing all the ion clusters to be detected to drift to the
设所要检测的离子团在漂移方向上的分布长度为l,若l和L满足l<L,则在时刻T,离子团全部位于第一、第二各漂移电极之间的区域,在上述瞬态漂移电场作用下,离子团的全部离子可以漂移到法拉第盘7(不考虑离子的碰撞损失及扩散并假设瞬态漂移电场为均匀电场).Assuming that the distribution length of the ion clusters to be detected in the drift direction is l, if l and L satisfy l<L, then at time T, all the ion clusters are located in the area between the first and second drift electrodes. Under the action of the state drift electric field, all the ions in the ion cluster can drift to the Faraday disk 7 (the collision loss and diffusion of ions are not considered and the transient drift electric field is assumed to be a uniform electric field).
若l和L不能满足l<L,则无法使需要检测的离子团在(T+mΔT)时刻,全部漂移到第m+1、第m+2个漂移电极之的区域,即该时刻前的ΔT时间段内构成瞬态电场的三个相邻的漂移电极中的后两个漂移电极之间,这样无法使离子团的全部离子在所述瞬态漂移电场作用下漂移到法拉第盘7。If l and L cannot satisfy l<L, it is impossible to make the ion clusters to be detected drift to the area between the m+1th and m+2th drift electrodes at the time (T+mΔT), that is, the area before this time Between the last two drift electrodes among the three adjacent drift electrodes forming the transient electric field during the ΔT time period, it is impossible to make all the ions of the ion cluster drift to the
假设l<hL,其中h为大于1的整数。为了使离子团的全部离子都可以漂移到法拉第盘7以提高离子迁移率谱仪(IMS)的灵敏度,则应在至少h+1个相邻漂移电极之间建立瞬态漂移电场。其方法与在三个相邻漂移电极之间建立瞬态漂移电场的方法类似:控制相邻h+1个漂移电极的电压以在其之间的区域构成强度为E的瞬态电场,每经过ΔT的时间,受控制的漂移电极就向后顺序推移1个,使需要检测的离子团所在的空间区域总有强度为E的瞬态电场存在。It is assumed that l<hL, where h is an integer greater than 1. In order to make all the ions in the ion cluster drift to the
下面结合附图说明本发明的具体实施方法:The concrete implementation method of the present invention is illustrated below in conjunction with accompanying drawing:
图1所示为离子迁移率谱仪(IMS)原理和结构示意图。图中,进样口1,离化源2,离化室3,离子控制门4,离子漂移区5,漂移电极6,法拉第盘7,漂移气体入口8,漂移气体出口9,外围电路10等,具体结构为公知技术,在此不作赘述。Figure 1 shows the schematic diagram of the principle and structure of an ion mobility spectrometer (IMS). In the figure,
样品由进样口1进入离化室3,在离化室3被离化后,通过离子控制门4进入离子漂移区5,在电场作用下通过离子漂移区5,由法拉第盘7检测出离子电流,通过分析漂移图谱可以得到样品的有关信息。离子漂移区5中有多个漂移电极6,传统结构的离子迁移率谱仪(IMS)仪器是在各漂移电极6加上恒定电压,在漂移区5的整个空间建立所需的漂移电场(如200V/cm),需要使用上千伏的高电压,很难用集成电路实现。The sample enters the
图2是传统离子迁移率谱仪(IMS)中各漂移电极6所加电压示意图。图中,各漂移电极6所加电压为稳恒电压,间距为L的相邻漂移电极6所加电压差为EL,这样在整个漂移区5形成强度为E的稳恒漂移电场。为形成该漂移电场需使用电压至少为(N-1)EL的电源,其中N为漂移电极6的数目。FIG. 2 is a schematic diagram of voltage applied to each
图3是一种说明本发明方法瞬态漂移电场基本原理的离子迁移率谱仪(IMS)漂移管各漂移电极6所加电压示意图。图中各漂移电极6上所加电压只有两种状态,分别为V和V+EL,控制各漂移电极6所加电压波形如图3所示,则在T到(T+ΔT)时间段,由于间距为L的相邻漂移电极11和漂移电极12上所加电压分别为V+EL和V,在漂移电极11和漂移电极12之间的空间形成强度为E的漂移电场;同样原理,在(T+ΔT)到(T+2ΔT)时间段,漂移电极12和漂移电极13之间的空间形成强度为E的漂移电场……在(T+(n-1)ΔT)到(T+nΔT)时间段,漂移电极(n+10)和漂移电极(n+11)之间的空间形成强度为E的漂移电场,其中n=1,2…N-1,N为漂移电极的数目。这样就可以在整个离子漂移区形成一个随时间而移动的瞬态漂移电场,调节时间参数ΔT可以使电场的移动速度与所要检测离子的漂移速度相同,该离子的运动情况与在强度为E的稳恒漂移电场中的运动情况相同,而采用本发明方法所需使用的电源电压只需高于EL即可,仅为传统方法中所使用电压的1/N-1。Fig. 3 is a schematic diagram of voltage applied to each
图4、图5分别为本发明方法另外两种实现瞬态漂移电场的离子迁移率谱仪(IMS)漂移管各漂移电极6所加电压示意图.加在漂移电极6上的电压分别为锯齿波和三角波,都可以保证在T到(T+ΔT)时间段,间距为L的相邻漂移电极11和漂移电极12之间的空间中有强度为E的漂移电场;在(T+ΔT)到(T+2ΔT)时间段,间距为L的相邻漂移电极12和漂移电极13之间的空间中有强度为E的漂移电场……,可以在整个离子漂移区形成一个随时间而移动的瞬态漂移电场.Fig. 4, Fig. 5 are respectively two kinds of other ion mobility spectrometer (IMS) drift tubes of the present invention that realize the transient drift electric field. and triangular wave, it can be guaranteed that in the time period from T to (T+ΔT), there is a drift electric field with an intensity of E in the space between the
本发明方法所提出的瞬态漂移电场,可以用于多种形式的离子迁移率谱仪(IMS)漂移管,本发明方法的内容包括但不仅仅限于用于图1所示结构离子迁移率谱仪(IMS)漂移管的瞬态漂移电场。The proposed transient drift electric field of the inventive method can be used for various forms of ion mobility spectrometer (IMS) drift tubes. Transient drift electric field of drift tube of instrument (IMS).
本发明提出的瞬态漂移电场可以有多种形式,图4、图5只是其中的两个例子。根据所需检测的物质种类,专业人员很容易从本发明的思想出发选择很多其它形式的瞬态漂移电场,本发明的内容包括但不仅仅限于图3、4、5所示的瞬态漂移电场实现方法。加在漂移管各漂移电极6上电压的波形可以是方波、三角波、锯齿波、正弦波等,也可以是上述各种波形的叠加,还可以是各种不规则的波形。The transient drift electric field proposed by the present invention can have various forms, and Fig. 4 and Fig. 5 are just two examples thereof. According to the type of substance to be detected, professionals can easily select many other forms of transient drift electric field from the idea of the present invention. The content of the present invention includes but not limited to the transient drift electric field shown in Figures 3, 4, and 5 Implementation. The waveform of the voltage applied to each
需要指出,图3、图4、图5只是为说明本发明方法的示意图,没有考虑真实情况下离子团具有一定的空间分布、电极电压切换需要时间以及漂移电场均匀性等因素。考虑到上述因素后,离子团中只有很少比例的离子可以通过图3、图4、图5所示的瞬态漂移电场。为了提高瞬态漂移电场的性能,需要同时至少在三个相邻漂移电极之间建立漂移电场。It should be pointed out that Fig. 3, Fig. 4, and Fig. 5 are only schematic diagrams illustrating the method of the present invention, without considering factors such as the certain spatial distribution of ion clusters, the time required for electrode voltage switching, and the uniformity of the drift electric field. After considering the above factors, only a small proportion of ions in the ion cluster can pass through the transient electric field drift shown in Figure 3, Figure 4, and Figure 5. In order to improve the performance of the transient electric drift field, it is necessary to establish the electric drift field between at least three adjacent drift electrodes at the same time.
图6是本发明方法一种同时在三个相邻漂移电极6之间建立漂移电场的各漂移电极6所加电压示意图。图中各漂移电极6上所加电压只有三种状态,分别为V、V+EL、V+2EL,控制各漂移电极6所加电压波形如图6所示,则在T到(T+ΔT)时间段,由于间距为L的相邻漂移电极11、12、13上所加电压分别为V+2EL、V+EL和V,在漂移电极11、12、13之间的空间形成强度为E的漂移电场;同样原理,在(T+ΔT)到(T+2ΔT)时间段,漂移电极12、13、14之间的空间形成强度为E的漂移电场……在(T+(n-1)ΔT)到(T+nΔT)时间段,漂移电极(n+10)、(n+11)、(n+12)之间的空间形成强度为E的漂移电场,其中n=1,2…N-2,其中N为漂移电极的数目。这样就可以在整个离子漂移区5形成一个随时间而移动的瞬态漂移电场,调节时间参数ΔT可以使电场的移动速度与所要检测离子团的漂移速度相同,即在(T+(n-1)ΔT)到(T+nΔT)时间段,离子团从位于漂移电极(n+10)和(n+11)之间的空间移动到漂移电极(n+11)和(n+12)之间的空间。这样可以保证离子团所在区域电场强度总为E,离子团的运动情况与在强度为E的稳恒漂移电场中的运动情况相同,而采用本发明方法所需使用的电源电压只需高于2EL即可。同样原理在相邻的三个漂移电极6上加三角波、正弦波等其它波形的电压信号也可实现与图6所示相同的瞬态漂移电场。FIG. 6 is a schematic diagram of voltages applied to each
本发明的方法中,加在漂移电极6上的电压信号频率由被测物的迁移率及漂移区的尺寸决定。一般离子在200V/cm的弱电场中的漂移速度约在5~10m/s,若漂移电极6的间距L在毫米或厘米量级,则离子通过相邻漂移电极6之间区域所需时间ΔT在10-4秒或10-3秒量级,加在漂移电极6上的电压信号频率在10KHz或更低的量级上。随着漂移区尺寸的缩小和漂移电极6数目的增加,电压信号频率将升高,但还在集成电路可实现的范围内。In the method of the present invention, the frequency of the voltage signal applied to the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610089347A CN101093211B (en) | 2006-06-21 | 2006-06-21 | Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610089347A CN101093211B (en) | 2006-06-21 | 2006-06-21 | Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101093211A CN101093211A (en) | 2007-12-26 |
CN101093211B true CN101093211B (en) | 2010-05-12 |
Family
ID=38991575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610089347A Expired - Fee Related CN101093211B (en) | 2006-06-21 | 2006-06-21 | Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101093211B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788529B (en) * | 2010-01-27 | 2013-09-11 | 徐伟 | Chemical warfare agent detector and method for detecting chemical warfare agent by using same |
CN103871820B (en) * | 2012-12-10 | 2017-05-17 | 株式会社岛津制作所 | Ion mobility analyzer and combination unit thereof and ion mobility analysis method |
US9147565B1 (en) * | 2014-12-30 | 2015-09-29 | Morpho Detection, Llc | Ion mobility spectrometer and method of using the same |
GB2562690B (en) | 2016-09-27 | 2022-11-02 | Micromass Ltd | Post-separation mobility analyser |
EP3631433A1 (en) * | 2017-05-24 | 2020-04-08 | B. Braun Melsungen AG | Drift tube having a modified surface quality for use in a ion mobility spectrometer |
US11235329B2 (en) | 2017-08-10 | 2022-02-01 | Rapiscan Systems, Inc. | Systems and methods for substance detection using thermally stable collection devices |
DE102018113331B4 (en) * | 2018-06-05 | 2023-06-15 | Gottfried Wilhelm Leibniz Universität Hannover | Ion-mobility spectrometer |
US11609214B2 (en) | 2019-07-31 | 2023-03-21 | Rapiscan Systems, Inc. | Systems and methods for improving detection accuracy in electronic trace detectors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1180901A (en) * | 1996-10-17 | 1998-05-06 | 中国科学院等离子体物理研究所 | Electric field drifting electron injection method and device for increasing fusion plasma restraint performance |
CN1342900A (en) * | 2000-09-07 | 2002-04-03 | 泽斯吸气剂公司 | Ionic mobility spectrograph with improved drift region and manufactur method thereof |
CN1513114A (en) * | 2001-05-11 | 2004-07-14 | Radial disc type ion mobility spectrometer | |
CN2646155Y (en) * | 2003-08-26 | 2004-10-06 | 刘涌 | Closed form electron drift type gaseous ion source |
-
2006
- 2006-06-21 CN CN200610089347A patent/CN101093211B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1180901A (en) * | 1996-10-17 | 1998-05-06 | 中国科学院等离子体物理研究所 | Electric field drifting electron injection method and device for increasing fusion plasma restraint performance |
CN1342900A (en) * | 2000-09-07 | 2002-04-03 | 泽斯吸气剂公司 | Ionic mobility spectrograph with improved drift region and manufactur method thereof |
CN1513114A (en) * | 2001-05-11 | 2004-07-14 | Radial disc type ion mobility spectrometer | |
CN2646155Y (en) * | 2003-08-26 | 2004-10-06 | 刘涌 | Closed form electron drift type gaseous ion source |
Non-Patent Citations (2)
Title |
---|
胡树植.离子迁移率谱仪及其应用.核电子学与探测技术18 1.1998,18(1),5-11. * |
邵士勇等.离子迁移谱仪的研究进展.现代科学仪器 4.2004,(4),9-12. * |
Also Published As
Publication number | Publication date |
---|---|
CN101093211A (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101093211B (en) | Transient Drift Electric Field Method for Ion Mobility Spectrometer Drift Tube | |
US9719963B2 (en) | High performance ion mobility spectrometer apparatus and methods | |
Sun et al. | An improved photoionization detector with a micro gas chromatography column for portable rapid gas chromatography system | |
US9068943B2 (en) | Chemical analysis using hyphenated low and high field ion mobility | |
WO2014089910A1 (en) | Ion mobility rate analyzer, combination device thereof, and ion mobility rate analysis method | |
Viehland et al. | Comparison of high-field ion mobility obtained from drift tubes and a FAIMS apparatus | |
US9006678B2 (en) | Non-radioactive ion source using high energy electrons | |
CN111223751B (en) | An ion mobility spectrometry-time-of-flight mass spectrometer | |
US11024497B2 (en) | Chemically modified ion mobility separation apparatus and method | |
CN101881752B (en) | Micro two-dimensional ionic migration spectrometer | |
CN107818908A (en) | A kind of difference ion mobility spectrometry and High-Field asymmetric waveform ion mobility spectrometry combination device | |
WO2013152344A1 (en) | Selective ionization using high frequency filtering of reactive ions | |
CN103441058B (en) | Micro-hollow cathode discharge ionization source integrated FAIMS | |
CN103033556B (en) | The device of the direct electron spray ionisation of sample and mass spectrometric analysis method on micro-fluidic chip | |
Tolmachev et al. | Coulombic effects in ion mobility spectrometry | |
Chen et al. | Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations | |
CN1544931A (en) | storage photoionization ion mobility mass spectrometry | |
US7118661B2 (en) | Nanolaminate microfluidic device for mobility selection of particles | |
CN104934287A (en) | A low-field differential ion mobility spectrometer and its substance detection method | |
CN108269729B (en) | A flat-plate structure high-field asymmetric waveform ion mobility spectrometer | |
JP6120389B2 (en) | Dual rotating electric field mass spectrometer | |
Salleras et al. | Electrostatic shutter design for a miniaturized ion mobility spectrometer | |
CN109887829A (en) | An ionization source device based on simultaneous detection of positive and negative ions of VUV lamp | |
CN217443236U (en) | Single-tube positive-negative dual-mode fast switching ion mobility spectrometer | |
CN214408789U (en) | Ion mobility spectrometry equipment combined with photoionization sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100512 Termination date: 20130621 |