CN101091368B - Method and device for transmitting/receiving signals in fast frequency hopping OFDM communication system - Google Patents
Method and device for transmitting/receiving signals in fast frequency hopping OFDM communication system Download PDFInfo
- Publication number
- CN101091368B CN101091368B CN2005800450661A CN200580045066A CN101091368B CN 101091368 B CN101091368 B CN 101091368B CN 2005800450661 A CN2005800450661 A CN 2005800450661A CN 200580045066 A CN200580045066 A CN 200580045066A CN 101091368 B CN101091368 B CN 101091368B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- subcarriers
- ifft
- frequency hopping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0212—Channel estimation of impulse response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/022—Channel estimation of frequency response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
- H04L25/0248—Eigen-space methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/26524—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
- H04L27/26526—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/713—Frequency hopping
- H04B2201/71353—Fast frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03375—Passband transmission
- H04L2025/03414—Multicarrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
- H04L2025/03535—Variable structures
- H04L2025/03541—Switching between domains, e.g. between time and frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03611—Iterative algorithms
- H04L2025/03617—Time recursive algorithms
- H04L2025/03624—Zero-forcing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明设备包括:快速跳频单元,用于将输入数据分配给从多个子载波中选择的数个子载波,并且用于根据快速跳频模式来执行快速跳频以产生FFH信号,其中一片或者多片数据包括输入数据并且将该一片或者多片数据中的每一片都分配给一个所选择的子载波;FFT单元,用于对FFH信号执行FFT;控制器,用于将空数据插入到其余子载波中,所述其余子载波包括除了所选择的子载波以外的子载波;第一逆FFT单元,用于对包括输入数据的所选择的子载波和包括所插入的空数据的其余子载波两者执行IFFT,以产生第一IFFT信号;和发射机,用于传送第一IFFT信号。
The device of the present invention includes: a fast frequency hopping unit, configured to allocate input data to several subcarriers selected from a plurality of subcarriers, and to perform fast frequency hopping according to a fast frequency hopping pattern to generate an FFH signal, wherein one or more The slice data includes input data and each of the slice or slices of data is allocated to a selected subcarrier; the FFT unit is used to perform FFT on the FFH signal; the controller is used to insert null data into the remaining subcarriers In the carrier, the remaining subcarriers include subcarriers other than the selected subcarriers; the first inverse FFT unit is used to perform both the selected subcarriers including input data and the remaining subcarriers including inserted null data. or performing IFFT to generate a first IFFT signal; and a transmitter for transmitting the first IFFT signal.
Description
技术领域technical field
本发明涉及使用快速跳频(Fast Frequency Hopping,FFH)方案和正交频分复用(OFDM)方案的通信系统(FFH-OFDM通信系统)。更具体地说,本发明涉及用于通过仅仅使用在FFH-OFDM通信系统中所使用的所有可用频带的子集来传送/接收信号的方法和系统。The present invention relates to a communication system (FFH-OFDM communication system) using a Fast Frequency Hopping (FFH) scheme and an Orthogonal Frequency Division Multiplexing (OFDM) scheme. More particularly, the present invention relates to a method and system for transmitting/receiving signals by using only a subset of all available frequency bands used in an FFH-OFDM communication system.
背景技术Background technique
在第四代(4G)通信系统中,已经积极地研究提供给用户具有各种服务质量(QoS)并且支持高传输速度的服务。此外,已经积极地研究开发能够支持高速服务并且在无线局域网(LAN)和城域网(MAN)系统中确保移动性和QoS的新通信系统。In a fourth generation (4G) communication system, services that are provided to users with various qualities of service (QoS) and that support high transmission speeds have been actively researched. In addition, research and development of new communication systems capable of supporting high-speed services and ensuring mobility and QoS in wireless Local Area Network (LAN) and Metropolitan Area Network (MAN) systems have been actively conducted.
为了支持用于无线MAN系统的物理信道的宽带传输网络,正在广泛地使用OFDM方案和正交频分多址(OFDMA)方案。OFDM/OFDMA方案能够通过在传送物理信道信号时使用多个载波来实现高速数据传输,而且能够通过使用用于信号传输的频带的不同子载波频带来获取频率分集增益。In order to support a broadband transmission network for physical channels of a wireless MAN system, an OFDM scheme and an Orthogonal Frequency Division Multiple Access (OFDMA) scheme are being widely used. The OFDM/OFDMA scheme can realize high-speed data transmission by using multiple carriers when transmitting a physical channel signal, and can obtain frequency diversity gain by using different subcarrier frequency bands of a frequency band used for signal transmission.
与使用单个子载波的系统相比,使用多子载波的OFDM通信系统关于相同数据的传输速度具有与数个子载波成比例延长的码元周期。通过使用保护间隔,OFDM通信系统能够在具有多径衰落的无线信道中减少码元间干扰(ISI)。用于插入保护间隔的方法包括循环前缀方法和循环后缀方法。在循环前缀方法中,将时域中OFDM码元的末尾的预定数量的样本复制并且插入到有效OFDM码元中。在循环后缀方法中,将时域中OFDM码元的开头(first)的预定数量的样本复制并且插入到有效OFDM码元中。Compared with a system using a single subcarrier, an OFDM communication system using multiple subcarriers has a symbol period prolonged in proportion to the number of subcarriers with respect to the transmission speed of the same data. By using a guard interval, an OFDM communication system can reduce inter-symbol interference (ISI) in a wireless channel with multipath fading. Methods for inserting guard intervals include a cyclic prefix method and a cyclic suffix method. In the cyclic prefix method, a predetermined number of samples at the end of the OFDM symbol in the time domain are copied and inserted into an effective OFDM symbol. In the cyclic suffix method, a predetermined number of samples of the first of an OFDM symbol in the time domain are copied and inserted into an effective OFDM symbol.
进一步,将每个子载波频带的信道响应在该子载波频带中近似为平坦的。而且,通过将子载波之间的差Δf设置为采样时间Ts的倒数可以在一个OFDM码元周期期间减少载波间干扰(ICI)。当子载波彼此正交并且在它们之间不存在干扰时。OFDM通信系统的接收机能够通过使用具有相对简单的结构的单抽头均衡器来解调数据。进一步,OFDM通信系统能够最小化系统的复杂度,这是因为OFDM通信系统使用快速逆傅立叶变换(IFFT)方案和快速傅立叶变换(FFT)方案来调制/解调多个子载波。在OFDM系统中使用IFFT方案的快速逆傅立叶变换单元(IFFT单元)的操作对应于频率调制,可以将其表示为如下面公式(1)所定义的矩阵DQ。Further, the channel response of each sub-carrier band is approximated to be flat within that sub-carrier band. Moreover, by setting the difference Δf between subcarriers to be the reciprocal of the sampling time T s Inter-Carrier Interference (ICI) can be reduced during one OFDM symbol period. When the subcarriers are orthogonal to each other and there is no interference between them. A receiver of an OFDM communication system can demodulate data by using a one-tap equalizer having a relatively simple structure. Further, the OFDM communication system can minimize system complexity because the OFDM communication system modulates/demodulates a plurality of subcarriers using an inverse fast Fourier transform (IFFT) scheme and a fast Fourier transform (FFT) scheme. The operation of an inverse fast Fourier transform unit (IFFT unit) using an IFFT scheme in an OFDM system corresponds to frequency modulation, which can be represented as a matrix DQ as defined by equation (1) below.
在公式(1)中,Q表示在OFDM通信系统中所使用的所有子载波的数量,n表示样本索引,而m表示子信道索引。D Q表示具有Q×Q的大小的IFFT矩阵。子信道指的是包括至少一个子载波的信道。进一步,可以将使用FFT方案的快速傅立叶变换(FFT)的操作表示为如公式(1)所定义的IFFT矩阵D Q的厄密特共轭(Hermitian)D Q H。In formula (1), Q represents the number of all subcarriers used in the OFDM communication system, n represents a sample index, and m represents a subchannel index. D Q denotes an IFFT matrix having a size of Q×Q. A subchannel refers to a channel including at least one subcarrier. Further, the operation of Fast Fourier Transform (FFT) using the FFT scheme can be expressed as the Hermitian conjugate (Hermitian) D Q H of the IFFT matrix D Q as defined by equation (1).
同时,当OFDM通信系统中的多个子载波包括经历深度衰落的子载波时,能够由接收机成功地解码经历了深度衰落的子载波所传送的数据的概率很低。已经提出的用于克服由于深度衰落所导致的性能下降的方案包括跳频方案和前向纠错(FEC)方案。Meanwhile, when a plurality of subcarriers in an OFDM communication system include subcarriers undergoing deep fading, the probability that data transmitted by the subcarriers undergoing deep fading can be successfully decoded by a receiver is low. Schemes that have been proposed to overcome performance degradation due to deep fading include a frequency hopping scheme and a forward error correction (FEC) scheme.
跳频方案是用于信号传输的频带根据预定跳频模式变化以便可以获得单元间干扰(Inter-Cell Interference,ICI)的平均增益的方案。换句话说,根据跳频方案,在传送信号的同时,用于子载波的传输频带根据预定的跳频模式周期性变化。因此,跳频方案能够防止信号被通过经历由于频率选择性信道特征导致的深度衰落的子载波连续地传送到信号用户。跳频周期是域OFDM码元时间或者OFDM码元的整数倍数对应的时间间隔。作为结果,在使用跳频方案的情况下,即使当在预定的OFDM码元时间通过经历深度衰落的子载波传送信号时,还可以在下一个OFDM码元时间通过没有经历深度衰落的子载波传送信号,从而放置信号传输被深度衰落连续地影响,从而可以将频率分集增益和干扰进行平均。The frequency hopping scheme is a scheme in which a frequency band used for signal transmission is changed according to a predetermined frequency hopping pattern so that an average gain of Inter-Cell Interference (ICI) can be obtained. In other words, according to the frequency hopping scheme, while transmitting a signal, a transmission frequency band for a subcarrier is periodically changed according to a predetermined frequency hopping pattern. Therefore, the frequency hopping scheme can prevent signals from being continuously transmitted to signal users through subcarriers experiencing deep fading due to frequency-selective channel characteristics. The frequency hopping period is a time interval corresponding to the OFDM symbol time or an integer multiple of OFDM symbols. As a result, in the case of using the frequency hopping scheme, even when a signal is transmitted through a subcarrier undergoing deep fading at a predetermined OFDM symbol time, a signal can also be transmitted through a subcarrier not undergoing deep fading at the next OFDM symbol time , so that signal transmission is continuously affected by deep fading, so that frequency diversity gain and interference can be averaged.
进一步,根据作为跳频方案和OFDM方案的组合的FH-OFDM方案,将不同的子信道分配给用户,而且分配给用户的子信道经历跳频。这使得可以获得平均分集增益和ICI平均增益。Further, according to the FH-OFDM scheme which is a combination of the frequency hopping scheme and the OFDM scheme, different subchannels are allocated to users, and subchannels allocated to users undergo frequency hopping. This makes it possible to obtain average diversity gain and ICI average gain.
然而,为了通过跳频方案获得足够增益,传统OFDM通信系统必须在许多OFDM码元时间周期期间执行跳频。进一步,其需要大量用户,并且必须根据信道选择适当的跳频模式。甚至进一步,在使用跳频方案的传统OFDM通信系统中,虽然不通过经历深度衰落的子载波将信号连续地传送到单个用户,但是接收机还可能在每个OFDM码元时间周期上解调由经历深度衰落的子载波所传送的信号。However, in order to obtain sufficient gain through the frequency hopping scheme, conventional OFDM communication systems must perform frequency hopping during many OFDM symbol time periods. Further, it requires a large number of users, and an appropriate frequency hopping pattern must be selected according to the channel. Even further, in a conventional OFDM communication system using a frequency hopping scheme, although the signal is not continuously transmitted to a single user through a subcarrier experiencing deep fading, it is also possible for the receiver to demodulate the signal generated by Signals carried by subcarriers that experience deep fading.
因此,需要用于通过仅仅使用在FFH-OFDM通信系统中所使用的所有可用频带的子集来传送/接收信号,以使得接收机能够解调经历深度衰落的子载波所传送的信号的改进的方法和设备。Therefore, there is a need for an improved method for transmitting/receiving signals by using only a subset of all available frequency bands used in FFH-OFDM communication systems, so that a receiver can demodulate signals transmitted by subcarriers experiencing deep fading Methods and equipment.
发明内容Contents of the invention
本发明的一个方案应对至少上述问题和/或缺点,并且提供至少下面所述的优点。因此,本发明的示例实施方式的方面提供用于在FFH-OFDM通信系统中用于传送/接收信号的方法和设备。An aspect of the present invention is to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, aspects of example embodiments of the present invention provide methods and apparatuses for transmitting/receiving signals in an FFH-OFDM communication system.
本发明的示例实施方式的另一个目地是提供用于通过仅仅使用在FFH-OFDM通信系统中所使用的所有可用频带的子集来传送/接收信号的方法和设备。Another object of example embodiments of the present invention is to provide a method and apparatus for transmitting/receiving signals by using only a subset of all available frequency bands used in an FFH-OFDM communication system.
为了实现该目地,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的设备,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述设备包括:快速跳频(FFH)单元,用于将输入数据分配给从多个子载波中选择的数个子载波,并且用于根据快速跳频模式来执行快速跳频以产生FFH信号,其中一片或者多片数据包括输入数据而且将该一片或者多片数据的每一个分配给一个所选择的子载波;快速傅立叶变换(FFT)单元,用于对FFH信号执行FFT;控制器,用于将空数据插入到其余子载波中,该其余子载波包括除了所选择的子载波以外的子载波;第一快速逆傅立叶变换(IFFT)单元,用于对包括输入数据的所选择的子载波和包括所插入的空数据的其余子载波两者执行IFFT以产生第一IFFT信号;和发射机,用于传送第一IFFT信号。In order to achieve this object, there is provided an apparatus for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands into a plurality of sub-bands and includes each A plurality of sub-channels each comprising at least one sub-carrier frequency band, the device comprising: a fast frequency hopping (FFH) unit for distributing input data to several sub-carriers selected from the plurality of sub-carriers, and for Frequency mode is used to perform fast frequency hopping to generate FFH signals, wherein one or more slices of data include input data and each of the one or more slices of data is assigned to a selected subcarrier; Fast Fourier Transform (FFT) unit, with for performing FFT on the FFH signal; a controller for inserting null data into remaining subcarriers including subcarriers other than the selected subcarrier; a first inverse fast Fourier transform (IFFT) unit for performing IFFT on both the selected subcarriers including the input data and the remaining subcarriers including the inserted null data to generate a first IFFT signal; and a transmitter for transmitting the first IFFT signal.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的方法,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,该方法包括步骤:将输入数据分配给从多个子载波中选择的数个子载波,并且用于根据快速跳频模式来执行快速跳频(FFH)以产生FFH信号,其中一片或者多片数据包括输入数据而且将该一片或者多片数据的每一个分配给一个所选择的子载波;对FFH信号执行快速傅立叶变换(FFT);将空数据插入到其余子载波中,该其余子载波包括除了所选择的子载波以外的子载波;对包括输入数据的所选择的子载波和包括所插入的空数据的其余子载波两者执行IFFT以产生第一IFFT信号;和传送通过快速傅立叶逆变换(IFFT)单元已经经历了IFFT的经转换的信号。According to another aspect of an exemplary embodiment of the present invention, there is provided a method for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the method comprising the steps of: allocating input data to a number of sub-carriers selected from the plurality of sub-carriers, and for performing fast frequency hopping (FFH) to generate an FFH signal in which one or more slices of data comprise the input data and assigning each of the one or more slices of data to a selected subcarrier; performing a fast Fourier transform (FFT) on the FFH signal ); inserting null data into the remaining subcarriers, the remaining subcarriers including subcarriers other than the selected subcarriers; both the selected subcarriers including the input data and the remaining subcarriers including the inserted null data or performing IFFT to generate a first IFFT signal; and passing through an inverse fast Fourier transform (IFFT) unit the converted signal that has been subjected to the IFFT.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的设备,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述设备包括:第一快速傅立叶变换(FFT)单元,用于对所接收到的信号执行FFT;控制器,用于从在第一FFT单元中经过FFT处理的信号中分离其余子载波,该其余子载波包括除了传送设备通过其传送数据的数个所选择的子载波以外的子载波,然后将空数据插入到其余子载波中;第一均衡器,用于在频域中均衡控制器的输出信号;快速逆傅立叶变换(IFFT)单元,用于根据传送设备所应用的快速跳频矩阵对第一均衡器所均衡过的信号执行IFFT;第二均衡器,用于在时域中均衡经过IFFT处理的信号;和第二快速傅立叶变换(FFT)单元,用于对在时域中被均衡过的信号执行FFT。According to another aspect of an example embodiment of the present invention, there is provided an apparatus for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the apparatus comprising: a first Fast Fourier Transform (FFT) unit configured to perform an FFT on a received signal; a controller configured to to separate the remaining subcarriers from the FFT-processed signal in the first FFT unit, the remaining subcarriers including subcarriers other than a selected number of subcarriers through which the transmitting device transmits data, and then inserting null data into In the remaining sub-carriers; the first equalizer is used to equalize the output signal of the controller in the frequency domain; the fast inverse Fourier transform (IFFT) unit is used to perform the first equalizer according to the fast frequency hopping matrix applied by the transmission device. performing an IFFT on the equalized signal; a second equalizer for equalizing the IFFT processed signal in the time domain; and a second fast Fourier transform (FFT) unit for performing an FFT on the equalized signal in the time domain .
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的方法,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述方法包括步骤:(1)对所接收到的信号执行快速傅立叶变换(FFT);(2)从在第一FFT单元中经过FFT处理的信号中分离其余子载波,该其余子载波包括除了传送设备通过其传送数据的数个所选择的子载波以外的子载波,然后将空数据插入到其余子载波中;(3)在频域中均衡步骤(2)所产生的信号;(4)根据快速跳频矩阵对在频域中所均衡过的信号执行快速逆傅立叶变换(IFFT);(5)在时域中均衡经过IFFT处理的信号;和(6)对在时域中被均衡过的信号执行快速傅立叶变换(FFT)。According to another aspect of an exemplary embodiment of the present invention, there is provided a method for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands For a plurality of sub-bands and including a plurality of sub-channels each comprising at least one sub-carrier frequency band, the method comprises the steps of: (1) performing a Fast Fourier Transform (FFT) on a received signal; separating the remaining subcarriers from the FFT-processed signal in the FFT unit, the remaining subcarriers including subcarriers other than the selected subcarriers through which the transmitting device transmits data, and then inserting null data into the remaining subcarriers; (3) equalize the signal generated by step (2) in the frequency domain; (4) perform a fast inverse Fourier transform (IFFT) on the equalized signal in the frequency domain according to the fast frequency hopping matrix; (5) perform a fast inverse Fourier transform (IFFT) in the time domain medium equalizing the IFFT processed signal; and (6) performing a Fast Fourier Transform (FFT) on the equalized signal in the time domain.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的设备,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述设备包括:第一控制器,用于将空数据插入到其余子载波中,该其余子载波包括在所有可用子载波中除了通过其承载输入数据的数个所选择的子载波以外的子载波;快速跳频(FFH)单元,用于将输入数据分配给数个所选择的子载波,并且用于根据快速跳频模式执行快速跳频以产生FFH信号,其中一片或者多片数据包括输入数据并且将该一片或者多片数据的每一个分配给一个所选择的子载波;快速傅立叶变换(FFT)单元,用于对FFH执行FFT;第二控制器,用于将空数据插入到其余子载波中;第一快速逆傅立叶变换(IFFT)单元,用于对包括输入数据的所选择的子载波和包括所插入的空数据的其余子载波两者执行IFFT以产生第一IFFT信号;和发射机,用于传送第一IFFT信号。According to another aspect of an example embodiment of the present invention, there is provided an apparatus for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the apparatus comprising: a first controller for inserting null data into remaining sub-carriers included in all available sub-carriers subcarriers other than the selected ones over which the input data is carried; a fast frequency hopping (FFH) unit for allocating input data to the selected ones and for assigning the input data to the selected ones according to the fast The frequency hopping mode performs fast frequency hopping to generate an FFH signal, wherein one or more pieces of data comprise input data and each of the one or more pieces of data is assigned to a selected subcarrier; a fast Fourier transform (FFT) unit, with for performing FFT on FFH; a second controller for inserting null data into the remaining subcarriers; a first inverse Fast Fourier Transform (IFFT) unit for performing the selected subcarriers including input data and including the inserted performing IFFT on both remaining subcarriers of the null data to generate a first IFFT signal; and a transmitter for transmitting the first IFFT signal.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的方法,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述方法包括步骤:(1)将空数据插入到其余子载波中,该其余子载波包括在所有可用子载波中除了通过其承载输入数据的数个所选择的子载波以外的子载波;(2)将输入数据分配给数个所选择的子载波,然后根据快速跳频模式执行快速跳频以产生FFH信号,其中一片或者多片数据包括输入数据并且将该一片或者多片数据的每一个分配给一个所选择的子载波;(3)对FFH执行快速傅立叶变换(FFT);(4)将空数据插入到其余子载波中;(5)对包括输入数据的所选择的子载波和包括插入了的空数据的其余子载波两者执行快速逆傅立叶变换以产生第一IFFT信号;和(6)传送第一IFFT信号。According to another aspect of an exemplary embodiment of the present invention, there is provided a method for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the method comprising the steps of: (1) inserting null data into remaining sub-carriers included in all available sub-carriers subcarriers other than the selected subcarriers through which the input data is carried; (2) allocating the input data to the selected subcarriers and then performing fast frequency hopping according to a fast frequency hopping pattern to generate the FFH signal, One or more pieces of data include input data and each of the one or more pieces of data is assigned to a selected subcarrier; (3) perform fast Fourier transform (FFT) on FFH; (4) insert null data into Of the remaining subcarriers; (5) performing an inverse fast Fourier transform on both the selected subcarriers including the input data and the remaining subcarriers including the inserted null data to generate a first IFFT signal; and (6) transmitting the first IFFT signal.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的设备,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述设备包括:第一快速傅立叶变换(FFT)单元,用于对所接收到的信号执行FFT;第一控制器,用于从在第一FFT单元中经过了FFT处理的信号中分离其余子载波,该其余子载波包括除了传送设备通过其传送数据的数个所选择的子载波以外的子载波,然后将空数据插入到其余子载波中;第一均衡器,用于在频域中均衡控制器的输出信号;快速逆傅立叶变换(IFFT)单元,用于根据传送设备所应用的快速跳频矩阵对经过第一均衡器均衡的信号执行IFFT;第二均衡器,用于在时域中均衡经过IFFT的信号;第二快速傅立叶变换(IFFT)单元,用于对在时域中均衡过的信号执行FFT;和第二控制器,用于从在第二FFT单元中经过FFT处理过的信号中分离其余子载波,然后将空数据插入到该其余子载波中。According to another aspect of an example embodiment of the present invention, there is provided an apparatus for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the apparatus comprising: a first Fast Fourier Transform (FFT) unit for performing an FFT on a received signal; a first controller , used to separate the remaining subcarriers from the FFT-processed signal in the first FFT unit, the remaining subcarriers include subcarriers other than a few selected subcarriers through which the transmitting device transmits data, and then empty The data is inserted into the remaining subcarriers; the first equalizer is used to equalize the output signal of the controller in the frequency domain; the fast inverse Fourier transform (IFFT) unit is used to pass through the second A signal equalized by an equalizer performs IFFT; a second equalizer is used to equalize the signal through the IFFT in the time domain; a second fast Fourier transform (IFFT) unit is used to perform FFT on the signal equalized in the time domain; and a second controller, configured to separate the remaining subcarriers from the FFT-processed signal in the second FFT unit, and then insert null data into the remaining subcarriers.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的方法,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述方法包括步骤:(1)对所接收到的信号执行FFT;(2)从在第一FFT单元中经过了FFT处理的信号中分离其余子载波,该其余子载波包括除了传送设备通过其传送数据的数个所选择的子载波以外的子载波,然后将空数据插入到其余子载波中;(3)衡控在步骤(2)所产生的信号;(4)根据快速跳频矩阵对在频域中经过均衡的信号执行快速逆傅立叶变换(IFFT);(5)在时域中均衡经过IFFT的信号;(6)对在时域中均衡过的信号执行快速傅立叶变换(FFT);(7)从在第二FFT单元中经过FFT处理过的信号中分离其余子载波,然后将空数据插入到该其余子载波中。According to another aspect of an exemplary embodiment of the present invention, there is provided a method for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands For a plurality of sub-bands and including a plurality of sub-channels each comprising at least one sub-carrier frequency band, the method comprises the steps of: (1) performing FFT on the received signal; (2) passing through the first FFT unit Separate the remaining subcarriers from the FFT-processed signal, the remaining subcarriers including subcarriers other than a few selected subcarriers through which the transmitting device transmits data, and then insert null data into the remaining subcarriers; (3) balance Controlling the signal generated in step (2); (4) performing fast inverse Fourier transform (IFFT) on the signal equalized in the frequency domain according to the fast frequency hopping matrix; (5) equalizing the signal through the IFFT in the time domain; (6) performing Fast Fourier Transform (FFT) on the signal equalized in the time domain; (7) separating the remaining subcarriers from the FFT-processed signal in the second FFT unit, and then inserting null data into the remaining subcarriers in the subcarrier.
根据本发明的示例实施方式的另一个方面,提供用于在快速跳频-正交频分复用(FFH-OFDM)通信系统中的信号传输的设备,FFH-OFDM通信系统将所有可用频带划分为多个子频带并且包括每个都包括至少一个子载波频带的多个子信道,所述设备包括:第一快速跳频-OFDM(FFH-OFDM)处理单元,用于为要由每个用户传送的信号执行快速跳频并且将信号转换为OFDM信号,该FFH-OFDM处理单元包括多个处理器,其每一个都将输入数据分配给从多个子载波中选择的数个子载波并且用于根据快速跳频模式执行快速跳频以产生FFH-OFDM信号,其中一片或者多片数据包括输入数据并且将该一片或者多片数据分配给一个所选择的子载波;复用器,用于复用FFH-OFDM信号;快速逆傅立叶变换(IFFT)单元,用于对经过复用的信号执行IFFT;和发射机,用于传送经过IFFT的信号。According to another aspect of an example embodiment of the present invention, there is provided an apparatus for signal transmission in a fast frequency hopping-orthogonal frequency division multiplexing (FFH-OFDM) communication system that divides all available frequency bands being a plurality of sub-bands and comprising a plurality of sub-channels each comprising at least one sub-carrier frequency band, the device comprising: a first fast frequency hopping-OFDM (FFH-OFDM) processing unit for processing the sub-channels to be transmitted by each user The signal performs fast frequency hopping and converts the signal into an OFDM signal, the FFH-OFDM processing unit includes a plurality of processors, each of which distributes input data to several subcarriers selected from a plurality of subcarriers and is used for Frequency mode performs fast frequency hopping to generate FFH-OFDM signals, wherein one or more pieces of data include input data and the one or more pieces of data are allocated to a selected subcarrier; multiplexer for multiplexing FFH-OFDM a signal; an inverse fast Fourier transform (IFFT) unit for performing an IFFT on the multiplexed signal; and a transmitter for transmitting the IFFTed signal.
通过结合附图公开本发明的示例实施方式的下面详细描述,本发明的其他目的、优点和显著特点将对于本领域的技术人员变得显而易见。Other objects, advantages and salient features of the present invention will become apparent to those skilled in the art from the following detailed description disclosing exemplary embodiments of the present invention in conjunction with the accompanying drawings.
附图说明Description of drawings
通过结合附图进行的下面详细描述,本发明特定实施方式的上述和其他目的、特点和优点将对于本领域的技术人员更加明显,其中。The above and other objects, features and advantages of specific embodiments of the present invention will become more apparent to those skilled in the art from the following detailed description taken in conjunction with the accompanying drawings.
图1是示出执行根据本发明第一示例实施方式的功能的FFH-OFDM通信系统的发射机的结构的框图;FIG. 1 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system performing a function according to a first exemplary embodiment of the present invention;
图2是示出执行根据本发明第一示例实施方式的功能的FFH-OFDM通信系统的接收机的结构的框图;2 is a block diagram showing a structure of a receiver of an FFH-OFDM communication system that performs functions according to a first exemplary embodiment of the present invention;
图3是示出执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的发射机的结构的框图;3 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system performing a function according to a second exemplary embodiment of the present invention;
图4是示出执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的接收机的结构的框图;4 is a block diagram showing a structure of a receiver of an FFH-OFDM communication system performing functions according to a second exemplary embodiment of the present invention;
图5是示出执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的发射机的结构的框图;5 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system performing a function according to a third exemplary embodiment of the present invention;
图6是示出执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的接收机的结构的框图;和6 is a block diagram showing a structure of a receiver of an FFH-OFDM communication system that performs functions according to a third exemplary embodiment of the present invention; and
图7是示出快速跳频OFDM通信系统中的发射机的结构的框图,其执行根据本发明第四实施方式的功能。7 is a block diagram showing a structure of a transmitter in a fast frequency hopping OFDM communication system, which performs a function according to a fourth embodiment of the present invention.
应该理解,在全部附图中,相同的附图标记表示相同的元件、特点和结构。It should be understood that like reference numerals represent like elements, features and structures throughout the drawings.
具体实施方式Detailed ways
诸如详细构造和组成部分之类的在本说明书中所限定的事物,是提供来帮助全面理解本发明的,而且仅仅是示例性的。因此,本领域的技术人员应该理解,在不偏离本发明的范围和精神的情况下,可以对这里所描述的实施方式进行各种修改和变型。而且,为了清楚和简洁,省略了对公知功能和构造的描述。Matters defined in this specification, such as detailed construction and constituent parts, are provided to help in a comprehensive understanding of the present invention, and are exemplary only. Accordingly, those of ordinary skill in the art will recognize that various modifications and variations of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
本发明的示例实施方式包括方法和设备,用于通过仅仅使用在使用快速跳频(FFH)方案和正交频分复用(OFDM)方案的通信系统(FFH-OFDM通信系统)中所使用的所有可用频带的子集,在执行快速跳频的同时传送/接收信号。FFH跳频方案是在OFDM样本的周期中,或者在替代于OFDM样本周期的OFDM样本的整数倍数中执行快速跳频的方案。因此,根据FFH跳频方案,在频域中被扩频到多个子载波之后传送一个OFDM码元。Exemplary embodiments of the present invention include methods and apparatus for using only the communication system (FFH-OFDM communication system) using the Fast Frequency Hopping (FFH) scheme and the Orthogonal Frequency Division Multiplexing (OFDM) scheme Subset of all available frequency bands, transmit/receive signals while performing fast frequency hopping. The FFH frequency hopping scheme is a scheme in which fast frequency hopping is performed in a cycle of OFDM samples, or in integer multiples of OFDM samples instead of the OFDM sample cycle. Therefore, according to the FFH frequency hopping scheme, one OFDM symbol is transmitted after being spread to a plurality of subcarriers in the frequency domain.
将参照图1描述通过使用在FFH-OFDM通信系统中的所有可用频带执行快速跳频的发射机的结构。A structure of a transmitter that performs fast frequency hopping by using all available frequency bands in an FFH-OFDM communication system will be described with reference to FIG. 1 .
图1是示出根据本发明第一示例实施方式的FFH-OFDM通信系统的发射机的结构的框图。FIG. 1 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system according to a first exemplary embodiment of the present invention.
参照图1,发射机包括串行到并行(S/P)转换器111、快速跳频(FFH)单元120、并行到串行(P/S)转换器131、保护间隔插入器133、数字到模拟(D/A)转换器135和射频(RF)处理器137。FFH单元120包括快速逆傅立叶变换(IFFT)单元121和线性处理器123。1, the transmitter includes a serial to parallel (S/P) converter 111, a fast frequency hopping (FFH) unit 120, a parallel to serial (P/S) converter 131, a guard interval inserter 133, a digital to An analog (D/A) converter 135 and a radio frequency (RF) processor 137 . The FFH unit 120 includes an inverse fast Fourier transform (IFFT) unit 121 and a linear processor 123 .
当存在要被传送的输入数据时,将输入数据输入到S/P转换器111。该数据包括实际用户数据或者诸如导频之类的基准数据。S/P转换器111将输入数据码元转换为并行信号,并且将经过转换的并行数据输出到IFFT单元121。如这里所使用的那样,将从S/P转换器111输出的并行信号称为d,其由下面公式(2)定义。When there is input data to be transferred, the input data is input to the S/P converter 111 . This data includes actual user data or reference data such as pilots. The S/P converter 111 converts input data symbols into parallel signals, and outputs the converted parallel data to the IFFT unit 121 . As used herein, the parallel signal output from the S/P converter 111 is referred to as d , which is defined by the following formula (2).
d=[d1...dQ]T........(2) d = [d 1 ...d Q ] T ..........(2)
在公式(2)中,T表示转置运算,而Q表示在FFH-OFDM通信系统中所使用的可用子载波的总数。IFFT单元121对从S/P转换器111输出的信号d执行Q点IFFT,并且将经过IFFT处理的信号输出到线性处理器123。线性处理器123对来自IFFT单元121的信号执行线性处理,然后将经过处理的信号输出到P/S转换器131。In formula (2), T represents a transpose operation, and Q represents the total number of available subcarriers used in the FFH-OFDM communication system. The IFFT unit 121 performs Q-point IFFT on the signal d output from the S/P converter 111 , and outputs the IFFT-processed signal to the linear processor 123 . The linear processor 123 performs linear processing on the signal from the IFFT unit 121 and then outputs the processed signal to the P/S converter 131 .
下面,将更加详细地描述IFFT单元121和线性处理器123的操作。Next, the operations of the IFFT unit 121 and the linear processor 123 will be described in more detail.
当对子载波执行快速跳频时,为了在图1中所示的使用所有可用频带的发射机中,在与OFDM样本时间周期或者OFDM样本时间周期的倍数对应的时间间隔上传送数据,可以通过具有Q×Q大小的新矩阵G Q来表示频率调制。换句话说,根据如下面公式(3)所定义的快速跳频方案(下面,称为“快速跳频矩阵”)用于执行频率调制的矩阵,与在现有技术描述中所描述的由公式(1)所定义的IFFT矩阵D Q不同。如上所述,IFFT矩阵D Q是与IFFT单元的频率调制操作对应的矩阵。When fast frequency hopping is performed on subcarriers, in order to transmit data at time intervals corresponding to the OFDM sample time period or multiples of the OFDM sample time period in the transmitter shown in Figure 1 using all available frequency bands, one can pass A new matrix G Q of size Q×Q is used to represent the frequency modulation. In other words, the matrix used to perform frequency modulation according to the fast frequency hopping scheme (hereinafter, referred to as "fast frequency hopping matrix") as defined in the following formula (3) is different from that described in the prior art description by the formula (1) The defined IFFT matrix D Q is different. As described above, the IFFT matrix D Q is a matrix corresponding to the frequency modulation operation of the IFFT unit.
在公式(3)中,n表示样本索引,而m表示子信道索引。进一步,[Φ]n,m表示在第n样本上传送第m子信道的数据的子载波。因此,[Φ]n,m确定当执行快速跳频时的快速跳频模式。进一步,本发明的示例实施方式使用快速跳频模式,其可以防止用于数据传输的子载波在预定样本上重叠,而且由下面公式(4)来表示用于所有快速跳频模式的快速跳频矩阵G Q。In Equation (3), n represents a sample index, and m represents a subchannel index. Further, [Φ] n,m represents the subcarrier transmitting the data of the mth subchannel on the nth sample. Therefore, [Φ] n,m determines the fast frequency hopping pattern when fast frequency hopping is performed. Further, exemplary embodiments of the present invention use a fast frequency hopping pattern, which can prevent subcarriers used for data transmission from overlapping on predetermined samples, and the fast frequency hopping used for all fast frequency hopping patterns is represented by the following formula (4) Matrix G Q .
G Q=Δ Q D Q,Δ Q=G Q D Q H...........(4) G Q = Δ Q D Q , Δ Q = G Q D Q H ..........(4)
在公式(4)中,根据快速跳频模式来预先确定快速跳频矩阵G Q和矩阵Δ Q的元素的值,而且矩阵Δ Q具有Q×Q的大小。In formula (4), values of elements of the fast hopping matrix G Q and the matrix Δ Q are predetermined according to the fast hopping pattern, and the matrix Δ Q has a size of Q×Q.
假设快速跳频模式的fn是在第n样本上传送第一子信道的数据的子载波,当通过使用下面公式(5)所定义的循环快速跳频模式产生公式(4)的矩阵Δ Q时,其总变为对角矩阵。Assuming that f n of the fast frequency hopping pattern is the subcarrier that transmits the data of the first subchannel on the nth sample, when the matrix Δ Q of the formula (4) is generated by using the cyclic fast frequency hopping pattern defined by the following formula (5) , it always becomes a diagonal matrix.
[Φ]n,m=mod(fn+m-1,Q),m=1,...,Q...........(5)[Φ] n, m = mod(f n + m-1, Q), m = 1, ..., Q...........(5)
在这种情况下,将快速跳频矩阵G Q表示为通过将普通IFFT矩阵D Q乘以矩阵Δ Q所获得的积。因此,可以通过IFFT单元和能够将IFFT矩阵乘以矩阵Δ Q的线性处理器来实施用于执行快速跳频的设备。如这里所描述的那样,本发明的示例实施方式基于这样的假设:快速跳频模式是循环快速跳频模式的例子。因此,也可以将矩阵Δ Q定义为对角矩阵。不用说,这在修改快速跳频模式的类型的情况下也成立。In this case, the fast hopping matrix G Q is expressed as a product obtained by multiplying the ordinary IFFT matrix D Q by the matrix ΔQ . Thus, the device for performing fast frequency hopping can be implemented by an IFFT unit and a linear processor capable of multiplying the IFFT matrix by the matrix ΔQ . As described herein, example embodiments of the present invention are based on the assumption that fast hopping patterns are examples of cyclic fast hopping patterns. Therefore, the matrix ΔQ can also be defined as a diagonal matrix. It goes without saying that this also holds true in the case of a modification of the type of fast frequency hopping pattern.
如这里所使用的那样,将从线性处理器123输出的信号称为b。通过下面公式(6)来定义信号b。As used herein, the signal output from linear processor 123 is referred to as b . The signal b is defined by the following formula (6).
b=G Q d=Δ Q D Q d.............(6) b = G Q d = Δ Q D Q d ..........(6)
P/S转换器131从线性处理器123接收信号b,将信号b转换为串行信号,然后将经过转换的串行信号输出到保护间隔插入器133。保护间隔插入器133将保护间隔插入到从P/S转换器131输出来的信号中,然后将该信号输出到D/A转换器135。将保护间隔进行插入以在OFDM通信系统中去除在之前OFDM码元时间上所传送的之前OFDM码元和在当前OFDM码元时间上要被传送的当前OFDM码元之间的干扰。进一步,使用循环前缀方法或者循环后缀方法以插入保护间隔。在循环前缀方法中,将时域中OFDM码元的预定数量的末尾样本进行复制并且插入到有效OFDM码元中。在循环后缀方法中,将时域中OFDM码元的预定数量的开头样本进行复制并且插入到有效OFDM码元中。The P/S converter 131 receives the signal b from the linear processor 123 , converts the signal b into a serial signal, and then outputs the converted serial signal to the guard interval inserter 133 . Guard interval inserter 133 inserts a guard interval into the signal output from P/S converter 131 , and then outputs the signal to D/A converter 135 . The guard interval is inserted to remove interference between a previous OFDM symbol transmitted at a previous OFDM symbol time and a current OFDM symbol to be transmitted at a current OFDM symbol time in an OFDM communication system. Further, a cyclic prefix method or a cyclic postfix method is used to insert a guard interval. In the cyclic prefix method, a predetermined number of last samples of an OFDM symbol in the time domain are replicated and inserted into a valid OFDM symbol. In the cyclic suffix method, a predetermined number of leading samples of an OFDM symbol in the time domain are copied and inserted into a valid OFDM symbol.
D/A转换器135将从保护间隔插入器133输出来的信号转换为模拟信号,然后将经过转换的信号输出到RF处理器137。RF处理器137包括诸如滤波器和前后单元之类的元件。RF处理器137对从D/A转换器135中输出的信号进行RF处理,并且将经过处理的信号通过实际信道传送。The D/A converter 135 converts the signal output from the guard interval inserter 133 into an analog signal, and then outputs the converted signal to the RF processor 137 . The RF processor 137 includes elements such as filters and front-to-back units. The RF processor 137 performs RF processing on the signal output from the D/A converter 135, and transmits the processed signal through an actual channel.
下面,将参照图2描述根据本发明第一实施方式执行功能的FFH-OFDM通信系统的接收机的结构。Next, the structure of the receiver of the FFH-OFDM communication system performing the function according to the first embodiment of the present invention will be described with reference to FIG. 2 .
图2是根据本发明第一示例实施方式执行功能的FFH-OFDM通信系统的接收机的结构的框图。2 is a block diagram of a structure of a receiver of an FFH-OFDM communication system performing functions according to a first exemplary embodiment of the present invention.
图2所示的接收机包括RF处理器211、D/A转换器213、信道估计器215、保护间隔去除器217、S/P转换器219、FFT单元221、均衡器223、IFFT单元225、均衡器227、FFT单元229和并行到串行(P/S)转换器231。The receiver shown in FIG. 2 includes an
从图1所示的FFH-OFDM通信系统的发射机传送来的信号在通过多径信道时获得(pick up)诸如加性白噪声(AWGN)之类的噪声,然后带有所添加的噪声的信号通过天线输入到RF处理器211。如这里所使用的那样,将表示多径信道的信道响应的信道矩阵表示为H t,而将所添加的噪声表示为n t,其中t意味着在时域中测量信道响应和噪声。RF处理器211将通过天线接收的信号下转换为中频(IF)信号,然后是基带频率信号,之后将经过转换的信号输出到D/A转换器213。D/A转换器213将从RF处理器211输出来的模拟信号转换为数字信号,然后将经过转换的数字信号输出到信道估计器215和保护间隔去除器217。The signal transmitted from the transmitter of the FFH-OFDM communication system shown in FIG. 1 picks up noise such as additive white noise (AWGN) while passing through the multipath channel, and then has the added noise The signal is input to the
信道估计器215对来自D/A转换器213的信号执行信道估计,并且将信道估计的结果输出到均衡器223。信道估计器215的信道估计操作与本发明的示例实施方式没有直接关系,因此将不进行详细描述。保护间隔去除器217从D/A转换器213输入的信号中去除保护间隔,并且将所产生的信号输出到S/P转换器219。S/P转换器219将来自保护间隔去除器217的信号转换为并行信号,并且将经过转换的并行信号输出到FFT单元221。如在这里所使用的那样,将从S/P转换器219输出的信号称为e。信号e是通过下面公式(7)所定义的时域信号。The
e=H t B+n t......................(7) e = H t B + n t ...................(7)
FFT单元221对来自S/P转换器219的信号e执行Q点FFT,然后将该信号输出到均衡器223。如这里所使用的那样,将从FFT单元221输出的信号称为e f。信号e f是通过下面公式(8)所定义的频域信号。The
在公式(8)中,D Q H表示IFFT矩阵D Q的厄密特共轭。In formula (8), D Q H represents the Hermitian conjugate of the IFFT matrix D Q.
为了补偿多径信道的信号失真,需要执行均衡操作。特别是,在FFH-OFDM通信系统中,需要在时域和频域中都执行均衡。因此,FFH-OFDM通信系统需要两种均衡器,包括用于均衡时域信号的时域均衡器和用于均衡频域信号的频域均衡器。In order to compensate for the signal distortion of the multipath channel, an equalization operation needs to be performed. In particular, in an FFH-OFDM communication system, equalization needs to be performed in both the time domain and the frequency domain. Therefore, the FFH-OFDM communication system requires two kinds of equalizers, including a time-domain equalizer for equalizing time-domain signals and a frequency-domain equalizer for equalizing frequency-domain signals.
因此,均衡器223在频域中对来自FFT单元221的信号进行均衡,然后将它们输出到IFFT单元225。均衡器223补偿频域的信道响应。由于FFH-OFDM通信系统使用保护间隔信号,所以在时域中的信道响应和在频域中的信道响应处于奇异值分解(Singular Value Decomposition)关系中,其通过下面公式(9)定义。Therefore, the
在公式(9)中,H f表示在频域中补偿信道响应的信道矩阵。由于信道矩阵H f是对角矩阵,所以其可以通过单抽头均衡器来实施。用于执行频域均衡的均衡器223执行与典型OFDM通信系统的均衡器执行的操作基本上相同的操作。均衡器223根据信道补偿方案,具有包括零强制(Zero Forcing,ZF)均衡器、最小均方差(MMSE)均衡器和匹配滤波器的结构。In Equation (9), H f represents a channel matrix that compensates for a channel response in the frequency domain. Since the channel matrix H f is a diagonal matrix, it can be implemented by a one-tap equalizer. The
进一步,IFFT单元225对来自均衡器223的信号执行Q点IFFT,然后将该信号输出到均衡器227。IFFT单元225的操作与图1所示的发射机的IFFT单元121的操作相同,所以这里省略对其的详细描述。Further, the
均衡器227接收来在IFFT单元225的信号,在时域中均衡该信号,然后将该信号输出到FFT单元229。如在这里所使用的那样,将时域中的信号的均衡表示为M t。可以通过下面公式(10)定义时域中的均衡M t。The
M t=Δ Q H..............................(10) M t = ΔQ H ................................(10 )
如公式(10)所表示的那样,可以通过公式(4)所定义的矩阵Δ Q的厄密特共轭Δ Q H来表示时域中的均衡M t。因此,矩阵Δ Q H也是对角矩阵。As represented by formula (10), the equalization M t in the time domain can be represented by the Hermitian conjugate Δ Q H of the matrix Δ Q defined by formula (4). Therefore, the matrix ΔQ H is also a diagonal matrix.
FFT单元229接收来自均衡器227的信号,对该信息执行Q点FFT,然后将该信号输出到P/S转换器231。FFT单元229的操作与FFT单元221的操作相同,所以这里省略对其的详细描述。可以通过由下面公式(11)所定义的输入数据码元估计矢量来表示从FFT单元229输出的信号。The
例如,当均衡器223使用根据如公式(8)所定义的频域信号的子载波分类信道响应的ZF均衡器,并且均衡器227执行如公式(10)所定义的均衡M t时,可以将公式(11)所定义的输入数据码元估计矢量展开为如下面公式(12)所示。For example, when the
P/S转换器231将来自FFT单元229的信号转换为串行信号,然后将包括最终输入码元的该串行信号输出。与图1和图2相关地,已经在上面描述了根据本发明第一示例实施方式的、通过使用所有可用频带执行快速跳频的FFH-OFDM通信系统。下面,将描述根据本发明第一和第三示例实施方式的、通过使用所有可用频带的子集来执行快速跳频的FFH-OFDM通信系统。The P/
当与特定子载波对应的频带不用于信号传输而是只用作保护频带时,或者当仅仅将所有可用频带的与特定子载波对应的子集分配给信号传输的每个用户时,需要通过使用所有可用频带的子集来反映快速跳频的本发明第二和第三实施方式。FFH-OFDM通信系统可以通过使用动态信道分配(DCA)方案显著地提高系统性能,该DCA方案根据每个时间点上的用户的信道状态动态地分配子信道。因此,本发明的第二和第三实施方式提出用于通过使用所有可用频带的子集执行快速跳频的方案。如本发明第二和第三示例实施方式中所描述的那样,假设在FFH-OFDM通信系统中所使用的所有可用频带的数量为Q,而且与部分频带对应的子载波数量为M(M≤Q)。When the frequency band corresponding to a specific subcarrier is not used for signal transmission but only as a guard band, or when only a subset of all available frequency bands corresponding to a specific subcarrier is allocated to each user for signal transmission, it is necessary to use A subset of all available frequency bands to reflect the second and third embodiments of the invention for fast frequency hopping. The FFH-OFDM communication system can significantly improve system performance by using a dynamic channel allocation (DCA) scheme that dynamically allocates subchannels according to the channel status of users at each time point. Therefore, the second and third embodiments of the present invention propose a scheme for performing fast frequency hopping by using a subset of all available frequency bands. As described in the second and third exemplary embodiments of the present invention, it is assumed that the number of all available frequency bands used in the FFH-OFDM communication system is Q, and the number of subcarriers corresponding to some frequency bands is M (M≤ Q).
下面,将简要描述本发明第二和第三示例实施方式之间的差异。Next, differences between the second and third exemplary embodiments of the present invention will be briefly described.
首先,在本发明第二示例实施方式中,仅仅针对M个子载波执行快速跳频,而且将空数据(例如0)插入到其他子载波中,也就是(Q-M)个子载波。在该实施方式中,可以通过假设与M个子载波对应的频带是所有可用频带,以与第一示例实施方式的方式相同的方式来实施本发明的示例实施方式。First, in the second exemplary embodiment of the present invention, fast frequency hopping is performed only for M subcarriers, and null data (eg, 0) is inserted into other subcarriers, that is, (Q-M) subcarriers. In this embodiment, the exemplary embodiment of the present invention can be implemented in the same manner as that of the first exemplary embodiment by assuming that frequency bands corresponding to M subcarriers are all available frequency bands.
下面,在本发明第三示例实施方式中,通过针对包括M个子载波和(Q-M)个子载波两者的所有可用的Q个子载波执行快速跳频。仅仅将空数据(例如0)插入到(Q-M)个子载波中而不插入到该M个子载波中。具体地说,在本发明第三示例实施方式中,将空数据事先插入到(Q-M)个子载波中。针对Q个子载波执行快速跳频。之后,再次将空数据插入到(Q-M)个子载波中。最后,传送子载波。为了产生与第二实施方式的传输信号相同的传输信号,第三实施方式必须满足将在下面详细描述的两个条件。Next, in the third exemplary embodiment of the present invention, fast frequency hopping is performed by performing fast frequency hopping for all available Q subcarriers including both M subcarriers and (Q-M) subcarriers. Only null data (eg, 0) is inserted into (Q-M) subcarriers and not into the M subcarriers. Specifically, in the third exemplary embodiment of the present invention, null data is inserted into (Q-M) subcarriers in advance. Fast frequency hopping is performed for Q subcarriers. After that, null data is inserted into (Q-M) subcarriers again. Finally, the subcarriers are transmitted. In order to generate the same transmission signal as that of the second embodiment, the third embodiment must satisfy two conditions that will be described in detail below.
将参照图3描述执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的发射机的结构。A structure of a transmitter of an FFH-OFDM communication system performing a function according to a second exemplary embodiment of the present invention will be described with reference to FIG. 3 .
图3是示出执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的发射机的结构的框图。FIG. 3 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system performing a function according to a second exemplary embodiment of the present invention.
参照图3,该发射机包括串行到并行(S/P)转换器311、FFH单元320、快速傅立叶变换(FFT)单元331、控制器333、IFFT单元335、P/S转换器337、保护间隔插入器339、D/A转换器341和RF处理器343。FFH单元320包括IFFT单元321和线性处理器323。3, the transmitter includes a serial to parallel (S/P)
首先,当存在要被传送的输入数据时,将输入数据输入到S/P转换器311。该数据包括实际用户数据或者诸如导频之类的基准数据。由于在本发明的第二示例实施方式中,仅仅针对M个子载波执行快速跳频,所以S/P转换器311将输入数据码元转换为M个并行码元,并且将经过转换的并行码元输出到IFFT单元321。如这里所使用的那样,将从S/P转换器311输出的并行信号称为通过下面公式(13)表示的d M。First, when there is input data to be transferred, the input data is input to the S/
d M=[d1...dM]T...............................(13) d M =[d 1 ...d M ] T ................................(13)
IFFT单元321对从S/P转换器311输出的并行信号d M执行M点IFFT,并且将经过IFFT处理的信号输出到线性处理器323。线性处理器323为来自IFFT单元321的信号执行线性处理,然后将经过处理的信号输出到FFT单元331。The
下面,将更加详细地描述IFFT单元321和线性处理器323的操作。Next, the operations of the
图3中所示的发射机仅仅使用M个子载波而不是所有可用频带。因此,当为子载波执行快速跳频以在仅仅使用M个子载波而不是所有可用频带的图3所示的发射机中,在与OFDM样本时间周期或者OFDM样本时间周期的倍数对应的时间间隔上传送数据时,以根据本发明第一示例实施方式的针对快速跳频矩阵G Q的方式相同的方式产生快速跳频矩阵。然而,在本发明第二示例实施方式中,新产生的矩阵是与第一实施方式的G Q不同的G M。可以通过公式(14)定义新产生的快速跳频矩阵G M。The transmitter shown in Figure 3 uses only M subcarriers instead of all available frequency bands. Therefore, when performing fast frequency hopping for subcarriers to upload in the transmitter shown in Fig. 3 using only M subcarriers instead of all available frequency bands, at time intervals corresponding to the OFDM sample time period or a multiple of the OFDM sample time period When sending data, the fast frequency hopping matrix is generated in the same manner as the fast frequency hopping matrix G Q according to the first exemplary embodiment of the present invention. However, in the second exemplary embodiment of the present invention, the newly generated matrix is G M different from G Q of the first embodiment. The newly generated fast frequency hopping matrix G M can be defined by formula (14).
在公式(14)中,快速跳频矩阵G M具有M×M的大小。进一步,本发明的示例实施方式是基于快速跳频模式的,该模式能够防止用于数据传输的子载波在预定样本处重叠,而且针对所有快速跳频模式通过下面公式(15)表示快速跳频矩阵G M。In formula (14), the fast hopping matrix G M has a size of M×M. Further, the exemplary embodiment of the present invention is based on the fast frequency hopping pattern, which can prevent the subcarriers used for data transmission from overlapping at predetermined samples, and fast frequency hopping is expressed by the following formula (15) for all fast frequency hopping patterns Matrix G M .
G M=Δ M D M,Δ M=G M D M H.....................(15) G M = Δ M D M , Δ M = G M D M H ..........(15)
在公式(15)中,根据快速跳频模式预先确定快速跳频矩阵G M和矩阵Δ M的元素的值。In the formula (15), the values of the elements of the fast frequency hopping matrix G M and the matrix Δ M are predetermined according to the fast frequency hopping mode.
假设快速跳频模式的fn是在第n样本上传送第一子信道的数据的子载波,当通过使用由下面公式(16)所定义的循环快速跳频模式来产生通过公式(15)定义的矩阵Δ M时,其变为对角矩阵。Assuming that f n of the fast frequency hopping pattern is the subcarrier that transmits the data of the first subchannel on the nth sample, when it is generated by using the cyclic fast frequency hopping pattern defined by the following formula (16) defined by the formula (15) When the matrix Δ M of , it becomes a diagonal matrix.
[Φ]n,m=mod(fn+m-1,M),m=1,...,M.............(16)[Φ] n, m =mod(f n +m-1, M), m=1, ..., M...........(16)
在这种情况下,将快速跳频矩阵G M表示为通过将普通IFFT矩阵D M乘以矩阵Δ M而获得的积。因此,可以通过IFFT单元和能够将IFFT矩阵乘以矩阵Δ M的线性处理器来实施用于执行快速跳频的设备。如这里所述,本发明的示例实施方式基于这样的假设:快速跳频模式是循环快速跳频模式的例子。因此,还可以将矩阵Δ M定义为对角矩阵。不用说,这对能够修改快速跳频模式的类型也成立。In this case, the fast hopping matrix G M is expressed as a product obtained by multiplying the ordinary IFFT matrix D M by the matrix ΔM . Thus, the device for performing fast frequency hopping can be implemented by an IFFT unit and a linear processor capable of multiplying the IFFT matrix by the matrix ΔM . As described herein, example embodiments of the present invention are based on the assumption that fast hopping patterns are examples of cyclic fast hopping patterns. Therefore, the matrix ΔM can also be defined as a diagonal matrix. Needless to say, this is also true for types that can modify the fast hopping pattern.
如这里所使用的那样,将从线性处理器323输出的信号称为b M。可以通过下面公式(17)定义该信号b M。As used herein, the signal output from
b M=G M d M=Δ M D M d M...................(17) b M = G M d M = Δ M D M d M ...................(17)
FFT单元331对来自线性处理器323的信号b M执行M点FFT,然后将该信号输出到控制器333。控制器333接收来自FFT单元331的信号,将空数据(例如0)插入到除了M个子载波频带以外的子载波频带,然后将该信号输出到IFFT单元335。在这种情况下,控制器333用作某种零插入器(0插入器)。可以通过下面公式(18)表示控制器333的零插入操作。The
ZQ,M是用于表示图3的控制器333的操作的矩阵。如上所说,在控制器333的输出信号之中,由M个子载波传送的数据是已经经历了快速跳频的M个子载波数据,而由(Q-M)个子载波传送的空数据是从来没有经历过快速跳频的数据。ZQ,M is a matrix for representing the operation of the
IFFT单元335接收来自控制器333的信号,对该信号执行Q点IFFT,然后将该信号输出到P/S转换器337。如这里所使用的,将来自IFFT单元335的信号称为b Q (1)。可以通过下面公式(19)定义信号b Q (1)。The
P/S转换器337、保护间隔插入器339、D/A转换器341和RF处理器343执行与图1中所示的P/S转换器131、保护间隔插入器133、D/A转换器135和RF处理器137的操作相同的操作,因此这里将省略对它们的详细描述。P/
已经关于图3在上面描述了执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的发射机的结构。下面,将参照图4描述执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的接收机的结构。The structure of the transmitter of the FFH-OFDM communication system performing the function according to the second exemplary embodiment of the present invention has been described above with respect to FIG. 3 . Next, a structure of a receiver of an FFH-OFDM communication system performing a function according to a second exemplary embodiment of the present invention will be described with reference to FIG. 4 .
图4是示出执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的接收机的结构的框图。4 is a block diagram showing a structure of a receiver of an FFH-OFDM communication system performing a function according to a second exemplary embodiment of the present invention.
图4中所示的接收机包括RF处理器411、D/A转换器413、信道估计器415、保护间隔去除器417、S/P转换器419、FFT单元421、控制器423、均衡器425、IFFT单元427、均衡器429、FFT单元431和P/S转换器433。图4的RF处理器411、D/A转换器413、保护间隔去除器417和S/P转换器419执行与图2的RF处理器211、D/A转换器213、保护间隔去除器217和S/P转换器219的操作相同的操作,因此这里将省略对它们的详细描述。The receiver shown in Fig. 4 includes
如这里所使用的那样,将从S/P转换器419输出的信号表示为e Q。可以通过下面公式(20)表示信号e Q。As used herein, the signal output from the S/
e Q=H t b Q (1)+n t......................(20) e Q = H t b Q (1) + n t ...................(20)
FFT单元421对来自S/P转换器419的信号e Q执行Q点FFT,然后将该信号输出到控制器423。如这里所使用的那样,将从FFT单元412输出的信号称为e f,Q。信号e f,Q可以是频域信号并且通过下面公式(21)定义。The FFT unit 421 performs Q-point FFT on the signal e Q from the S/
同时,由于在从FFT单元421输出的Q个子载波中只有M个子载波信号包括数据,因此控制器423从FFT单元421输出的信号e f,Q中消除包含空数据(例如0)的(Q-M)个子载波信号,并且只将M个子载波输出到均衡器425。在这种情况下,控制器423用作某种零去除器(0去除器)。控制器423去除由图3的控制器33所插入的0。At the same time, since only M subcarrier signals include data among the Q subcarriers output from the FFT unit 421, the
可以通过下面公式(22)表示控制器423的零去除操作。The zero removal operation of the
ZM,Q=(IM0M,Q-M)........................(22)Z M, Q = (I M 0 M, QM )..........(22)
同时,为了补偿多径信道的信号失真,需要执行均衡操作。在FFH-OFDM通信系统中,需要在时域和频域中都执行均衡。因此,FFH-OFDM通信系统需要两种均衡器,包括用于均衡时域信号的时域均衡器和用于均衡频域信号的频域均衡器。Meanwhile, in order to compensate the signal distortion of the multipath channel, an equalization operation needs to be performed. In an FFH-OFDM communication system, equalization needs to be performed in both the time domain and the frequency domain. Therefore, the FFH-OFDM communication system requires two kinds of equalizers, including a time-domain equalizer for equalizing time-domain signals and a frequency-domain equalizer for equalizing frequency-domain signals.
因此,均衡器425在频域中均衡来自控制器423的信号,然后将它们输出到IFFT单元427。均衡器425补偿频域的信道响应。Therefore, the
进一步,IFFT单元427对来自均衡器425的信号执行M点IFFT,然后将该信号输出到均衡器429。IFFT单元427的操作与图3所示的发射机的IFFT单元321的操作相同,因此这里省略对其的详细描述。Further, the
均衡器429接收来自IFFT单元427的信号,在时域中对该信号进行均衡,然后将该信号输出到FFT单元431。如这里所使用的那样,将时域中的信号的均衡表示为M t,M。通过下面公式(23)定义时域中的均衡M t,M。The
M t,M=Δ M H..............................(23) M t, M = ΔM H ................................ (23)
如公式(23)所表示的,可以通过公式(15)所定义的矩阵Δ M的厄密特共轭Δ M H来表示时域中的均衡M t,M。因此,矩阵Δ M H也是对角矩阵。As represented by formula (23), the equalization M t,M in the time domain can be represented by the Hermitian conjugate Δ M H of matrix Δ M defined by formula (15). Therefore, the matrix Δ M H is also a diagonal matrix.
FFT单元431接收来自均衡器429的信号,对该信号执行M点FFT,然后将该信号输出到P/S转换器433。FFT单元431的操作与图3的FFT单元331的操作相同,因此这里省略对其的详细描述。可以通过由下面公式(24)定义的输入数据码元估计矢量来表示从FFT单元431输出的信号。同时,在公式(24)中,ef,Q表示从FFT单元431输出并且输入到控制器423的信号,而D M H、M tM、D M、M f,M和Z M,Q分别表示代表FFT单元431、均衡器429、IFFT单元427、均衡器425和控制器423的矩阵。The
P/S转换器433将来自FFT单元431的信号转换为串行信号,然后将包括最后输入信号的该串行信号输出。上面已经关于图4描述了执行根据本发明第二示例实施方式的功能的FFH-OFDM通信系统的接收机的结构。下面,将参照图5描述执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的发射机的结构。The P/
图5是示出执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的发射机的结构的框图。5 is a block diagram showing a structure of a transmitter of an FFH-OFDM communication system performing a function according to a third exemplary embodiment of the present invention.
参照图5,该发射机包括串行到并行(S/P)转换器511、控制器513、FFH单元520、FFT单元531、控制器533、IFFT单元535、P/S转换器537、保护间隔插入器539、D/A转换器541和RF处理器543。FFH单元520包括IFFT单元521和线性处理器523。5, the transmitter includes a serial to parallel (S/P)
当存在要被传送的数据时,将输入数据输出到S/P转换器511。该数据包括实际用户数据或者诸如导频之类的基准数据。由于在本发明的第三示例实施方式中,仅仅针对M个子载波执行快速跳频,所以S/P转换器511将输入数据码元转换为M个并行码元,并且将经过转换的并行码元输出到控制器513。控制器513接收来自S/P转换器511的信号,将空数据(例如0)插入到除了该M个子载波频带之外的该(Q-M)个子载波频带,然后将该信号输出到IFFT单元521。在这种情况下,控制器513用作某种零插入器(0插入器)。When there is data to be transferred, the input data is output to the S/
IFFT单元521对从控制器513输出来的并行信号执行Q点IFFT,并且将经过IFFT处理的信号输出到线性处理器523。线性处理器523为来自IFFT单元521的信号执行线性处理,然后将经过处理的信号输出到FFT单元531。IFFT单元521和线性处理器523的操作与图1的IFFT单元121和线性处理器123的操作相同,因此这里将省略对其的详细描述。The
FFT单元531对来自FFH单元520的信号执行Q点FFT,然后将该信号输出到控制器533。如这里所使用的那样,将从FFT单元531输出的信号称为b Q,all。b Q,all是当在时域中扩频包含实际数据的M个子载波信号和包含空数据的(Q-M)个子载波信号时获得的信号。The FFT unit 531 performs Q-point FFT on the signal from the
控制器533接收来自FFT单元531的信号b Q,all,将空数据(例如0)插入到(Q-M)个子载波频带中,然后将该信号输入到IFFT单元535。在这种情况下,控制器533用于某种零插入器(0插入器)。可以通过下面公式(25)表示控制器533的零插入操作。The
IFFT单元535接收来自控制器533的信号,对该信号执行Q点IFFT,然后将该信号输出到P/S转换器537。如这里所使用的那样,将从IFFT单元535输出的信号称为b Q (2)。可以通过下面公式(26)定义信号b Q (2)。在下面公式(26)种,d M表示输入到控制器513的数据矢量,Z Q,M、D Q、Δ Q、D Q H、Z Q和D Q分别表示代表控制器513、IFFT单元521、线性处理器523、FFT单元531、控制器533和IFFT单元525的矩阵。The
如公式(26)所表示的那样,通过在通过添加传送实际数据的M个子载波信号和传送空数据的(Q-M)个子载波信号产生具有大小Q的信号之后执行快速跳频,可以固定在发射机的每个元件中所使用的子载波的数量,从而实现发射机的稳定硬件构造,而与实际传送数据的子载波的数量M无关。As represented by Equation (26), by performing fast frequency hopping after generating a signal with size Q by adding M subcarrier signals conveying real data and (Q-M) subcarrier signals conveying null data, it is possible to fix at the transmitter The number of subcarriers used in each element of the transmitter, thereby achieving a stable hardware configuration of the transmitter, regardless of the number M of subcarriers that actually transmit data.
同时,通过公式(19)定义的传输矢量b Q (1)和通过公式(26)定义的传输矢量b Q (2)必须满足下面的两个条件:Meanwhile, the transmission vector b Q (1) defined by formula (19) and the transmission vector b Q (2) defined by formula (26) must satisfy the following two conditions:
(1)第一条件(1) The first condition
为了使得传输矢量b Q (1)和传输矢量b Q (2)具有相同的格式,需要根据Δ M的元素的值来设置Δ Q的元素的值。可以通过下面的公式(27)表示第一条件。In order to make the transmission vector b Q (1) and the transmission vector b Q (2) have the same format, it is necessary to set the value of the element of Δ Q according to the value of the element of Δ M. The first condition can be expressed by the following formula (27).
其中有
如上所述,在本发明的第三示例实施方式中,由于空数据代替(Q-M)个子载波所传送的信号,在公式(27)中需要乘以以使得第三实施方式具有与第二实施方式的能量总量相同的能量总量。As mentioned above, in the third exemplary embodiment of the present invention, since null data replaces the signal transmitted by (QM) subcarriers, it is necessary to multiply by So that the third embodiment has the same energy total amount as that of the second embodiment.
(2)第二条件(2) The second condition
第二条件是使得传输矢量根据本发明第二示例实施方式和第三示例实施方式总具有相同的值。可以通过下面公式(28)表示第二条件。The second condition is such that the transmission vector always has the same value according to the second and third exemplary embodiments of the present invention. The second condition can be expressed by the following formula (28).
Q≥2M-1.............(28)Q≥2M-1..........(28)
P/S转换器537、保护间隔插入器539、D/A转换器541和RF处理器543执行与图1的P/S转换器131、保护间隔插入器133、D/A转换器135和RF处理器137的操作相同的操作,因此这里将省略对其的详细描述。P/
上面已经关于图5描述了执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的发射机的结构。下面,将参照图6描述执行根据本发明的第三示例实施方式的功能的FFH-OFDM通信系统的接收机的结构。The structure of the transmitter of the FFH-OFDM communication system performing the function according to the third exemplary embodiment of the present invention has been described above with respect to FIG. 5 . Next, a structure of a receiver of an FFH-OFDM communication system performing a function according to a third exemplary embodiment of the present invention will be described with reference to FIG. 6 .
图6是示出执行根据本发明第三示例实施方式的功能的FFH-OFDM通信系统的接收机的结构的框图。6 is a block diagram showing a structure of a receiver of an FFH-OFDM communication system performing a function according to a third exemplary embodiment of the present invention.
在图6中所示的接收机包括RF处理器611、D/A转换器613、信道估计器615、保护间隔去除器617、S/P转换器619、FFT单元621、控制器623、均衡器625、IFFT单元627、均衡器629、FFT单元631、控制器633和P/S转换器635。图6的RF处理器611、D/A转换器613、保护间隔去除器617和S/P转换器619执行与图2的RF处理器211、D/A转换器213、保护间隔去除器217和S/P转换器219的操作相同的操作,因此这里将省略对它们的详细描述。进一步,FFT单元621执行与图4的FFT单元421的操作相同的操作,因此这里将省略对其的详细描述。The receiver shown in FIG. 6 includes an
输入到FFT单元621中的信号e Q和从FFT单元621中输出的信号e f,Q与通过公式(20)和(21)定义的信号e Q和e f,Q相同。进一步,由于在图5的发射机中传送实际数据的子载波的数量是M,所以该M个子载波信号包含实际数据而该(Q-M)个子载波信号在频域信号e f,Q中只包含噪声。因此,控制器623将空数据(例如0)插入到从FFT单元621输出的信号e f,Q中的(Q-M)个子载波信号,然后将M个子载波信号和(Q-M)个子载波信号都输出到均衡器625。在这种情况下,控制器623充当某种零插入器(0插入器)。The signal e Q input to and the signal e f,Q output from the
均衡器625在频域中均衡来自控制器623的信号,然后将它们输出到IFFT单元627。IFFT单元627对来自均衡器625的信号执行Q点IFFT,然后将该信号输出到均衡器629。均衡器629接收来自IFFT单元627的信号,在时域中均衡该信号,然后将该信号输出到FFT单元631。如这里所使用的那样,将均衡器629的矩阵定义为图5的发射机的线性处理器523的矩阵M Q,M的厄密特共轭并且通过下面公式(29)表示。The
M t,Q=Δ Q H..............................(29) M t, Q = ΔQ H ................................(29)
FFT单元631接收来自均衡器629的信号,对该信号执行Q点FFT,然后将该信号输出到控制器623。在从FFT单元631输出的信号中,承载实际数据的子载波数量是M,控制器633只选择和输出与下面通过公式(30)示出的估计数据的数量M对应的信号。控制器633用作一种选择器。The
P/S转换器635将来自控制器633的信号转换为串行信号,然后将包括最后输入码元该串行信号输出。The P/
如上所述,根据本发明第二和第三示例实施方式的发射机所传送的传输矢量是相同的。因此,根据本发明第三示例实施方式的接收机或者可以与根据本发明第二示例实施方式的发射机一同使用,或者根据本发明第二示例实施方式的接收机可以与根据本发明第三示例实施方式的发射机一同使用。As described above, the transmission vectors transmitted by the transmitters according to the second and third exemplary embodiments of the present invention are the same. Therefore, the receiver according to the third example embodiment of the invention can either be used with the transmitter according to the second example embodiment of the invention, or the receiver according to the second example embodiment of the invention can be used with the transmitter according to the third example embodiment of the invention. The transmitter of the embodiment is used together.
关于本发明第二和第三示例实施方式的上面描述只讨论其中针对以仅仅一个用户为目标的数据传输执行快速跳频的情况。然而,当在OFDM通信系统中在下行链路中将所有可用频带划分并且分配给多个用户时,对于多个用户的每一个可能都需要根据本发明第二和第三示例实施方式的发射机和接收机、使用所有可用频带的子集执行快速跳频。本发明的第四实施方式提出考虑到多个用户(即多址)情况下用于快速跳频的方案。The above descriptions regarding the second and third exemplary embodiments of the present invention have only discussed the case where fast frequency hopping is performed for data transmission targeting only one user. However, when all available frequency bands are divided and allocated to a plurality of users in the downlink in an OFDM communication system, the transmitters according to the second and third exemplary embodiments of the present invention may be required for each of the plurality of users and receiver, perform fast frequency hopping using a subset of all available frequency bands. The fourth embodiment of the present invention proposes a scheme for fast frequency hopping in consideration of multiple users (ie, multiple access).
下面,将参照图7描述用于在考虑到多个用户的情况下执行快速跳频的OFDM系统(下面称为“快速跳频OFDM通信系统”)。Next, an OFDM system for performing fast frequency hopping in consideration of multiple users (hereinafter referred to as "fast frequency hopping OFDM communication system") will be described with reference to FIG. 7 .
图7是示出执行根据本发明第四示例实施方式的功能的、在快速跳频OFDM通信系统中的发射机的结构的框图。7 is a block diagram showing a structure of a transmitter in a fast frequency hopping OFDM communication system performing a function according to a fourth exemplary embodiment of the present invention.
图7中所示的发射机包括快速跳频OFDM(FFH-OFDM)处理单元710、复用器720、IFFT单元730、P/S转换器740、保护间隔插入器750、D/A转换器760和RF处理器770。FFH-OFDM处理单元710包括多个FFH-OFDM处理器,包括处理以第一用户为目标的数据的第一FFH-OFDM处理器711-1到处理以第K用户为目标的数据的第K FFH-OFDM处理器711-K。仅仅为了示例的目的示出处理以第二用户为目标的数据的第二FFH-OFDM处理器711-2。The transmitter shown in FIG. 7 includes a fast frequency hopping OFDM (FFH-OFDM)
假设要分配给第一用户到第K用户的子载波数量分别是M1到MK,而要传送给第一用户到第K用户的数据分别d 1是d K。将数据d 1输入到第一FFH-OFDM处理器711-1,将数据d K输入到第K FFH-OFDM处理器711-K,并且以相同的方式将其他数据输入到对应的FFH-OFDM处理器。Assume that the numbers of subcarriers to be allocated to the first user to the Kth user are M 1 to M K , respectively, and the data d 1 to be transmitted to the first user to the Kth user is d K . Input data d 1 to the first FFH-OFDM processor 711-1, input data d K to the Kth FFH-OFDM processor 711-K, and input other data to the corresponding FFH-OFDM processing in the same manner device.
第一FFH-OFDM处理器711-1到第K FFH-OFDM处理器711-K以与本发明第二或者第三示例实施方式中所描述的方式相同的方式执行快速跳频和OFDM调制,然后输出调制信号b M1到b MK。例如,当第K FFH-OFDM处理器711-K以与本发明第二示例实施方式的方式相同的方式执行快速跳频和OFDM调制时,作为在从图3的控制器333中输出的信号中所实际使用子载波的元素的数量MK对应于b MK。相反地,当第K FFH-OFDM处理器711-K以与根据本发明第三示例实施方式的方式相同的方式执行快速跳频和OFDM调制时,作为与从图5的控制器333输出的信号中所实际使用的子载波的元素的数量MK对应于b MK。The first FFH-OFDM processor 711-1 to the K-th FFH-OFDM processor 711-K perform fast frequency hopping and OFDM modulation in the same manner as described in the second or third exemplary embodiment of the present invention, and then The modulated signals b M1 to b MK are output. For example, when the Kth FFH-OFDM processor 711-K performs fast frequency hopping and OFDM modulation in the same manner as in the second exemplary embodiment of the present invention, as in the signal output from the
将从第一FFH-OFDM处理器711-1到第K FFH-OFDM处理器711-K输出的信号b M1到b MK输入到复用器720。复用器720将0插入到与还没有分配给任何用户的对应的子载波信号中,然后将该信号输出到IFFT单元730。IFFT单元730对来自复用器720的信号执行Q点IFFT,然后将该信号输出到P/S转换器740。P/S转换器740、保护间隔插入器750、D/A转换器760和RF处理器770执行与图1的/S转换器131、保护间隔插入器133、D/A转换器135和RF处理器137的操作相同的操作,因此这里将省略对其的详细描述。虽然图7的发射机执行用于多个用户的信号的复用,但是接收机还可以解调其自己的信号。因此,根据本发明第二或者第三示例实施方式的接收机也可以使用在本实施方式中而不必使用与图7的发射机对应的分离接收机。Signals b M1 to b MK output from the first FFH-OFDM processor 711 - 1 to the K th FFH-OFDM processor 711 -K are input to the
如上所述,本发明的示例实施方式能够实现OFDM通信系统中的快速跳频和在一个OFDM码元时间周期内获得频率分集增益,从而提高系统性能。进一步,本发明的示例实施方式能够使得快速跳频不仅应用于OFDM通信系统的所有可用频带而且应用于所有可用频带的子集,以便可以在OFDM通信系统中使用DCA方案或者使用保护频带的情况中执行快速跳频,从而提供系统性能。As described above, exemplary embodiments of the present invention can realize fast frequency hopping in an OFDM communication system and obtain frequency diversity gain within one OFDM symbol time period, thereby improving system performance. Further, exemplary embodiments of the present invention enable fast frequency hopping to be applied not only to all available frequency bands of an OFDM communication system but also to a subset of all available frequency bands, so that the DCA scheme can be used in the OFDM communication system or a guard band can be used Performs fast frequency hopping, thereby improving system performance.
虽然已经参照其特定实施方式示出和描述了本发明,但是本领域的技术人员应该理解,在不偏离由所附权利要求所定义的本发明的精神和范围的情况下,可以在形式和细节上进行各种修改。While the invention has been shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that changes in form and details may be made without departing from the spirit and scope of the invention as defined by the appended claims. Make various modifications.
Claims (48)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20040112962 | 2004-12-27 | ||
KR10-2004-0112962 | 2004-12-27 | ||
KR1020040112962 | 2004-12-27 | ||
KR10-2005-0029629 | 2005-04-08 | ||
KR1020050029629 | 2005-04-08 | ||
KR20050029629A KR101042774B1 (en) | 2004-12-27 | 2005-04-08 | Signal Transceiver and Method of Fast Frequency Hopping-Orthogonal Frequency Division Communication System |
PCT/KR2005/004583 WO2006071056A1 (en) | 2004-12-27 | 2005-12-27 | Method and apparatus for transmitting/receiving a signal in an ffh-ofdm communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101091368A CN101091368A (en) | 2007-12-19 |
CN101091368B true CN101091368B (en) | 2010-06-09 |
Family
ID=37167523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800450661A Active CN101091368B (en) | 2004-12-27 | 2005-12-27 | Method and device for transmitting/receiving signals in fast frequency hopping OFDM communication system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4689682B2 (en) |
KR (1) | KR101042774B1 (en) |
CN (1) | CN101091368B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101525945B1 (en) | 2009-05-29 | 2015-06-08 | 삼성전자주식회사 | Baseband processor and wireless device including the same |
CN102316061B (en) * | 2010-07-07 | 2013-09-25 | 中国科学院微电子研究所 | Time synchronization method and device for frequency hopping orthogonal frequency division multiplexing system |
KR101275087B1 (en) * | 2011-10-28 | 2013-06-17 | (주)에프씨아이 | Ofdm receiver |
KR102122135B1 (en) * | 2018-11-27 | 2020-06-11 | 피앤피넷 주식회사 | Radio receiver using same fast fourier transformer for both data and beacon |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156739A (en) * | 1999-11-25 | 2001-06-08 | Victor Co Of Japan Ltd | Multi-carrier transmission system and multi-carrier transmission reception system |
JP4067755B2 (en) | 2000-10-24 | 2008-03-26 | 三菱電機株式会社 | Spread spectrum communication system receiver |
CN1723647B (en) * | 2002-10-26 | 2010-08-25 | 韩国电子通信研究院 | Frequency hopping of DMA method using symbols of COMB pattern |
KR100575980B1 (en) * | 2002-12-24 | 2006-05-02 | 삼성전자주식회사 | Apparatus and method for minimizing peak to average power ratio in a communication system using orthogonal frequency division multiplexing scheme |
JP3697521B2 (en) | 2003-04-21 | 2005-09-21 | 独立行政法人情報通信研究機構 | Receiving device, receiving method, and program |
US7177297B2 (en) | 2003-05-12 | 2007-02-13 | Qualcomm Incorporated | Fast frequency hopping with a code division multiplexed pilot in an OFDMA system |
WO2005086397A1 (en) * | 2004-03-05 | 2005-09-15 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving pilot signal in communication system using ofdm scheme |
KR100620914B1 (en) * | 2004-04-07 | 2006-09-13 | 삼성전자주식회사 | Apparatus and method for switching between MC mode and diversity mode in broadband wireless communication system |
KR20050099905A (en) * | 2004-04-12 | 2005-10-17 | 삼성전자주식회사 | Transmitting/receiving apparatus method for fast frequency hopping in orthogonal frequency division multiplex system and method therefor |
KR20050099906A (en) * | 2004-04-12 | 2005-10-17 | 삼성전자주식회사 | Transmitting/receiving apparatus method for fast frequency hopping using cyclic frequency hopping pattern in orthogonal frequency division multiplex system and method therefor |
JP2006054542A (en) * | 2004-08-10 | 2006-02-23 | Nakayo Telecommun Inc | Communication method and communication apparatus |
US8484272B2 (en) * | 2004-08-20 | 2013-07-09 | Qualcomm Incorporated | Unified pulse shaping for multi-carrier and single-carrier waveforms |
-
2005
- 2005-04-08 KR KR20050029629A patent/KR101042774B1/en not_active Expired - Lifetime
- 2005-12-27 CN CN2005800450661A patent/CN101091368B/en active Active
- 2005-12-27 JP JP2007549252A patent/JP4689682B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP4689682B2 (en) | 2011-05-25 |
JP2008526157A (en) | 2008-07-17 |
CN101091368A (en) | 2007-12-19 |
KR20060074800A (en) | 2006-07-03 |
KR101042774B1 (en) | 2011-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7848218B2 (en) | Virtual multi-antenna method for OFDM system and OFDM-based cellular system | |
US8660197B2 (en) | Method of and equipment for compensating carrier frequency offset in an orthogonal frequency division multiplexing wireless radio transmission system | |
CN101258701B (en) | Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method | |
EP1911173B1 (en) | Pilots for frequency division multiple access communications | |
JP5156128B2 (en) | Method and apparatus in a wireless communication system | |
EP1832074B1 (en) | Method and apparatus for transmitting/receiving a signal in an FFH-OFDM communication system | |
EP1473862B1 (en) | Apparatus and method for transmitting training symbol groups in an OFDM communications system using multiple antennas | |
CN102197628B (en) | Transmit diversity method and device for SC-FDMA | |
AU2005318997A1 (en) | Constrained hopping in wireless communication systems | |
CN101502029A (en) | Radio transmission device, radio reception device, radio transmission method, and radio reception method | |
JP4809373B2 (en) | Communication control method, receiving station apparatus, transmitting station apparatus, and communication system | |
CN102106102A (en) | Radio communication system, transmission device, reception device | |
JP3891986B2 (en) | Multi-carrier transmission method and apparatus | |
EP2779504A1 (en) | Adapted bit loading for OFDM system using modulus and phase of estimated transfer function of the communication channel | |
CN101091368B (en) | Method and device for transmitting/receiving signals in fast frequency hopping OFDM communication system | |
JP4675790B2 (en) | Communication apparatus and communication system | |
JP4490831B2 (en) | Wireless communication system, wireless communication apparatus, and wireless communication method | |
KR20050046209A (en) | A method for a channel estimation at a time-varying channel in an ofdm system with multiple transmit antennas | |
KR20080112578A (en) | Frequency Efficiency Increase Apparatus and Method for Orthogonal Frequency Division Multiplexing | |
Papez et al. | OFDM Communication System Based on PAPR Reduction Technique | |
KR20070092339A (en) | Pilot Allocation Method in Multi-Carrier Systems | |
HK1112782B (en) | Pilots for frequency division multiple access communications | |
HK1112782A (en) | Pilots for frequency division multiple access communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |