CN101086614B - Micrometer-class three-dimensional rolling die and its production method - Google Patents
Micrometer-class three-dimensional rolling die and its production method Download PDFInfo
- Publication number
- CN101086614B CN101086614B CN2007100181859A CN200710018185A CN101086614B CN 101086614 B CN101086614 B CN 101086614B CN 2007100181859 A CN2007100181859 A CN 2007100181859A CN 200710018185 A CN200710018185 A CN 200710018185A CN 101086614 B CN101086614 B CN 101086614B
- Authority
- CN
- China
- Prior art keywords
- laser
- mold
- dimensional
- laser instrument
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title description 31
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910003460 diamond Inorganic materials 0.000 claims abstract 3
- 239000010432 diamond Substances 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 26
- 230000007704 transition Effects 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 14
- 238000005245 sintering Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 4
- 238000000151 deposition Methods 0.000 abstract description 2
- 239000010409 thin film Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 abstract 1
- 238000007747 plating Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 16
- 239000002893 slag Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 208000028659 discharge Diseases 0.000 description 9
- 238000000149 argon plasma sintering Methods 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229920001486 SU-8 photoresist Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
技术领域technical field
本发明属于微细制造技术领域,特别涉及一种大面积微米级特征的三维辊压模具构造及其制作方法,该微米级三维辊压模具主要用于大面积等离子平板显示器的三维障壁结构、各种平板显示器件上下基板的电极、大面积微流控器件(如燃料电池阴、阳极板)三维流道结构、阵列式微电子机械传感器中三维构件、阵列式微致动器件中三维构件等的热压印制作。The invention belongs to the field of micromanufacturing technology, and in particular relates to a three-dimensional rolling die structure with large-area micron-level features and a manufacturing method thereof. The micron-level three-dimensional rolling die is mainly used for three-dimensional barrier structures and various Thermal embossing of electrodes on the upper and lower substrates of flat panel display devices, three-dimensional channel structures of large-area microfluidic devices (such as fuel cell cathode and anode plates), three-dimensional components in array microelectromechanical sensors, and three-dimensional components in array microactuation devices make.
背景技术Background technique
传统的微制造技术中,对于微米级(即小于100μm)特征尺寸器件的制作,目前主要采用常规的集成电路光刻中制作工艺(即布胶+曝光+显影+清洗+化学/物理刻蚀等)。其制作特点局限为制作面积受限(最大十几英寸)、深宽比较小、且需要连续多道工艺配合完成。对于小面积(英寸级)、高深宽比尺寸结构器件的制作,LIGA工艺是目前最被看好和应用最广的技术,其特点是通过在SU8型光刻胶上深度曝光(采用X射线曝光)形成大深度的直壁曝光区域,再通过显影、电铸等制作工艺,制作出微米级大深宽比(可达20∶1以上)的元器件。如果结合剥离工艺lift-off工艺,也能够实现底部悬空的器件(如悬臂梁结构)的制作。上述两类工艺其共同的特点是需要昂贵的曝光束源、特殊的光刻胶材料、精确的刻蚀(湿法、干法)控制、制作周期长、成本较高,也不具备制作大面积(长度达米级以上)微细结构的能力。In the traditional micro-manufacturing technology, for the production of micron-scale (ie, less than 100 μm) feature size devices, the conventional integrated circuit photolithography production process (ie, glue + exposure + development + cleaning + chemical/physical etching, etc.) is currently mainly used. ). Its production features are limited in that the production area is limited (up to a dozen inches), the aspect ratio is small, and it needs to be completed with the cooperation of multiple continuous processes. For the manufacture of small-area (inch-level) and high-aspect-ratio structural devices, the LIGA process is currently the most promising and widely used technology, which is characterized by deep exposure on SU8 photoresist (using X-ray exposure) A straight-wall exposure area with a large depth is formed, and components with a micron-scale large aspect ratio (up to 20:1 or more) are produced through development, electroforming and other manufacturing processes. If the lift-off process is combined with the lift-off process, the fabrication of a device with a suspended bottom (such as a cantilever beam structure) can also be realized. The common features of the above two types of processes are the need for expensive exposure beam sources, special photoresist materials, precise etching (wet, dry) control, long production cycle, high cost, and the lack of ability to produce large-area (Length up to meter level or above) the ability of fine structure.
随着大面积等离子平板显示器、各种平板显示器件、大面积微流控器件、阵列式微电子机械传感器、阵列式微致动器件等的发展,其内部结构特征不仅在尺度上要求越来越小(小至微米级),且其特征结构在大面积范围内制作的一致性要求也越来越高。上述常规工艺对这些要求的适应性不强,尤其对大面积微米级三维结构特征,除成本问题外,技术实现上也存在极大的困难。With the development of large-area plasma flat-panel displays, various flat-panel display devices, large-area microfluidic devices, array microelectromechanical sensors, and array microactuation devices, their internal structural features are not only required to be smaller and smaller in scale ( As small as the micron level), and the consistency requirements of its feature structure in a large area are getting higher and higher. The above-mentioned conventional processes are not very adaptable to these requirements, especially for large-area micron-scale three-dimensional structural features. In addition to cost issues, there are also great difficulties in technical implementation.
近几年来出现的压印工艺,其压印复型的特征尺度最小可达6nm。但已公开的压印工艺中均采用平板式模具,实行分区压印,面积受限,效率较低,且无大面积(米级以上)三维微结构压印尝试的先例或专利记载。In the imprinting process that has emerged in recent years, the feature scale of the imprinted replica can be as small as 6nm. However, the published imprinting processes all use flat-plate molds and carry out imprinting in partitions, the area is limited, the efficiency is low, and there are no precedents or patent records for large-area (above meter level) three-dimensional microstructure imprinting attempts.
总之,微制造通常采用的是集成电路制作工艺(深亚微米级特征,深宽比约1:1)、微电子机械制作中的LIGA或准LIGA(微米级以上特征,深宽比20:1以上)工艺,主要是根据制作器件的特征尺度来决定。其共同特点是所制作的微器件结构简单(即特征结构的底面、顶面、侧壁等均为平直的平面状)、面积小、对被制作的材料种类有明确的限制(如曝光材料、基底材料)、且制作过程要通过多道工艺配合。对于目前大面积且包含复杂三维微结构的器件要求来说(例如,大面积等离子平板显示器、各种平板显示器件、大面积微流控器件、阵列式微电子机械传感器、阵列式微致动器件等),现有工艺仍存在制作成本高、工艺复杂等困难。In short, micro-manufacturing usually adopts integrated circuit manufacturing technology (deep sub-micron-level features, aspect ratio of about 1:1), LIGA or quasi-LIGA in micro-electromechanical fabrication (micron-level features, aspect ratio of 20:1). The above) process is mainly determined according to the characteristic scale of the fabricated device. Their common features are that the fabricated micro-devices have a simple structure (that is, the bottom surface, top surface, and side walls of the characteristic structure are straight and planar), small in area, and have clear restrictions on the types of materials to be fabricated (such as exposure materials , base material), and the production process must be coordinated through multiple processes. For current large-area and complex three-dimensional microstructure device requirements (for example, large-area plasma flat panel displays, various flat panel display devices, large-area microfluidic devices, array microelectromechanical sensors, array microactuation devices, etc.) However, the existing technology still has difficulties such as high production cost and complicated technology.
发明内容Contents of the invention
由于已有的刻蚀方法、材料切削方法、以及上述集成电路的光刻工艺等无法在圆柱形表面直接生成微米级的图形结构,更不能形成三维的微结构的图形轮廓。本发明的目的在于,提供一种微米级微结构的三维辊压模具及其制作方法,该方法能够解决目前大面积且包含复杂三维微结构器件(如大面积等离子平板显示器、各种平板显示器件、大面积微流控器件、阵列式微电子机械传感器、阵列式微致动器件等)的制作难点,采用本发明的微米级特征结构的三维辊压模具,以连续旋转辊压的方式实现大面积三维微结构器件的辊压复型,从而大幅度提高生产制作效率。Due to the existing etching methods, material cutting methods, and the photolithography process of the above-mentioned integrated circuits, it is impossible to directly generate micron-scale graphic structures on the cylindrical surface, let alone form a three-dimensional microstructure graphic outline. The purpose of the present invention is to provide a three-dimensional rolling die of micron-scale microstructure and its manufacturing method, which can solve the problem of large-area and complex three-dimensional microstructure devices (such as large-area plasma flat panel displays, various flat panel display devices) , large-area microfluidic devices, array microelectromechanical sensors, array microactuation devices, etc.), adopt the three-dimensional rolling mold with micron-level characteristic structure of the present invention to realize large-area three-dimensional The rolling replica of microstructure devices can greatly improve the production efficiency.
为了实现上述任务,本发明采取如下的技术解决方案:In order to realize above-mentioned task, the present invention takes following technical solution:
一种微米级特征的三维辊压模具,辊压模具为滚筒结构,滚筒的内径与外径之间镶嵌有电阻式加热器,其特征在于,上述的滚筒的外径表面上形成有经激光加工,直至在该滚筒模具外径表面上烧结生成三维曲面边界的激光烧结空间区域,激光烧结空间区域最终形成微米级至亚毫米级三维结构的辊压图形,辊压图形上有类金刚石过渡薄膜层,该辊压图形三维特征的结构截面的尺寸组合为:截面最小宽度:L<50μm、深度:0<H<500μm、倾斜角度:90°<α<120°,辊压图形被一层类金刚石过渡薄膜所覆盖。A three-dimensional rolling mold with micron-scale features, the rolling mold is a roller structure, and a resistance heater is embedded between the inner diameter and the outer diameter of the roller. , until sintering on the outer diameter surface of the drum mold to form a laser sintering space region with a three-dimensional curved surface boundary, and the laser sintering space region finally forms a rolling pattern with a micron to submillimeter three-dimensional structure, and there is a diamond-like transition film layer on the rolling pattern , the size combination of the structural section of the three-dimensional features of the rolling pattern is: the minimum width of the section: L<50μm, the depth: 0<H<500μm, the inclination angle: 90°<α<120°, and the rolling pattern is covered by a layer of diamond-like carbon covered by a transition film.
上述微米级三维特征辊压模具的制作方法,其特征在于,包括下列步骤:The method for making the above-mentioned micron-scale three-dimensional feature rolling mold is characterized in that it includes the following steps:
首先搭建模具制作平台,模具制作平台包括:First build a mold making platform, which includes:
一个方向运动平台,该运动平台可实现直线方向平动及绕直线方向的转动,该运动平台由计算机进行控制;A moving platform in one direction, which can realize translation in a straight line and rotation around a straight line, and is controlled by a computer;
所述的运动平台上设置有导轨和丝杠以及带动导轨进行直线运动的滑块,滑块上置有连接板,连接板两端分别有电机支撑和轴承支撑,电机支撑上有旋转电机,旋转电机和轴承支撑一起用于安装待加工的滚筒模具;The moving platform is provided with a guide rail, a lead screw and a slider that drives the guide rail to perform linear motion. A connecting plate is placed on the slider, and the two ends of the connecting plate are respectively supported by a motor and a bearing. There is a rotating motor on the motor support. The motor and the bearing support are used together to install the roller mold to be processed;
在运动平台的旁边配置有激光器固定支架,激光器固定支架上设有激光器,该激光器也由计算机进行控制,激光器的光路上置有激光器调焦系统,从激光器调焦系统出来的激光束两边分别有机械式快门、真空排渣导管和气体保护管路;A laser fixing bracket is arranged next to the moving platform, and a laser is installed on the laser fixing bracket. The laser is also controlled by a computer. A laser focusing system is installed on the optical path of the laser. Mechanical shutter, vacuum slag discharge conduit and gas protection pipeline;
将滚筒模具安装至旋转电机和轴承支撑上,调节激光器的聚焦装置,使得聚焦在待加工的滚筒模具表面的光斑为微米级尺寸,当激光器输出功率稳定以后,开始进行加工;Install the roller mold on the rotating motor and the bearing support, adjust the focusing device of the laser, so that the spot focused on the surface of the roller mold to be processed is in micron size, and start processing when the output power of the laser is stable;
激光器发出的激光束进入激光器调焦系统;从激光器调焦系统出来的激光束通过机械式快门在气体保护管路内通入的保护气体下,直接在滚筒模具的表面上烧结形成微结构图形;该微结构图形为微米级特征尺寸的三维结构,激光束烧结过程形成的残渣,由真空排渣导管带走,通过计算机实时控制激光器的输出功率及模具制作平台的运动速度,控制激光对滚筒模具的加工深度,以实现模具表面任意特征曲线形状的加工;The laser beam emitted by the laser enters the laser focusing system; the laser beam coming out of the laser focusing system passes through the mechanical shutter and is directly sintered on the surface of the drum mold to form a microstructure pattern under the protective gas introduced into the gas protection pipeline; The microstructure pattern is a three-dimensional structure with micron-level feature size. The residue formed during the laser beam sintering process is taken away by the vacuum slag discharge conduit. The output power of the laser and the movement speed of the mold making platform are controlled in real time by the computer, and the laser beam is controlled. The processing depth can realize the processing of any characteristic curve shape on the mold surface;
对不需加工的模具表面,关闭机械式快门,此时激光束出于离焦状态,不会对待加工的滚筒模具材料造成损伤,待预定的加工面运动到加工位置后,机械式快门打开,继续进行激光加工,直至在滚筒模具外径表面上烧结生成三维曲面边界的激光烧结空间区域,激光烧结空间区域最终形成微米级至亚毫米级三维结构的辊压图形,该辊压图形三维特征的结构截面的尺寸组合为:截面最小宽度:L<50μm、深度:0<H<500μm、倾斜角度:90°<α<120°:For the mold surface that does not need to be processed, close the mechanical shutter. At this time, the laser beam is out of focus and will not cause damage to the drum mold material to be processed. After the predetermined processing surface moves to the processing position, the mechanical shutter opens. Continue to carry out laser processing until the laser sintering space area of the three-dimensional curved surface boundary is sintered on the outer diameter surface of the drum mold, and the laser sintering space area finally forms a rolling pattern with a micron to submillimeter three-dimensional structure. The three-dimensional features of the rolling pattern The size combination of the structural section is: the minimum width of the section: L<50μm, the depth: 0<H<500μm, the inclination angle: 90°<α<120°:
最后用镀膜机将炭原子沉积到微米级至亚毫米级三维结构的辊压图形表面,形成厚度为纳米级的类金刚石过渡层薄膜,并在滚筒模具的内外径之间嵌入电阻式加热器。Finally, a coating machine is used to deposit carbon atoms on the surface of the rolling pattern with a micron-scale to submillimeter-scale three-dimensional structure to form a diamond-like transition layer film with a thickness of nanometers, and a resistive heater is embedded between the inner and outer diameters of the roller mold.
本发明的微米级特征的三维辊压模具依托于热印工艺,其对微器件结构的制作尺度包括微米级及亚毫米级,采用功率可控的超快激光器,直接金属辊筒上形成取值为χ、θx位置函数的z向曝光深度、蒸镀类金刚石过渡层,最终成形具有微米级特征三维结构的金属辊压模具。模具表面微结构的截面轮廓复杂度可以任意设定,非其它常规工艺可经济地达到。The three-dimensional rolling mold with micron-level features of the present invention relies on the hot stamping process, and its manufacturing scale for micro-device structures includes micron-level and submillimeter-level, and adopts ultra-fast lasers with controllable power to form values directly on metal rollers. Exposure depth in the z direction as a function of χ, θ x position, vapor deposition of a diamond-like transition layer, and finally forming a metal rolling mold with a three-dimensional structure of micron-scale features. The complexity of the cross-sectional profile of the mold surface microstructure can be set arbitrarily, which cannot be achieved economically by other conventional processes.
本发明中,在金属模具本体上形成三维特征结构后,模具表面蒸镀的类金刚石过渡层,对金属模具微结构表面的物理和化学特性改变非常重要。该过渡层将附着于金属模具的表面,赋予模具以自润滑性、耐腐蚀性、耐磨性及适度的表面硬度。自润滑性对生产过程中辊压模具与热塑性或热固性被加工材料的脱离具有脱模剂的作用。类金刚石过渡层作为生产中的实际表面,其耐腐蚀性在金属模具的清洗(酸碱液)中起保护层的作用;耐磨性和表面高硬度可以降低辊压过程中微米级三维结构的磨损、变形,从而提高辊压模具的使用寿命。In the present invention, after the three-dimensional characteristic structure is formed on the metal mold body, the diamond-like transition layer evaporated on the surface of the mold is very important for changing the physical and chemical properties of the microstructure surface of the metal mold. The transition layer will be attached to the surface of the metal mold, endowing the mold with self-lubricating properties, corrosion resistance, wear resistance and moderate surface hardness. Self-lubrication has the effect of release agent on the separation of the rolling die from the thermoplastic or thermosetting processed material during the production process. The diamond-like transition layer is used as the actual surface in production, and its corrosion resistance acts as a protective layer in the cleaning of metal molds (acid-base solution); wear resistance and high surface hardness can reduce the micron-scale three-dimensional structure in the rolling process. Wear and deformation, thereby improving the service life of the rolling die.
附图说明Description of drawings
图1为微米级特征三维辊压模具制作平台的构建示意图;Figure 1 is a schematic diagram of the construction of a three-dimensional rolling mold manufacturing platform with micron-level features;
图2为加工模具过程中气体保护及排渣系统的工作状态;Figure 2 shows the working status of the gas protection and slag discharge system during the mold processing process;
图3(a)为加工模具时,为实现预定加工线宽而采用的加工线条拼接过程示意图;图3(b)为实现预定加工深度而采用的加工线条拼接过程示意图;Fig. 3 (a) is a schematic diagram of the processing line splicing process adopted for realizing the predetermined processing line width when processing the mould; Fig. 3 (b) is a schematic diagram of the processing line splicing process adopted for realizing the predetermined processing depth;
图4为激光加工在辊压模具表面的加工路线及相应加工特征示意图;Fig. 4 is a schematic diagram of the processing route and corresponding processing features of the laser processing on the surface of the rolling mold;
图5为辊压模具表面蒸镀类金刚石过渡层完成后的模具结构示意图;Fig. 5 is the schematic diagram of the mold structure after the vapor deposition diamond-like transition layer on the surface of the rolling mold is completed;
图6为模具脱胶工艺及辊压模具进行辊压制作大面积微结构特征的工艺过程示意图。Fig. 6 is a schematic diagram of the mold degumming process and the process of rolling the mold to produce large-area microstructure features.
图中的标号分别表示:1、激光器固定支架;2、激光器;3、激光功率控制卡;4、计算机;5、总控制卡;6、模具运动平台控制卡;7、x方向运动平台;8、导轨和丝杠;9、电机;10、滚筒模具;11、模具上微结构图形;12、电机支撑;13、连接板;14、滑块;15、激光器调焦系统;16、激光束;17、轴承支撑;18、控制卡连线;19、气体保护管路;20、真空排渣导管;21、机械式快门;22、保护气体;23、废渣;24、激光加工出的微结构;25、加工方向;26、微结构深度方向的加工图型;27、电阻式加热器;28、模具内腔;29、类金刚石薄膜;30、热固性阻蚀胶;31、基材。The symbols in the figure represent respectively: 1. Laser fixing bracket; 2. Laser; 3. Laser power control card; 4. Computer; 5. Master control card; 6. Mold movement platform control card; 7. X direction movement platform; 8 , guide rail and lead screw; 9, motor; 10, roller mold; 11, microstructure graphics on the mold; 12, motor support; 13, connecting plate; 14, slider; 15, laser focusing system; 16, laser beam; 17. Bearing support; 18. Control card connection; 19. Gas protection pipeline; 20. Vacuum slag discharge conduit; 21. Mechanical shutter; 22. Protective gas; 23. Waste residue; 24. Microstructure processed by laser; 25. Processing direction; 26. Processing pattern in depth direction of microstructure; 27. Resistive heater; 28. Mold inner cavity; 29. Diamond-like film; 30. Thermosetting anti-corrosion adhesive; 31. Substrate.
以下结合附图对本发明的制作方法作更进一步的详细描述。The manufacturing method of the present invention will be further described in detail below in conjunction with the accompanying drawings.
具体实施方式Detailed ways
参见附图。图1~图5分别表示了微米级至亚毫米级三维结构辊压模具的制作工艺流程示意图。See attached picture. Figures 1 to 5 respectively show the schematic diagrams of the manufacturing process of the micron-scale to submillimeter-scale three-dimensional structure rolling mold.
一种微米级特征的三维辊压模具,辊压模具为滚筒结构,滚筒的内径与外径之间镶嵌有电阻式加热器27,滚筒的外径表面上形成有微米级至亚毫米级三维结构的辊压图形,该辊压图形三维特征的结构截面的尺寸组合为:截面最小宽度:L<50μm、深度:0<H<500μm、倾斜角度:90°<α<120°,辊压图形被一层类金刚石过渡薄膜所覆盖。A three-dimensional rolling mold with micron-level features, the rolling mold is a roller structure, a
上述微米级特征的三维辊压模具按照以下步骤制作:The three-dimensional rolling mold of the above-mentioned micron-scale features is made according to the following steps:
(1)首先搭建模具制作平台。该模具制作平台包括:(1) First build a mold making platform. The mold making platform includes:
一个运动平台7,该运动平台7可实现x方向平动及绕x方向的转动θx,运动平台7通过控制卡连线18连接模具运动平台控制卡6,模具运动平台控制卡6通过控制卡连线18和总控制卡5相连,总控制卡5通过控制卡连线18连接有计算机4;A motion platform 7, the motion platform 7 can realize translation in the x direction and a rotation θ x around the x direction, the motion platform 7 is connected to the mold motion platform control card 6 through the control card connection 18, and the mold motion platform control card 6 passes through the control card Connection 18 links to each other with total control card 5, and total control card 5 is connected with computer 4 through control card connection 18;
所述的运动平台7上有导轨和丝杠8,导轨和丝杠8上装有滑块14,用于支撑平动与旋转的连接板13,平动与旋转的连接板13两端分别有电机支撑12和轴承支撑17,电机支撑12上有旋转电机9,旋转电机9和轴承支撑17用于安装待加工滚筒模具10;Guide rail and leading screw 8 are arranged on described motion platform 7, and slide block 14 is housed on guide rail and leading screw 8, is used for supporting the connecting plate 13 of translation and rotation, and the two ends of connecting plate 13 of translation and rotation have motor respectively Support 12 and bearing support 17, there is rotating motor 9 on motor support 12, and rotating motor 9 and bearing supporting 17 are used for installing to-
在运动平台7的旁边配置有激光器固定支架1,激光器固定支架1上设有激光器2,激光器2的一端通过激光功率控制卡3及其控制卡连线18和总控制卡5相连,总控制卡5通过控制卡连线18连接有计算机控制系统4;激光器2的另一端有激光器调焦系统15,从激光器调焦系统15出来的激光束16两边分别有机械式快门21、真空排渣导管20和气体保护管路19。Next to the moving platform 7, a laser fixing bracket 1 is arranged, and a laser 2 is arranged on the laser fixing bracket 1. One end of the laser 2 is connected to the main control card 5 through a laser
激光器2发出的进入激光器调焦系统15;从激光器调焦系统15出来的激光束16通过机械式快门21在气体保护管路19内通入的保护气体22下,直接在待加工的滚筒模具10的表面上烧结形成微结构图形;该微结构图形为微米级特征尺寸的三维结构,激光束16烧结过程形成的残渣,由真空排渣导管20带走。The laser 2 emitted enters the
激光器2采用大功率超快激光器,激光器调焦系统和模具运动控制平台由计算机控制,使得激光器调焦系统的输出功率可控,模具运动控制平台可实现模具x方向平动及绕x方向的转动θx;Laser 2 adopts a high-power ultrafast laser. The laser focusing system and the mold motion control platform are controlled by a computer, which makes the output power of the laser focusing system controllable. The mold motion control platform can realize the translation of the mold in the x direction and the rotation around the x direction. θ x ;
(2)激光器2的调试。调节激光器2的聚焦装置,使得聚焦在滚筒模具10上的光斑尽可能小(微米级),以实现小尺寸、截面平整的微加工。(2) Debugging of laser 2. The focusing device of the laser 2 is adjusted so that the light spot focused on the
(3)开始加工。在激光器2输出功率稳定以后,开始进行加工。通过计算机4实时控制激光器2的输出功率及模具运动平台的运动速度,可以控制激光加工的深度;通过计算机4实时控制模具运动平台的平动及电机9的转动速度,可以实现滚筒模具表面上的任意曲线形状的特征图形加工;对不需加工的滚筒模具表面,可以关闭机械式快门21(此时激光束出于离焦状态,不会对滚筒模具材料造成损伤),待预定的加工面运动到加工位置后,快门打开,继续进行激光加工;(3) Start processing. After the output power of the laser 2 stabilizes, the processing starts. Real-time control of the output power of the laser 2 and the motion speed of the mold motion platform by the computer 4 can control the depth of laser processing; real-time control of the translation of the mold motion platform and the rotation speed of the motor 9 by the computer 4 can realize the surface of the roller mold. Processing of characteristic graphics of any curved shape; for the surface of the roller mold that does not need to be processed, the mechanical shutter 21 can be closed (at this time, the laser beam is in a defocused state and will not cause damage to the roller mold material), and the predetermined processing surface movement After arriving at the processing position, the shutter is opened to continue laser processing;
(4)加工过程中,由于激光束的光斑可以聚焦为1微米,在加工线宽为几十微米以上的特征时,需要进行加工线条的拼接,这需要计算拼接的宽度及每个特征所需的扫描线数。在模具表面加工线宽不同的特征时,需要对拼接宽度及扫描线数的实时控制;(4) During processing, since the spot of the laser beam can be focused to 1 micron, when processing features with a line width of more than tens of microns, it is necessary to splice the processing lines, which requires calculating the width of the splicing and the required width of each feature. the number of scan lines. When processing features with different line widths on the surface of the mold, real-time control of the splicing width and the number of scanning lines is required;
(5)由于激光加工过程中在模具表面必然产生加大的热量,所以必须对模具进行气体保护,以免被空气中的氧腐蚀;对于普通的大功率激光器而言,在加工过程中必须由真空排渣导管20进行排渣处理以免废渣堆积在已加工的微特征图形中,影响进一步的激光加工;(5) Since increased heat is inevitably generated on the surface of the mold during laser processing, the mold must be protected by gas to avoid corrosion by oxygen in the air; for ordinary high-power lasers, vacuum must be used during processing The
(6)加工完成后,进行滚筒模具10的表面处理。首先清洗滚筒模具10,清除粘附在微结构特征图形侧壁及边缘的废渣23;再对滚筒模具表面进行镀膜处理:用镀膜机将炭原子沉积到具有微米级特征的三维微结构图形11的表面,形成厚度为纳米级的类金刚石过渡层薄膜29。滚筒模具的材料应该具有良好的热导性,并内部装有电阻式加热器27,可实现辊压过程(即生产过程)时的加热。(6) After the processing is completed, the surface treatment of the
上述方法成形的辊压图形三维特征的结构截面的尺寸组合为:辊压图形结构截面的倾斜角度范围90°<α<120°,横向尺寸范围L<50μm,纵向深度范围0<H<500μm。The size combination of the structural section of the three-dimensional feature of the rolling pattern formed by the above method is as follows: the inclination angle range of the structural section of the rolling pattern is 90°<α<120°, the lateral dimension range is L<50 μm, and the longitudinal depth range is 0<H<500 μm.
本发明的微米级特征的三维辊压模具基本工作原理为:通过连续旋转辊压方式和施加一定压力,并通过辊压模具内的电阻式加热器加热,通过辊压模具辊压旋转将模具表面的三维微结构图形热印到任何热塑性或热固性的被加工材料的支撑基材31(如许多类型的高分子材料)表面的热固性阻蚀胶30上。其特点为:图形的微结构形状可以为三维特征结构,热印效率和精度高、特征结构尺度范围宽、成本低廉。The basic working principle of the three-dimensional rolling mold with micron-level characteristics of the present invention is: through continuous rotation rolling and applying a certain pressure, and heating by a resistance heater in the rolling mold, the surface of the mold is rolled and rotated by the rolling mold. The three-dimensional microstructure pattern is thermally printed on the thermosetting corrosion-
参见附图2~4,采用输出功率可控的超快激光器在金属滚子工件上上按χ、θx位置的任意函数(如y=kx,k为常数,只要数学解析式能够表达即可)形成变化的加工深度为微米级三维结构的关键。Referring to accompanying drawing 2~4, adopt the ultrafast laser device of controllable output power on metal roller workpiece according to the arbitrary function of χ, θ x position (as y=kx, k is a constant, as long as the mathematical analytical formula can express ) to form varying processing depths is the key to micron-scale three-dimensional structures.
图3a、b给出了激光加工出的微结构24的示意图;激光束按加工方向25运动,在计算机4的控制下可以得到微结构深度方向的加工图型26;Fig. 3 a, b has provided the schematic diagram of the
加工可实现的三维微结构的尺寸组合为:结构的截面最小宽度L<50μm、深度范围0<H<500μm、倾斜角度范围90°<α<120°。与常规的微纳制造工艺相比,本发明可以实现小至微米的大尺度范围的结构成形,且结构的截面轮廓为非平直的任意形状。The size combination of the three-dimensional microstructure that can be processed is: the minimum cross-sectional width of the structure L<50μm, the depth range 0<H<500μm, and the inclination angle range 90°<α<120°. Compared with the conventional micro-nano manufacturing process, the present invention can realize the formation of structures in a large-scale range as small as a micron, and the cross-sectional profile of the structure is a non-straight arbitrary shape.
本发明纳米级厚度的类金刚石过渡层29,对滚筒(金属)模具10微结构表面的物理和化学特性改变非常重要。类金刚石过渡层29将附着于金属模具表面的,赋予模具以自润滑性、耐腐蚀性、耐磨性及适度的表面硬度。自润滑性对生产过程中辊压模具与热塑性或热固性被加工材料的脱离具有脱模剂的作用。类金刚石过渡层29作为生产中的实际表面,其耐腐蚀性在金属模具的清洗(酸碱液)中起保护层的作用;耐磨性和表面高硬度可以降低辊压过程中深亚微米三维结构的磨损、变形,从而提高辊压模具的使用寿命。The diamond-
类金刚石过渡层的溅射工艺(附图5)、模具脱胶工艺及辊压模具制作工艺(附图6)。The sputtering process of the diamond-like transition layer (accompanying drawing 5), the mold degumming process and the rolling mold manufacturing process (accompanying drawing 6).
本发明的方法与其它微纳制造工艺相比,本发明制备的微米级特征三维辊压模具更适合制作微米级至亚毫米级尺度的三维结构产品的能力,且采用旋转辊压方式,在制作效率和成本等方面都有较大优势。Compared with other micro-nano manufacturing processes, the method of the present invention is more suitable for the ability to produce three-dimensional structure products with micron-scale to sub-millimeter scale, and the three-dimensional rolling mold with micron-scale features prepared by the present invention, and adopts the rotary rolling method. There are great advantages in terms of efficiency and cost.
以某金属(如不锈钢OCr19Ni9)辊压模具的制作为例,具体实施过程如下:Taking the production of a certain metal (such as stainless steel OCr19Ni9) rolling mold as an example, the specific implementation process is as follows:
(1)激光加工运动平台的搭建。用市售的步进电动机及驱动器(细分驱动分辨率可达微米量级)、导轨丝杠、2轴运动控制卡、超快激光器及偏转聚焦系统(如日本产的Cyber-Laser)等,如图1搭建微米级激光加工运动平台;(1) Construction of laser processing motion platform. Using commercially available stepping motors and drivers (subdivision drive resolution can reach micron level), guide rail screw, 2-axis motion control card, ultra-fast laser and deflection focusing system (such as Cyber-Laser produced in Japan), etc., As shown in Figure 1, build a micron-level laser processing motion platform;
(2)微米级三维激光烧结空间区域成形。采用输出功率可控的超快激光器,激光束斑点扫描到不同表面位置时设定不同的输出功率,获得不同的烧结深度。烧结深度H可取为所希望的x、θx位置的函数H=f(x,θx),从而生成三维的曝光空间区域。激光束光斑最小可聚焦到1μm,由此,模具上可加工的最小线宽可达1μm,烧结深度由激光束功率决定,可达到500μm;在激光烧结的过程中,为避免高温烧结时空气中的氧对烧结区域的腐蚀,采用氮气保护,为避免激光快速烧结过程中残渣堆积在烧结区域,采用真空排渣导管20(如图2所示);为提高激光烧结的深度,将激光束光斑聚焦到最小,可采用扫描区域搭接的方式(如图3a,b所示)实现预定的加工宽度和深度;为实现连续的激光加工,采用如图4的扫描方式;(2) Micron-scale three-dimensional laser sintering space region forming. Using an ultrafast laser with controllable output power, different output powers are set when the laser beam spot scans to different surface positions to obtain different sintering depths. The sintering depth H can be taken as a function H=f(x, θ x ) of the desired x, θ x positions, thereby generating a three-dimensional exposure space area. The laser beam spot can be focused to a minimum of 1 μm, so the minimum line width that can be processed on the mold can reach 1 μm, and the sintering depth is determined by the laser beam power, which can reach 500 μm; in the process of laser sintering, in order to avoid high temperature sintering Nitrogen is used to protect the sintering area from the corrosion of oxygen in the sintering area. In order to avoid the accumulation of residues in the sintering area during the rapid laser sintering process, a vacuum slag discharge conduit 20 (as shown in Figure 2) is used; in order to improve the depth of laser sintering, the laser beam spot Focusing to the minimum, the scanning area can be overlapped (as shown in Figure 3a, b) to achieve a predetermined processing width and depth; in order to achieve continuous laser processing, the scanning method shown in Figure 4 is used;
(3)沉积类金刚石过渡层。用市售的镀膜机将炭原子沉积到辊压模具表面(已含微米级尺度的三维结构腔体),形成厚度为纳米级的类金刚石过渡层薄膜29,如图5所示;(3) Depositing a diamond-like transition layer. Use a commercially available coating machine to deposit carbon atoms onto the surface of the rolling mold (which already contains a three-dimensional structure cavity with a micron scale), forming a diamond-like
(4)采用本发明制作的微米级尺度三维结构辊压模具,利用滚筒内部的电阻式加热器将不锈钢模具稳定持续加热,以连续辊压方式,将模具表面的微米级三维结构热印到平面状的热塑性或热固性材料(如有机玻璃)上,实现这类材料上的微米级特征三维结构的生产性加工,如图6所示。(4) Using the micron-scale three-dimensional structure rolling mold made by the present invention, the stainless steel mold is stably and continuously heated by the resistance heater inside the roller, and the micron-scale three-dimensional structure on the surface of the mold is thermally printed on the plane by continuous rolling. On thermoplastic or thermosetting materials (such as plexiglass), the productive processing of micron-scale feature three-dimensional structures on such materials is realized, as shown in Figure 6.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100181859A CN101086614B (en) | 2007-07-03 | 2007-07-03 | Micrometer-class three-dimensional rolling die and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100181859A CN101086614B (en) | 2007-07-03 | 2007-07-03 | Micrometer-class three-dimensional rolling die and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101086614A CN101086614A (en) | 2007-12-12 |
CN101086614B true CN101086614B (en) | 2010-11-10 |
Family
ID=38937637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100181859A Expired - Fee Related CN101086614B (en) | 2007-07-03 | 2007-07-03 | Micrometer-class three-dimensional rolling die and its production method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101086614B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560564B (en) * | 2012-02-22 | 2015-03-25 | 合肥工业大学 | Method for preparing all-metal microstructure by combining deep ion reaction etching and rolling |
CN102866579B (en) * | 2012-09-26 | 2014-06-18 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for manufacturing rotary drum pressing die based on dynamic nano engraving technology |
CN106462054B (en) * | 2014-03-31 | 2020-07-07 | 皇家飞利浦有限公司 | Imprint method, computer program product and apparatus for imprint method |
CN107908077A (en) * | 2017-10-30 | 2018-04-13 | 中国科学技术大学 | Rotary exposure system and method based on Digital Micromirror Device mask-free photolithography |
CN109702442B (en) * | 2019-03-11 | 2022-04-22 | 精利模塑科技(无锡)有限公司 | Manufacturing method of precise and rapid forming automobile electronic die |
CN116813350B (en) * | 2023-05-11 | 2024-06-28 | 清华大学 | Preparation method of laser-shock high-pressure coal diamond film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396483A (en) * | 2001-07-13 | 2003-02-12 | 兴隆发电子股份有限公司 | Light guide plate and manufacturing method thereof |
JP2003266486A (en) * | 2002-03-18 | 2003-09-24 | Sumitomo Chem Co Ltd | Mold for optical panel molding and its production and use |
CN1659691A (en) * | 2002-09-17 | 2005-08-24 | 利兰·斯坦福青年大学托管委员会 | Replication and transfer of microstructures and nanostructures |
CN1693182A (en) * | 2005-06-09 | 2005-11-09 | 西安交通大学 | Deep submicron three-dimensional rolling mold and manufacturing method thereof |
US20050269742A1 (en) * | 2004-06-03 | 2005-12-08 | Wright Thomas S | Method for making tools for micro replication |
-
2007
- 2007-07-03 CN CN2007100181859A patent/CN101086614B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396483A (en) * | 2001-07-13 | 2003-02-12 | 兴隆发电子股份有限公司 | Light guide plate and manufacturing method thereof |
JP2003266486A (en) * | 2002-03-18 | 2003-09-24 | Sumitomo Chem Co Ltd | Mold for optical panel molding and its production and use |
CN1659691A (en) * | 2002-09-17 | 2005-08-24 | 利兰·斯坦福青年大学托管委员会 | Replication and transfer of microstructures and nanostructures |
US20050269742A1 (en) * | 2004-06-03 | 2005-12-08 | Wright Thomas S | Method for making tools for micro replication |
CN1693182A (en) * | 2005-06-09 | 2005-11-09 | 西安交通大学 | Deep submicron three-dimensional rolling mold and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101086614A (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101086614B (en) | Micrometer-class three-dimensional rolling die and its production method | |
Jagdheesh | Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses | |
CN100462181C (en) | Femtosecond laser true three-dimensional micro-nano machining center | |
CN106077852B (en) | Electrochemical machining system | |
Moon et al. | Superhydrophobic polymer surface with hierarchical patterns fabricated in hot imprinting process | |
He et al. | Electrohydrodynamic direct-writing lithography: An alternative maskless technique for microstructure fabrication | |
Zhang et al. | Diamond micro engraving of gravure roller mould for roll-to-roll printing of fine line electronics | |
Jamaludin et al. | Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling | |
Ali et al. | Review of laser nanomachining | |
CN1292977C (en) | Deep submicron three-dimensional rolling mould and its mfg. method | |
CN204325478U (en) | A kind of sample chamber structure of vacuum coating system | |
US9688015B2 (en) | Deformation-based micro surface texturing system | |
Liao et al. | Tools for ultrasonic hot embossing | |
Qin et al. | Manufacturing high-performance flexible sensors via advanced patterning techniques | |
CN104404452B (en) | A kind of sample cell structure of vacuum coating system | |
Nakazawa et al. | Local electroplating deposition for free-standing micropillars using a bias-modulated scanning ion conductance microscope | |
Cui et al. | Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system | |
JP4900349B2 (en) | Mold manufacturing method, functional film manufacturing method, and functional film | |
Wang et al. | Fabrication of microstructure arrays via localized electrochemical deposition | |
He et al. | Review for Micro‐Nano Processing Technology of Microstructures and Metadevices | |
Li et al. | Coating-free superhydrophobic hard surfaces by electric discharge machining with a magnetic-assisted self-assembly sheet electrode | |
CN101101842A (en) | Large-area imprint molding method for flat panel barriers of plasma displays | |
Zhou et al. | Dielectric fluid directional spreading under the action of corona discharge | |
Brousseau et al. | Development of a novel process chain based on atomic force microscopy scratching for small and medium series production of polymer nanostructured components | |
CN115784146B (en) | A microstructure with super hydrophobic surface and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101110 Termination date: 20130703 |