CN101071981B - Step-up DC/DC converter - Google Patents
Step-up DC/DC converter Download PDFInfo
- Publication number
- CN101071981B CN101071981B CN2006100783365A CN200610078336A CN101071981B CN 101071981 B CN101071981 B CN 101071981B CN 2006100783365 A CN2006100783365 A CN 2006100783365A CN 200610078336 A CN200610078336 A CN 200610078336A CN 101071981 B CN101071981 B CN 101071981B
- Authority
- CN
- China
- Prior art keywords
- signal
- load
- voltage
- shielding
- converter according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种升压式直流/直流转换器(DC/DC converter),且特别涉及一种应用脉波调变技术之升压式直流/直流转换器。The present invention relates to a step-up DC/DC converter (DC/DC converter), and in particular to a step-up DC/DC converter using pulse modulation technology.
背景技术Background technique
在电源转换系统中,当负载变化时将造成伴随而来的电源转换效率之变化,故在系统满载时或有极大负载变化时我们仍希望此时的系统能提供高效率且稳定的电力转换。就应用层面来说,处理器、随机存取存储器、显示器以及手机等电子产品等并不会在任何时候都处于满载的状态,特别是手机等移动通信产品在许多时间都是处于待机的省电模式,所以一个在任何的负载状态下都能提供高效率的电源转换系统是非常重要的。In the power conversion system, when the load changes, the accompanying power conversion efficiency will change. Therefore, when the system is fully loaded or there is a huge load change, we still hope that the system at this time can provide high-efficiency and stable power conversion. . As far as the application level is concerned, electronic products such as processors, random access memories, displays, and mobile phones are not fully loaded at all times, especially mobile communication products such as mobile phones are often on standby to save power. mode, so a power conversion system that can provide high efficiency under any load condition is very important.
图1为公知之升压式直流/直流转换器100之电路示意图,在只有使用脉宽调变模式的情形下,转换器100包括切换式升压电路110、脉宽调变电路120与负载130。其中切换式升压电路110包括电感器111、二极管112、电容器113、功率晶体管114。通过脉波调变(PWM)的方式来切换功率晶体管114之导通与否。当功率晶体管114导通时,二极管112呈现反向偏压,来自输入电压Vin1的电能存于电感器111,此时负载130的电能由电容器113提供。当功率晶体管114截止时,二极管112呈现顺向偏压,此时电容器113以及负载130吸收由输入电压Vin1以及电感器111所提供的电能,因此使得Vout1>Vin1。FIG. 1 is a schematic circuit diagram of a known step-up DC/
脉宽调变电路120是由控制回授电路组成,包括误差放大器121、三角波产生器122、脉宽调变比较器123以及驱动器124。切换式升压电路110的输出电压Vout1在经过电阻器R1与电阻器R2的分压后(此时其值为Vout1×R2/R1+R2)再通过误差放大器121与参考电压Vref1比较,而脉宽调变比较器123接收误差放大器121的输出信号且与三角波产生器122的输出信号比较,而产生脉宽调变信号PWM_CK。之后再通过驱动器124以放大脉宽调变信号PWM_CK并驱动功率晶体管114。The
请参考图2,其为图1之升压式直流/直流转换器100之负载电流与系统效率的关系图,在升压式直流/直流转换器100只使用脉宽调变模式情形下,由图2可知升压式直流/直流转换器100在负载电流IL1小的情况下(轻载)之系统效率比在负载电流IL1大的情况下(重载)之系统效率低。这是因为脉宽调变是使用固定频率的方式来控制,且即便是在轻载时功率晶体管114仍是以相同于重载的频率在做切换因而在功率晶体管114上消耗过多不必要的切换功率,因此使得整体的输入功率损耗提高,而导致系统效率降低,故设计一个能提高系统效率的升压式直流/直流转换器是必要的。Please refer to FIG. 2, which is a relationship diagram between the load current and the system efficiency of the step-up DC/
发明内容Contents of the invention
本发明的目的是提供一种升压式直流/直流转换器,其可在系统处于轻载、中载以及重载时,使得系统可通过对应于负载电流的屏蔽信号以分别选择操作在脉宽调变、脉冲频率调制与混合脉波屏蔽模式中,此种升压式直流/直流转换器能使得系统效率最佳化以改善公知之升压式直流/直流转换器在轻载时系统效率偏低的情形。The purpose of the present invention is to provide a step-up DC/DC converter, which can enable the system to select the pulse width of the system through the shielding signal corresponding to the load current when the system is under light load, medium load and heavy load. In modulation, pulse frequency modulation and hybrid pulse shielding modes, this boost DC/DC converter can optimize the system efficiency to improve the system efficiency deviation of the known boost DC/DC converter at light load. low case.
为达成上述及其它目的,本发明提出一种升压式直流/直流转换器,包括切换式升压电路、脉宽调变电路、屏蔽电路与与门。其中切换式升压电路是用以根据控制信号,接收输入电压并提供输出电压,其中输出电压大于输入电压。脉宽调变电路是用以根据输出电压与参考电压而输出脉宽调变信号。屏蔽电路是用以根据本发明之升压式直流/直流转换器的负载电流的大小而输出屏蔽信号。与门是用以接收脉宽调变信号与屏蔽信号并输出控制信号,又其中屏蔽信号的责任周期会随负载电流而改变。屏蔽电路包括有负载检测器以及屏蔽信号产生器。其中负载检测器用以根据负载电流而输出负载信号,且屏蔽信号产生器则用以根据负载信号产生屏蔽信号。In order to achieve the above and other objectives, the present invention proposes a step-up DC/DC converter, including a switching boost circuit, a pulse width modulation circuit, a shielding circuit and an AND gate. The switching boost circuit is used to receive an input voltage and provide an output voltage according to a control signal, wherein the output voltage is greater than the input voltage. The pulse width modulation circuit is used for outputting a pulse width modulation signal according to the output voltage and the reference voltage. The masking circuit is used to output a masking signal according to the magnitude of the load current of the step-up DC/DC converter of the present invention. The AND gate is used to receive the pulse width modulation signal and shielding signal and output the control signal, and the duty period of the shielding signal will change with the load current. The shielding circuit includes a load detector and a shielding signal generator. The load detector is used to output a load signal according to the load current, and the mask signal generator is used to generate a mask signal according to the load signal.
上述之升压式直流/直流转换器,在一实施例中进一步包括驱动器与分压电路,驱动器可将与门的控制信号放大以输出至切换式升压电路。分压电路包括第一电阻器及第二电阻器,其中第一电阻器电连接于输出电压且第二电阻器以第一端连接于第一电阻器并以其第二端接地,第一电阻器与第二电阻器的接点亦电连接于脉宽调变电路。分压电路可将切换式升压电路的输出电压降低一预设比例后输出至脉宽调变电路。In one embodiment, the above step-up DC/DC converter further includes a driver and a voltage divider circuit, the driver can amplify the control signal of the AND gate and output it to the switching boost circuit. The voltage divider circuit includes a first resistor and a second resistor, wherein the first resistor is electrically connected to the output voltage and the second resistor is connected to the first resistor with a first end and grounded with its second end, and the first resistor The junction of the resistor and the second resistor is also electrically connected to the pulse width modulation circuit. The voltage dividing circuit can reduce the output voltage of the switching boost circuit by a preset ratio and then output it to the pulse width modulation circuit.
上述之升压式直流/直流转换器,在一实施例中,切换式升压电路包括电感器、二极管、电容器、开关。其中电感器电连接于输入电压,二极管以阳极电连接于电感器,电容器以第一端电连接于二极管的阴极与输出电压并以其第二端接地,开关则以第一端电连接于电感器与二极管的阳极之间并以第二端接地,且根据控制信号导通或关断开关的第一端与第二端。在一实施例中,开关为NMOS(n-channel Metal-Oxide-Semiconductor)晶体管,并以其栅极接收控制信号。In one embodiment of the above step-up DC/DC converter, the switching boost circuit includes an inductor, a diode, a capacitor, and a switch. The inductor is electrically connected to the input voltage, the anode of the diode is electrically connected to the inductor, the first end of the capacitor is electrically connected to the cathode of the diode and the output voltage and its second end is grounded, and the first end of the switch is electrically connected to the inductor between the switch and the anode of the diode and the second terminal is grounded, and the first terminal and the second terminal of the switch are turned on or off according to the control signal. In one embodiment, the switch is an NMOS (n-channel Metal-Oxide-Semiconductor) transistor, and receives a control signal through its gate.
脉宽调变电路包括有误差放大器、三角波产生器、以及比较器。其中误差放大器是以其第一输入端接收参考电压,并以第二输入端电连接输出电压的分压,再将上述第一输入端至第二输入端的电压放大后输出。三角波产生器是用以输出三角波,接着比较器会根据三角波与误差放大器的输出电压的比较结果,以输出脉宽调变信号。其中当三角波的电压大于误差放大器的输出电压,则比较器将输出逻辑高电位,否则比较器将输出逻辑低电位。The pulse width modulation circuit includes an error amplifier, a triangle wave generator, and a comparator. The error amplifier receives a reference voltage at its first input terminal, and electrically connects the divided voltage of the output voltage with its second input terminal, and then amplifies the voltage from the first input terminal to the second input terminal and outputs it. The triangular wave generator is used to output a triangular wave, and then the comparator outputs a PWM signal according to the comparison result of the triangular wave and the output voltage of the error amplifier. Wherein, when the voltage of the triangular wave is greater than the output voltage of the error amplifier, the comparator will output a logic high potential, otherwise the comparator will output a logic low potential.
上述之升压式直流/直流转换器,在一实施例中,负载信号可为电压信号,而且负载信号为负载电流的递增函数。再者屏蔽信号产生器尚包括有延迟链以及缓存器,其中延迟链可根据负载信号与频率信号而产生数字信号。而缓存器可定时撷取数字信号,并根据撷取的数字信号而产生屏蔽信号。In one embodiment of the above step-up DC/DC converter, the load signal can be a voltage signal, and the load signal is an increasing function of the load current. Furthermore, the shielding signal generator also includes a delay chain and a buffer, wherein the delay chain can generate a digital signal according to the load signal and the frequency signal. The register can capture digital signals at regular intervals, and generate shielding signals according to the captured digital signals.
上述之升压式直流/直流转换器,在一实施例中,上述缓存器为并列输入/串行输出缓存器(parallel in/serial out register)。In one embodiment of the above step-up DC/DC converter, the above register is a parallel in/serial out register.
上述之升压式直流/直流转换器,在一实施例中,延迟链包括有多个延迟单元,其中每一延迟单元皆接收负载信号。第一个延迟单元会将频率信号延迟一预设时间后输出,第i个延迟单元将第i-1个延迟单元的输出延迟预设时间后输出,其中i为大于一的整数。数字信号为上述延迟单元的输出的集合,而且预设时间为负载电流的递减函数。In one embodiment of the above step-up DC/DC converter, the delay chain includes a plurality of delay units, wherein each delay unit receives a load signal. The first delay unit delays the frequency signal for a preset time and outputs it, and the i-th delay unit delays the output of the i-1th delay unit for a preset time, where i is an integer greater than one. The digital signal is a collection of the outputs of the above delay units, and the preset time is a decreasing function of the load current.
上述之升压式直流/直流转换器,在一实施例中,每一延迟单元皆根据重置信号定时重置延迟单元的输出。且缓存器所撷取的数字信号当中,数值为1的位数量为负载电流的递增函数。又屏蔽信号的责任周期为缓存器所撷取的数字信号当中,数值为1的位数量的递增函数。若缓存器所撷取的数字信号当中,数值为1的位数量小于一默认值,则缓存器以脉冲频率调制方式产生屏蔽信号。In one embodiment of the above step-up DC/DC converter, each delay unit resets the output of the delay unit periodically according to the reset signal. In addition, among the digital signals captured by the register, the number of bits with a value of 1 is an increasing function of the load current. In addition, the duty cycle of the mask signal is an increasing function of the number of bits whose value is 1 among the digital signals captured by the register. If the number of bits with a value of 1 in the digital signal captured by the register is less than a default value, the register generates a mask signal by means of pulse frequency modulation.
在本发明之升压式直流/直流转换器中,系统处于重载时,则采用脉宽调变模式,当系统处于轻载时,则采用脉冲频率调制模式,当系统负载被判断不为重载或轻载而为中载时,系统则采用混合脉波屏蔽模式。也就是说,本发明之升压式直流/直流转换器可依负载电流的大小来决定屏蔽信号的模式是为脉宽调变、脉冲频率调制或是混合脉波屏蔽模式。亦即系统不论是从重载到轻载时,皆可通过屏蔽信号来调整功率晶体管的切换次数,以减小在功率晶体管上之不必要的功率损失,而达到提高电源转换效率的目的。In the step-up DC/DC converter of the present invention, when the system is under heavy load, the pulse width modulation mode is adopted; when the system is under light load, the pulse frequency modulation mode is adopted; when the system load is judged not to be heavy When the load or light load is medium load, the system adopts the hybrid pulse shielding mode. That is to say, the step-up DC/DC converter of the present invention can determine whether the shielding mode of the signal is pulse width modulation, pulse frequency modulation or mixed pulse wave shielding mode according to the magnitude of the load current. That is to say, no matter when the system is from heavy load to light load, the switching frequency of the power transistor can be adjusted by shielding the signal, so as to reduce unnecessary power loss on the power transistor and achieve the purpose of improving the power conversion efficiency.
为让本发明之上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are specifically cited below and described in detail with accompanying drawings.
附图说明Description of drawings
图1为公知之升压式直流/直流转换器。FIG. 1 is a known step-up DC/DC converter.
图2为公知之升压式直流/直流转换器之负载与效率的关系图。FIG. 2 is a relationship diagram between load and efficiency of a known step-up DC/DC converter.
图3为本发明一实施例的升压式直流/直流转换器之示意图。FIG. 3 is a schematic diagram of a step-up DC/DC converter according to an embodiment of the present invention.
图4为本发明一实施例中屏蔽信号之示意图。FIG. 4 is a schematic diagram of shielding signals in an embodiment of the present invention.
图5为本发明一实施例之屏蔽信号产生器之内部架构图。FIG. 5 is an internal structure diagram of a masking signal generator according to an embodiment of the present invention.
图6为本发明一实施例之屏蔽信号产生器之动作原理的示意图。FIG. 6 is a schematic diagram of the operating principle of the shielding signal generator according to an embodiment of the present invention.
图7为本发明一实施例之数字信号与负载电流的关系图。FIG. 7 is a diagram showing the relationship between a digital signal and a load current according to an embodiment of the present invention.
图8为本发明一实施例之与门的操作示意图。FIG. 8 is a schematic diagram of the operation of an AND gate according to an embodiment of the present invention.
图9为本发明一实施例之脉宽调变模式、脉冲频率调制模式及混合脉波屏蔽模式三者的效率示意图。FIG. 9 is a schematic diagram of the efficiencies of the PWM mode, the Pulse Frequency Modulation mode and the mixed pulse wave shielding mode according to an embodiment of the present invention.
主要元件标记说明Description of main component marking
100、300:升压式直流/直流转换器100, 300: Boost DC/DC Converter
110、310:切换式升压电路110, 310: switchable boost circuit
111、311:电感器111, 311: Inductor
112、312:二极管112, 312: diode
113、313:电容器113, 313: Capacitor
114:功率晶体管114: power transistor
314:开关314: switch
130、380:负载130, 380: load
120、320:脉宽调变电路120, 320: Pulse width modulation circuit
121、321:误差放大器121, 321: Error amplifier
122、322:三角波产生器122, 322: triangle wave generator
123:脉宽调变比较器123: PWM comparator
323:比较器323: Comparator
124、360:驱动器124, 360: drive
330:屏蔽电路330: shielding circuit
331:负载检测器331: Load Detector
332:屏蔽信号产生器332: shielding signal generator
3321:延迟链3321: delay chain
3322:缓存器3322: buffer
340:与门340: AND gate
350:分压电路350: Voltage divider circuit
R1、R3、R2、R4:电阻器R 1 , R 3 , R 2 , R 4 : Resistors
PWM_CK:脉宽调变信号PWM_CK: pulse width modulation signal
DU1~DUn:延迟单元DU 1 ~ DU n : delay unit
D1~D5:数字信号D 1 ~ D 5 : digital signal
SMask:屏蔽信号S Mask : Shield signal
IL1、IL3、IL31、IL32、IL33、IL34、IL35:负载电流I L1 , I L3 , I L31 , I L32 , I L33 , I L34 , I L35 : load current
SC、d(t):控制信号S C , d(t): control signal
SL:负载信号S L : load signal
Q:频率信号Q: frequency signal
Vin1、Vin3:输入电压V in1 , V in3 : Input voltage
Vout1、Vout3:输出电压V out1 , V out3 : output voltage
Vref1、Vref3:参考电压V ref1 , V ref3 : Reference voltage
TL:撷取时间T L : Retrieval time
TR;重置时间T R ; reset time
具体实施方式Detailed ways
以下所述为本发明之一实施例,请参考图3。图3为根据本发明一实施例之升压式直流/直流转换器300,其包括切换式升压电路310、脉宽调变电路320、屏蔽电路330、与门340、分压电路350、以及驱动器360。The following is an embodiment of the present invention, please refer to FIG. 3 . 3 is a step-up DC/
切换式升压电路310可根据控制信号SC,依据输入电压Vin3而提供输出电压Vout3,且输出电压Vout3大于该输入电压Vin3。又脉宽调变电路320可根据输出电压Vout3之分压(Vout3×R4/(R3+R4))与参考电压Vref3而输出脉宽调变信号PWM_CK。屏蔽电路330可根据负载电流IL3以输出屏蔽信号SMask。与门340可接收脉宽调变信号PWM_CK与屏蔽信号SMask,并提供控制信号d(t)。The switching
在本实施例中,切换式升压电路310包括有电感器311、二极管312、电容器313以及开关314。电感器311电连接于输入电压Vin3,二极管312以阳极电连接于电感器311,又电容器313以第一端电连接于二极管312的阴极与输出电压Vout3,并以其第二端接地。开关314是以第一端电连接于电感器311与二极管312的阳极之间,并以其第二端接地,且根据所接收之控制信号SC而导通或关断开关314的第一端与第二端。在本实施例中开关314为NMOS晶体管(n-channel metal oxide semiconductor fieldeffect transistor),以其栅极接收控制信号SC。因切换式升压电路310的电路工作情形类似于图1的切换式升压电路110,故在此不赘述。In this embodiment, the switching
又实施例中之脉宽调变电路320包括有误差放大器321、三角波产生器322以及比较器323。其中误差放大器321是以第一输入端接收参考电压Vref3,并以其第二输入端电连接于输出电压Vout3之分压,再将上述Vref3与Vout3之分压的误差电压放大后输出。三角波产生器322用于输出三角波,接下来比较器323将根据三角波与误差放大器321之输出的比较结果,而输出脉宽调变信号PWM CK。其中当三角波的电压大于误差放大器的输出电压,则比较器将输出逻辑高电位,否则比较器将输出逻辑低电位,反之亦可。Furthermore, the pulse
在本实施例中之屏蔽电路330包括负载检测器331与屏蔽信号产生器332,其中负载检测器331检测负载电流IL3并输出与之相对应的负载信号SL,在本实施中,负载信号SL为电压且其值将随着负载电流IL3的增加而变大。屏蔽信号产生器332将依据负载信号SL的大小值以输出与之相对应的屏蔽信号SMask。The
本实施例的升压式直流/直流转换器300进一步包括分压电路350及驱动器360。分压电路350包含第一电阻器R3以及第二电阻器R4并用以将输出电压Vout3乘以一预设比例R4/(R3+R4)后以使得Vout3×R4/(R3+R4)的大小近似于参考电压Vref3之大小以输出至比较器323。在分压电路350中,电阻器R3电连接于输出电压Vout3,电阻器R4以第一端电连接于第一电阻器R3,并以其第二端接地。其中电阻器R3与电阻器R4的接点亦电连接于脉宽调变电路320。如本实施例中,在输出电压Vout3与参考电压Vref3二者相差甚多时,分压电路350便可将输出电压Vout3进行分压以使得输出电压Vout3的分压与参考电压Vref3二者的值相差不大以输入至误差放大器321。如果输出电压Vout3与参考电压Vref3二者相近时,那么分压电路350便可以省略。驱动器360可用以将来自与门340的控制信号d(t)放大为控制信号SC并输出至切换式升压电路310。The boost DC/
图4为本实施例中屏蔽信号之示意图。屏蔽信号SMask的周期为T1+T2,其中T1为责任周期。责任周期T1的大小是依据负载电流IL3的大小而决定,亦即,负载电流IL3升高时屏蔽信号SMask的责任周期T1也会跟着变大。FIG. 4 is a schematic diagram of shielding signals in this embodiment. The period of the masking signal S Mask is T 1 +T 2 , where T 1 is the duty period. The duty cycle T1 is determined according to the magnitude of the load current I L3 , that is, when the load current I L3 increases, the duty cycle T1 of the mask signal S Mask will also increase accordingly.
请参考图5为屏蔽信号产生器332之内部架构图。屏蔽信号产生器332包括有延迟链3321与缓存器3322,其中延迟链3321是根据由负载检测器331提供的负载信号SL大小与频率信号Q而产生数字信号D1~Dn(其中n为大于1的整数)。在以下实施例中假设N=5且缓存器3322可定时撷取数字信号D1~D5,并且缓存器3322根据所撷取的数字信号D1~D5而产生屏蔽信号SMask以选择目前系统所需的屏蔽信号SMask的模式是脉宽调变、脉冲频率调制或混合脉波屏蔽模式三者之一。本实施例的缓存器3322为并列输入/串行输出缓存器。Please refer to FIG. 5 , which is an internal structure diagram of the
请参考图6为屏蔽信号产生器332之动作原理的示意图。上述之延迟链3321包括有5个延迟单元DU1~DU5,而每一延迟单元DU1~DU5皆接收负载信号SL,其中第一个延迟单元DU1将频率信号Q延迟预设时间Td后输出为D1。且第i个延迟单元DUi将第i-1个延迟单元的输出Di-1延迟预设时间Td后输出为Di,例如DU3的输出D3比DU2的输出D2延迟了预设时间Td,其中i为大于一的整数。在本实施例中,延迟单元的特性是延迟预设时间Td与负载信号SL的大小成反比。所以,当负载电流大时,负载信号SL也跟着变大,同时预设时间Td会较小。在撷取时间TL时缓存器3322将撷取数字信号D1~D5,在缓存器3322撷取时,处于高电位的数字信号D1~D5的数目就会多。例如有5个高电位,此时数字信号D1~D5即为(11111)。反之当负载电流小时,负载信号SL也跟着变小,同时预设时间Td会较大,在缓存器3322撷取时,处于逻辑高电位的数字信号D1~D5的数目就会少,例如只有三个高电位,此时数字信号D1~D5即为(11100)。在重置时间TR时,每一延迟单元DU1~DU5会由重置信号触发而重置延迟单元DU1~DU5的输出为逻辑低电位。Please refer to FIG. 6 , which is a schematic diagram of the working principle of the
接下来,图7为本实施例中数字信号D1~D5与负载电流IL3的关系图。当数字信号(D1~D5)为(00000)或(10000)时,此时负载电流小于IL32为轻载,缓存器3322输出的屏蔽信号SMask的责任周期会较小,且此时屏蔽信号SMask会使升压式直流/直流转换器300操作在脉冲频率调制模式中。当数字信号(D1~D5)为(11111)时,此时负载电流大于IL35为重载,缓存器3322输出的屏蔽信号SMask的责任周期会较大,且此时屏蔽信号SMask会使升压式直流/直流转换器300操作在脉宽调变模式中。而当数字信号(D1~D5)为(11000)、(11100)或(11110)时,此时负载电流介于IL32与IL35之间为中载,缓存器3322输出的屏蔽信号SMask的责任周期的大小介于上述两个模式之间,即此时屏蔽信号SMask会使升压式直流/直流转换器300操作在混合脉波屏蔽模式中。Next, FIG. 7 is a relationship diagram between the digital signals D 1 -D 5 and the load current I L3 in this embodiment. When the digital signals (D 1 -D 5 ) are (00000) or (10000), the load current is less than I L32 at this time, which means light load, and the duty cycle of the mask signal S Mask output by the
在混合脉波屏蔽模式与脉宽调变模式中,屏蔽信号SMask的责任周期与数字信号(D1~D5)的高电位位数量成正比。举例来说,当数字信号(D1~D5)为(11000)时,处于逻辑高电位的位数为2,此时屏蔽信号SMask的责任周期为2/5=40%。另一方面,当数字信号(D1~D5)为(11100)时,处于逻辑高电位的位数为3,此时屏蔽信号SMask的责任周期为3/5=60%,其余类推。In the hybrid pulse masking mode and the PWM mode, the duty cycle of the masking signal S Mask is proportional to the number of high potential bits of the digital signals (D 1 -D 5 ). For example, when the digital signals (D 1 ˜D 5 ) are (11000), the number of bits at logic high potential is 2, and the duty cycle of the mask signal S Mask is 2/5=40%. On the other hand, when the digital signal (D 1 ˜D 5 ) is (11100), the number of bits in logic high potential is 3, and the duty cycle of the mask signal S Mask is 3/5=60%, and the rest are analogized.
图8为与门340的操作示意图。当屏蔽信号SMask的责任周期较大时,与门340的控制信号d(t)之脉波数也会增加,如图8所示当负载电流IL32<IL33时,IL33所对应的与门340之控制信号d(t)脉波数与IL32相比会较多,也就是说IL32所对应的控制信号d(t)脉波数较少,使得图3中之开关314所对应的切换次数较少,也因此可以减少开关314的切换损失而使得系统效率上升。FIG. 8 is a schematic diagram of the operation of the AND
综上所述,负载检测器331可检测负载电流IL3的值并输出与对应的负载信号SL,接下来屏蔽信号产生器将依据负载信号SL而提供屏蔽信号SMask,然后与门340将依据屏蔽信号SMask与脉波调变信号PWM_CK而提供控制信号d(t)。之后,驱动器360将放大后的控制信号SC输出致切换式升压电路310之开关314。藉此,本实施例之升压式直流/直流转换器可依据负载电流之大小以选择个别地操作在脉宽调变模式、脉冲频率调制模式或混合脉波屏蔽模式。To sum up, the
图9为本实施例中脉宽调变模式、脉冲频率调制模式以及混合脉波屏蔽模式三者的效率比较图。以应用于手机中的升压式直流/直流转换器300为例,当其处于重载,如手机在通话模式下时使用脉宽调变模式,而在轻载时如省电模式下使用脉冲频率调制模式以降低开关次数,免得开关频繁切换的损耗降低电源转换效率。在中载时则使用混合脉波屏蔽模式,如此可使得系统的电源转换维持在高效率,如图9所示。由上述说明可知,本发明在轻载、中载、重载时可个别地使系统操作在脉波频率调变、混合脉波屏蔽模式或脉宽调变的模式下,使系统都能维持在高效率的状态。FIG. 9 is a comparison diagram of efficiencies among the PWM mode, the pulse frequency modulation mode and the mixed pulse wave shielding mode in this embodiment. Taking the step-up DC/
虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,任何所属技术领域的技术人员,在不脱离本发明之精神和范围内,当可作些许之更动与改进,因此本发明之保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some modifications and improvements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100783365A CN101071981B (en) | 2006-05-11 | 2006-05-11 | Step-up DC/DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100783365A CN101071981B (en) | 2006-05-11 | 2006-05-11 | Step-up DC/DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101071981A CN101071981A (en) | 2007-11-14 |
CN101071981B true CN101071981B (en) | 2010-09-29 |
Family
ID=38899016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100783365A Expired - Fee Related CN101071981B (en) | 2006-05-11 | 2006-05-11 | Step-up DC/DC converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101071981B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103441658B (en) * | 2013-08-30 | 2016-05-04 | 深圳市汇顶科技股份有限公司 | A kind of Boost controller and Boost converter |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101339209B (en) * | 2008-08-08 | 2012-02-29 | 欣旺达电子股份有限公司 | Method for on-load detection in boosted circuit using impulse width |
CN102055338B (en) * | 2009-11-10 | 2013-08-21 | 比亚迪股份有限公司 | Constant voltage output circuit |
US9235221B2 (en) | 2012-03-23 | 2016-01-12 | Fairchild Semiconductor Corporation | Early warning strobe for mitigation of line and load transients |
WO2013153987A1 (en) * | 2012-04-09 | 2013-10-17 | シャープ株式会社 | Display device and power source generation method for same |
US8724353B1 (en) | 2013-03-15 | 2014-05-13 | Arctic Sand Technologies, Inc. | Efficient gate drivers for switched capacitor converters |
US8619445B1 (en) | 2013-03-15 | 2013-12-31 | Arctic Sand Technologies, Inc. | Protection of switched capacitor power converter |
US9041459B2 (en) * | 2013-09-16 | 2015-05-26 | Arctic Sand Technologies, Inc. | Partial adiabatic conversion |
CN105449994B (en) * | 2014-09-10 | 2017-09-29 | 立锜科技股份有限公司 | The control circuit of the power converter |
EP4191857B1 (en) * | 2014-10-24 | 2025-04-02 | Texas Instruments Incorporated | Adaptive controller for a voltage converter |
CN116131601A (en) | 2015-03-13 | 2023-05-16 | 佩里格林半导体公司 | Apparatus and method for transforming power and computer readable medium |
CN106301018A (en) * | 2015-05-12 | 2017-01-04 | 鸿富锦精密工业(深圳)有限公司 | DC-stabilized circuit |
CN114583944A (en) | 2015-07-08 | 2022-06-03 | 派赛公司 | Switched capacitor power converter |
CN105490534B (en) * | 2015-12-24 | 2018-08-21 | 成都信息工程大学 | A kind of current-mode control DCDC boosting variators and its pulse frequency modulated method |
CN112714999A (en) * | 2018-11-23 | 2021-04-27 | 华为技术有限公司 | Power supply control method and device |
CN110932547B (en) * | 2019-10-16 | 2022-06-21 | 重庆中易智芯科技有限责任公司 | Adaptive modulation mode switching circuit applied to high-efficiency DC-DC converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5568044A (en) * | 1994-09-27 | 1996-10-22 | Micrel, Inc. | Voltage regulator that operates in either PWM or PFM mode |
US5745352A (en) * | 1994-10-27 | 1998-04-28 | Sgs-Thomson Microelectronics S.R.L. | DC-to-DC converter functioning in a pulse-skipping mode with low power consumption and PWM inhibit |
CN1691481A (en) * | 2004-04-27 | 2005-11-02 | 株式会社理光 | Switching regulator and method for changing output voltages thereof |
CN1734907A (en) * | 2004-08-04 | 2006-02-15 | 三洋电机株式会社 | Charge pump circuit |
-
2006
- 2006-05-11 CN CN2006100783365A patent/CN101071981B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5568044A (en) * | 1994-09-27 | 1996-10-22 | Micrel, Inc. | Voltage regulator that operates in either PWM or PFM mode |
US5745352A (en) * | 1994-10-27 | 1998-04-28 | Sgs-Thomson Microelectronics S.R.L. | DC-to-DC converter functioning in a pulse-skipping mode with low power consumption and PWM inhibit |
CN1691481A (en) * | 2004-04-27 | 2005-11-02 | 株式会社理光 | Switching regulator and method for changing output voltages thereof |
CN1734907A (en) * | 2004-08-04 | 2006-02-15 | 三洋电机株式会社 | Charge pump circuit |
Non-Patent Citations (1)
Title |
---|
JP特开平10-334581 1998.12.18 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103441658B (en) * | 2013-08-30 | 2016-05-04 | 深圳市汇顶科技股份有限公司 | A kind of Boost controller and Boost converter |
Also Published As
Publication number | Publication date |
---|---|
CN101071981A (en) | 2007-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101071981B (en) | Step-up DC/DC converter | |
US7173403B1 (en) | Boost DC/DC converter | |
Huang et al. | Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications | |
US9537400B2 (en) | Switching converter with dead time between switching of switches | |
EP2911282A1 (en) | Power source and power source voltage regulating method | |
CN111435819B (en) | Step-down hysteresis type switch converter and control method thereof | |
JP3829753B2 (en) | DC-DC converter | |
TW201351861A (en) | Method of controlling a power converting device and related circuit | |
US20230246548A1 (en) | Switched capacitor voltage converter circuit and switched capacitor voltage conversion method | |
US11682973B2 (en) | Advanced constant off-time control for four-switch buck-boost converter | |
CN101510721B (en) | Single inductance switch DC voltage converter and three mode control method | |
CN102801288A (en) | Control circuit, switch mode converter and control method | |
CN105553263A (en) | Switching power supply with constant on-time control, and control circuit and control method thereof | |
WO2005107052A1 (en) | Dc/dc converter | |
CN106788398A (en) | Clock division circuits, control circuit and power management integrated circuit | |
WO2021226978A1 (en) | Power supply management circuit, chip, and device | |
CN108365742A (en) | Bias generation circuit and synchronous dual-mode boost DC-DC converter thereof | |
CN101860240A (en) | Feedback circuit with feedback impedance modulation | |
CN117578861A (en) | Soft start control circuit, DC-DC voltage converter and soft start control method | |
CN109980944A (en) | Demagnetization iterative algorithm module and Switching Power Supply in Switching Power Supply control chip | |
JP4535492B2 (en) | Buck-boost chopper circuit | |
CN111786556A (en) | A Dual-Mode Compensation System for Peak Current Control Mode Boost Converters | |
US10491105B1 (en) | Power converter and dead-time control circuit therefor | |
CN114257066B (en) | Switching converter and its control circuit | |
WO2019177685A1 (en) | Coupled-inductor cascaded buck convertor with fast transient response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100929 Termination date: 20200511 |