CN101067555B - Force balancing resonance micro-mechanical gyro - Google Patents
Force balancing resonance micro-mechanical gyro Download PDFInfo
- Publication number
- CN101067555B CN101067555B CN2007101003276A CN200710100327A CN101067555B CN 101067555 B CN101067555 B CN 101067555B CN 2007101003276 A CN2007101003276 A CN 2007101003276A CN 200710100327 A CN200710100327 A CN 200710100327A CN 101067555 B CN101067555 B CN 101067555B
- Authority
- CN
- China
- Prior art keywords
- force
- mass block
- electrostatic
- tuning fork
- electrostatic comb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003068 static effect Effects 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 13
- 230000009471 action Effects 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 244000126211 Hericium coralloides Species 0.000 abstract 4
- 230000010355 oscillation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- NFACJZMKEDPNKN-UHFFFAOYSA-N trichlorfon Chemical compound COP(=O)(OC)C(O)C(Cl)(Cl)Cl NFACJZMKEDPNKN-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
Description
技术领域technical field
本发明属于微机电系统(MEMS)中的微机械传感器领域,它作为微惯性器件广泛应用于汽车电子、航空航天、武器装备等领域。The invention belongs to the field of micro-mechanical sensors in micro-electro-mechanical systems (MEMS), and is widely used in the fields of automotive electronics, aerospace, weaponry and the like as a micro-inertial device.
背景技术Background technique
基于角动量原理的经典的框架式机械转子陀螺仪,由数百个(约300多个)零件组装而成,结构复杂,体积大,使用寿命短,不能满足技术发展和许多新应用的要求。因而相继发展了没有机械转子的固态陀螺,代表性的有激光陀螺、半球谐振陀螺以及光纤陀螺。前两种陀螺的性能可达到惯性导航级的漂移精度(0.01°/h);但价格高,体积较大,仍不能适用于正在发展的微型惯性测量单元和低价格商用市场的需求。而MEMS正处于发展时期,它的技术和市场都尚未成熟,但其孕育的广阔发展前景和巨大的社会、经济效益是世人共知的。于是,研制新一代微机械陀螺(MMG)受到世界范围的普遍重视,并在汽车工业需求的推动下,已经成为20世纪80年代中期至今广泛研究和发展的主题。The classic frame-type mechanical rotor gyroscope based on the principle of angular momentum is assembled from hundreds of (about 300) parts. It has a complex structure, large volume, and short service life, which cannot meet the requirements of technological development and many new applications. Therefore, solid-state gyroscopes without mechanical rotors have been developed one after another, such as laser gyroscopes, hemispherical resonant gyroscopes, and fiber optic gyroscopes. The performance of the first two gyroscopes can reach the drift accuracy of inertial navigation (0.01°/h); but the price is high and the volume is large, which is still not suitable for the needs of the developing miniature inertial measurement unit and low-cost commercial market. However, MEMS is in the development period, and its technology and market are not yet mature, but its broad development prospects and huge social and economic benefits are well known to the world. Therefore, the development of a new generation of micromachined gyroscopes (MMGs) has received widespread attention worldwide, and driven by the needs of the automotive industry, it has become the subject of extensive research and development since the mid-1980s.
从测试原理上讲,目前硅微机械陀螺普遍采用电容检测方式。电容检测具有温漂小,灵敏度高,可靠性号和稳定性好等优点。但随着微惯性器件结构尺寸的不断缩小,其灵敏度和分辨率大大降低,达到了检测的极限状态。检测输出信号的信噪比非常低,信号检测电路和处理电路非常复杂,不利小型化和集成化。2002年,美国Berkeley的A.A.Seshia等人提出了硅谐振式微机械陀螺的一种实现结构,该结构将以往的硅微机械陀螺与微机械谐振器有效地结合在一起,从而有效地避免电容检测中噪声干扰的影响。但其微机械谐振器的振动动态方程很复杂,在仅考虑稳态情况下的输出位移信号既是调幅信号同时也是调频信号,解调过程受非线性因素影响。目前的微机械陀螺产品大多是中低精度的,严重地制约其应用范围,较多地应用在精度要求不高的商用领域,提高现有微机械陀螺的性能就是要实现高灵敏度、高分辨率、低噪声、低漂移和大的动态范围。In terms of testing principles, currently silicon micromachined gyroscopes generally adopt capacitive detection methods. Capacitance detection has the advantages of small temperature drift, high sensitivity, good reliability and stability. However, with the continuous shrinking of the structure size of micro-inertial devices, their sensitivity and resolution are greatly reduced, reaching the limit state of detection. The signal-to-noise ratio of the detection output signal is very low, and the signal detection circuit and processing circuit are very complicated, which is unfavorable for miniaturization and integration. In 2002, A.A. Seshia and others from Berkeley in the United States proposed a realization structure of the silicon resonant micro-machined gyroscope, which effectively combined the previous silicon micro-machined gyroscope and the micro-machined resonator, thereby effectively avoiding the capacitive detection. Effects of noise disturbance. However, the vibration dynamic equation of the micromechanical resonator is very complicated. When only considering the steady state, the output displacement signal is both an amplitude modulation signal and a frequency modulation signal, and the demodulation process is affected by nonlinear factors. Most of the current micro-mechanical gyroscope products are of medium and low precision, which seriously restricts their application scope. They are mostly used in commercial fields that do not require high precision. To improve the performance of existing micro-mechanical gyroscopes is to achieve high sensitivity and high resolution. , low noise, low drift and large dynamic range.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种力平衡式谐振微机械陀螺,以解决现有微机械陀螺灵敏度、分辨率不够高,以及电容检测中存在的问题,抑制非线性的影响。The technical problem of the present invention is: to overcome the deficiencies of the prior art, to provide a force-balanced resonant micro-machined gyroscope, to solve the existing micro-machined gyroscope sensitivity, resolution is not high enough, and the problems existing in capacitance detection, suppress non- linear effect.
本发明的技术解决方案:力平衡式谐振微机械陀螺包括双端音叉谐振器、静电梳齿驱动器、质量块和静电梳齿力平衡器四个部分,整个结构为轴对称图形,质量块处于中间位置,具有x和y两个方向的自由度,其x方向上对称放置两个固定于基底上的静电梳齿驱动器,其y方向上对称设置两个固定于基底上的静电梳齿力平衡器和两个双端音叉谐振器DETF,质量块受静电梳齿驱动器的静电力驱动,沿x方向作振荡运动,若存在沿z轴方向的外界输入角速度信号,质量块将受到沿y方向的科氏力作用。静电梳齿力平衡器用于平衡此科氏力,使质量块在y方向上处于平衡位置,当输入角速度变化时,质量块在y方向上出现周期变化的科氏力,并传递到相连的两个双端音叉谐振器上,且大小相等方向相反,使其固有谐振频率发生变化,测量其差动输出可反馈调节静电梳齿力平衡器的驱动电压,从而使质量块在y方向上回到平衡位置,实现对输入角速度的动态闭环检测。Technical solution of the present invention: the force-balanced resonant micromechanical gyroscope includes four parts: a double-ended tuning fork resonator, an electrostatic comb driver, a mass block, and an electrostatic comb force balancer. The entire structure is an axisymmetric figure, and the mass block is in the middle. Position, with two degrees of freedom in the x and y directions, two electrostatic comb drivers fixed on the base are placed symmetrically in the x direction, and two electrostatic comb force balancers fixed on the base are symmetrically placed in the y direction and two double-ended tuning fork resonators DETF, the mass block is driven by the electrostatic force of the electrostatic comb driver, and oscillates along the x direction. force effect. The electrostatic comb force balancer is used to balance the Coriolis force, so that the mass block is in a balanced position in the y direction. When the input angular velocity changes, a periodic Coriolis force appears on the mass block in the y direction and is transmitted to the connected two On a double-ended tuning fork resonator, and the size is equal and the direction is opposite, so that the natural resonant frequency changes. Measuring its differential output can feed back and adjust the drive voltage of the electrostatic comb force balancer, so that the mass returns in the y direction. The balance position realizes the dynamic closed-loop detection of the input angular velocity.
本发明工作原理:力平衡式谐振微机械陀螺属于振动陀螺(VG),是基于受激振动在有科氏加速度时存在模态耦合效应的原理来工作的,实质上是由于科式加速度的存在引起了两种模态间的能量传递。其基本原理如图2所示,其中质量块3P固连在旋转坐标系的xoy平面,质量块P在受到静电梳齿驱动器的静电力驱动作用后将沿x轴方向以相对旋转坐标系的速度υ运动,旋转坐标系绕负z轴以角速度ω旋转。因科氏效应产生科氏力的公式为Fcor=-2mP[ω×υ],即质量块P在旋转坐标系中受到沿正y轴的科氏力Fcor,其中mP为平板质量块P的质量。可见科氏力Fcor直接与作用在质量块P上的输入角速度ω成正比,获得该科氏力Fcor的信息也即获得输入角速度ω的信息。The working principle of the present invention: the force balance resonant micro-mechanical gyroscope belongs to the vibrating gyroscope (VG), and it works based on the principle that there is a modal coupling effect when the excited vibration has Coriolis acceleration, which is essentially due to the existence of Coriolis acceleration An energy transfer between the two modes is induced. Its basic principle is shown in Figure 2, in which the mass block 3P is fixed on the xoy plane of the rotating coordinate system, and the mass block P will move along the x-axis direction at the speed of the relative rotating coordinate system after being driven by the electrostatic force of the electrostatic comb driver. υ motion, the rotating coordinate system rotates around the negative z-axis with an angular velocity ω. The formula of the Coriolis force due to the Coriolis effect is F cor =-2m P [ω×υ], that is, the mass P is subjected to the Coriolis force F cor along the positive y-axis in the rotating coordinate system, where m P is the mass of the plate The mass of block P. It can be seen that the Coriolis force F cor is directly proportional to the input angular velocity ω acting on the mass P, and obtaining the information of the Coriolis force F cor means obtaining the information of the input angular velocity ω.
该科氏力Fcor通过静电梳齿力平衡器来平衡,使质量块在科氏力Fcor方向上处于平衡位置。其梳齿的结构图如图3所示,在静电梳齿力平衡器上施加驱动电压V(t)=Vd+Visinωpt,x轴方向上产生的静电力为:
在输入角速度变化瞬间,科氏力
本发明与现有技术相比的优点:Advantage of the present invention compared with prior art:
(1)本发明所采用的双端音叉谐振器能够实现将微机械陀螺敏感角速度产生的科氏力的变化转换成谐振器谐振频率的变化,从而反馈调节静电梳齿力平衡器的驱动电压,有效避免了电容检测中噪声干扰的影响,且易于数字信号处理。(1) The double-ended tuning fork resonator adopted in the present invention can convert the change of the Coriolis force generated by the sensitive angular velocity of the micromechanical gyroscope into the change of the resonant frequency of the resonator, thereby feedback-adjusting the driving voltage of the electrostatic comb force balancer, It effectively avoids the influence of noise interference in capacitance detection, and is easy to process digital signals.
(2)本发明所采用的静电梳齿力平衡器能够平衡微机械陀螺敏感角速度产生的科氏力作用,使微机械陀螺在此方向上处于静止平衡状态,有效地抑制了非线性的影响,也解决了在单独使用微机械谐振器检测过程中存在的振动动态方程复杂,仅考虑稳态情况,且输出位移信号既是调幅信号同时也是调频信号等因素的影响。(2) The electrostatic comb force balancer adopted in the present invention can balance the Coriolis force effect produced by the sensitive angular velocity of the micro-mechanical gyroscope, so that the micro-mechanical gyroscope is in a static equilibrium state in this direction, effectively suppressing the influence of nonlinearity, It also solves the complex vibration dynamic equation in the detection process of using the micromechanical resonator alone, only considers the steady state situation, and the output displacement signal is both an amplitude modulation signal and a frequency modulation signal and other factors.
附图说明Description of drawings
图1为本发明的力平衡式谐振微机械陀螺的原理图;Fig. 1 is the schematic diagram of the force balance type resonant micromachined gyroscope of the present invention;
图2为本发明的科氏效应基本原理示意图;Fig. 2 is a schematic diagram of the basic principle of the Coriolis effect of the present invention;
图3为本发明的梳齿结构图;Fig. 3 is a comb structure diagram of the present invention;
图4为本发明的双端音叉谐振器的结构图;Fig. 4 is the structural diagram of double-ended tuning fork resonator of the present invention;
图5为本发明的力平衡式谐振微机械陀螺的实施例1结构图;5 is a structural diagram of
图6为力平衡式谐振微机械陀螺的实施例2结构图。Fig. 6 is a structural diagram of
具体实施方式Detailed ways
如图1所示,本发明由双端音叉谐振器1、静电梳齿驱动器2、质量块3、和静电梳齿力平衡器4四个部分组成,整个结构为轴对称图形。质量块3处于中间位置,具有x和y两个方向的自由度,其x方向上对称放置两个固定于基底上的静电梳齿驱动器2,其y方向上对称设置两个固定于基底上的静电梳齿力平衡器4和两个双端音叉谐振器DETF1。As shown in Fig. 1, the present invention consists of four parts: a double-ended
如图4所示,双端音叉谐振器1包括驱动静齿6、测量静齿7、梁11和动齿5,其中,两根对称的音叉梁作简谐振动,其外侧对称放置驱动静齿6和动齿5构成动、静梳齿对,通过静电力使双端音叉谐振器1工作在谐振状态,并通过测量静齿7和动齿5构成的动、静梳齿对来敏感音叉梁在轴向力作用下谐振频率的变化实现对轴向力的测量。在驱动静齿6上加频率为双端音叉谐振器1谐振频率的驱动信号后,质量块3做y方向的谐振运动,测量静齿7输出谐振频率信号。As shown in Figure 4, the double-ended
静电梳齿驱动器2和静电梳齿力平衡器4具有相同的均布静齿,与质量块上分布的动齿构成动、静梳齿对结构,在驱动电压下产生静电力。前者用于产生质量块作简谐振动的静电力,后者用于平衡陀螺敏感角速度产生的科氏力作用,使陀螺在科氏力方向上处于平衡位置。The
图1所示力平衡式谐振微机械陀螺的原理图,可以有多种结构图实现,举例说明,可以有如图5和图6所示的力平衡式谐振微机械陀螺的实现结构。如图5所示,结构为轴对称图形,质量块3包括内部动齿框架及外部框架,通过四个支撑梁9和锚点8与基底固定。在内部动齿框架内部x方向上放置四个固定于基底上的静电梳齿驱动器2,在外部框架外部y方向上对称放置两个固定于基底上的静电梳齿力平衡器4,和两个双端音叉谐振器1。如图6所示,结构为轴对称图形,质量块3为平板状,处于中间位置,通过四个支撑梁9和锚点8与基底固定。其x方向上对称放置两个固定于基底上的静电梳齿驱动器2,其y方向上对称放置两个固定于基底上的静电梳齿力平衡器4,并通过两个固定于基底上的杠杆放大机构10与外侧两个双端音叉谐振器1相连。其中,杠杆放大机构10利用典型的杠杆原理,利用锚电8为支点,通过减小力臂达到放大科氏力的作用。The principle diagram of the force-balanced resonant micro-mechanical gyroscope shown in FIG. 1 can be realized with various structural diagrams. For example, the realization structure of the force-balanced resonant micro-mechanical gyroscope as shown in FIG. 5 and FIG. 6 can be used. As shown in Figure 5, the structure is an axisymmetric figure, and the
本发明的结构中,基片材料为玻璃,敏感结构材料为单晶硅,采用标准的体硅工艺制作,较以往的多晶硅微机械陀螺具有更加良好的机械特性。In the structure of the present invention, the substrate material is glass, and the sensitive structure material is monocrystalline silicon, which is manufactured by standard bulk silicon technology, and has better mechanical properties than previous polycrystalline silicon micromechanical gyroscopes.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101003276A CN101067555B (en) | 2007-06-08 | 2007-06-08 | Force balancing resonance micro-mechanical gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101003276A CN101067555B (en) | 2007-06-08 | 2007-06-08 | Force balancing resonance micro-mechanical gyro |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101067555A CN101067555A (en) | 2007-11-07 |
CN101067555B true CN101067555B (en) | 2010-11-10 |
Family
ID=38880177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101003276A Expired - Fee Related CN101067555B (en) | 2007-06-08 | 2007-06-08 | Force balancing resonance micro-mechanical gyro |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101067555B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103401527A (en) * | 2013-08-23 | 2013-11-20 | 西安电子科技大学 | Electrostatic-driving and frequency-variable micro-mechanical resonator |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403615B (en) * | 2008-10-24 | 2011-01-05 | 北京航空航天大学 | Direct frequency-output vibration gyroscope structure |
US9278846B2 (en) | 2010-09-18 | 2016-03-08 | Fairchild Semiconductor Corporation | Micromachined monolithic 6-axis inertial sensor |
WO2012037539A1 (en) | 2010-09-18 | 2012-03-22 | Fairchild Semiconductor Corporation | Micromachined 3-axis accelerometer with a single proof-mass |
US9856132B2 (en) | 2010-09-18 | 2018-01-02 | Fairchild Semiconductor Corporation | Sealed packaging for microelectromechanical systems |
US9278845B2 (en) | 2010-09-18 | 2016-03-08 | Fairchild Semiconductor Corporation | MEMS multi-axis gyroscope Z-axis electrode structure |
EP2616389B1 (en) | 2010-09-18 | 2017-04-05 | Fairchild Semiconductor Corporation | Multi-die mems package |
WO2012037501A2 (en) | 2010-09-18 | 2012-03-22 | Cenk Acar | Flexure bearing to reduce quadrature for resonating micromachined devices |
KR101332701B1 (en) | 2010-09-20 | 2013-11-25 | 페어차일드 세미컨덕터 코포레이션 | Microelectromechanical pressure sensor including reference capacitor |
US9062972B2 (en) | 2012-01-31 | 2015-06-23 | Fairchild Semiconductor Corporation | MEMS multi-axis accelerometer electrode structure |
US9488693B2 (en) | 2012-04-04 | 2016-11-08 | Fairchild Semiconductor Corporation | Self test of MEMS accelerometer with ASICS integrated capacitors |
KR102058489B1 (en) | 2012-04-05 | 2019-12-23 | 페어차일드 세미컨덕터 코포레이션 | Mems device front-end charge amplifier |
EP2647955B8 (en) | 2012-04-05 | 2018-12-19 | Fairchild Semiconductor Corporation | MEMS device quadrature phase shift cancellation |
EP2647952B1 (en) | 2012-04-05 | 2017-11-15 | Fairchild Semiconductor Corporation | Mems device automatic-gain control loop for mechanical amplitude drive |
US9625272B2 (en) | 2012-04-12 | 2017-04-18 | Fairchild Semiconductor Corporation | MEMS quadrature cancellation and signal demodulation |
CN102759365B (en) * | 2012-07-12 | 2014-12-17 | 中国人民解放军国防科学技术大学 | Bias stability improving method and device for silicon micromechanical gyroscope |
DE102013014881B4 (en) | 2012-09-12 | 2023-05-04 | Fairchild Semiconductor Corporation | Enhanced silicon via with multi-material fill |
CN106500732A (en) * | 2016-12-22 | 2017-03-15 | 四川纳杰微电子技术有限公司 | A kind of micro-mechanical gyroscope quadrature error collocation structure |
CN109945850B (en) * | 2019-04-02 | 2023-09-26 | 四川知微传感技术有限公司 | MEMS gyroscope |
CN112444240A (en) * | 2019-08-30 | 2021-03-05 | 北京大学 | Rigid spindle positioning and laser balance matching algorithm of silicon micro-ring resonator gyroscope |
CN114740224B (en) * | 2022-05-18 | 2024-05-07 | 南京工程学院 | A force-balanced silicon micro-resonant accelerometer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5349855A (en) * | 1992-04-07 | 1994-09-27 | The Charles Stark Draper Laboratory, Inc. | Comb drive micromechanical tuning fork gyro |
CN1559882A (en) * | 2004-03-12 | 2005-01-05 | 中国科学院上海微系统与信息技术研究 | A tuning fork micromechanical gyro and its manufacturing method |
CN1865851A (en) * | 2006-06-13 | 2006-11-22 | 北京航空航天大学 | Resonant-type micro-mechanical optic fiber gyroscope |
CN1930447A (en) * | 2004-03-05 | 2007-03-14 | 松下电器产业株式会社 | Tuning fork vibrator for angular velocity sensor, angular velocity sensor using the vibrator, and vehicle using the angular velocity sensor |
-
2007
- 2007-06-08 CN CN2007101003276A patent/CN101067555B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5349855A (en) * | 1992-04-07 | 1994-09-27 | The Charles Stark Draper Laboratory, Inc. | Comb drive micromechanical tuning fork gyro |
CN1930447A (en) * | 2004-03-05 | 2007-03-14 | 松下电器产业株式会社 | Tuning fork vibrator for angular velocity sensor, angular velocity sensor using the vibrator, and vehicle using the angular velocity sensor |
CN1559882A (en) * | 2004-03-12 | 2005-01-05 | 中国科学院上海微系统与信息技术研究 | A tuning fork micromechanical gyro and its manufacturing method |
CN1865851A (en) * | 2006-06-13 | 2006-11-22 | 北京航空航天大学 | Resonant-type micro-mechanical optic fiber gyroscope |
Non-Patent Citations (7)
Title |
---|
CN 1559882 A,全文. |
JP特开2007-71706A 2007.03.22 |
JP特开平8-334334A 1996.12.17 |
梁帆,彭志萍,樊尚春.新型硅微机械谐振器的设计.沈阳航空工业学院学报23 5.2006,23(5),78-80. |
梁帆,彭志萍,樊尚春.新型硅微机械谐振器的设计.沈阳航空工业学院学报23 5.2006,23(5),78-80. * |
樊尚春,肖志敏,张庆荣.谐振式微机械惯性传感器.计测技术25 2.2005,25(2),1-4,45. |
樊尚春,肖志敏,张庆荣.谐振式微机械惯性传感器.计测技术25 2.2005,25(2),1-4,45. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103401527A (en) * | 2013-08-23 | 2013-11-20 | 西安电子科技大学 | Electrostatic-driving and frequency-variable micro-mechanical resonator |
CN103401527B (en) * | 2013-08-23 | 2016-03-02 | 西安电子科技大学 | The variable micromechanical resonator of a kind of electrostatic driving frequency |
Also Published As
Publication number | Publication date |
---|---|
CN101067555A (en) | 2007-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101067555B (en) | Force balancing resonance micro-mechanical gyro | |
CN100590383C (en) | A resonant micromachined gyroscope | |
CN104931032B (en) | A kind of mass MEMS resonant formula gyroscope of single anchor point four | |
CN100487376C (en) | Double quality blocks attune output type silicon MEMS gyroscopes | |
CN102288172B (en) | Capacitor type micro-machined gyroscope for amplifying movement speed of mass block | |
CN102495236A (en) | High-sensitivity dual-axis silicon-micro resonance accelerometer | |
CN105606083B (en) | A kind of mass MEMS resonant formula gyroscope of outer support four | |
CN102221361B (en) | Capacitive micro machinery gyroscope | |
CN102798386A (en) | Three-degree-of-freedom resonance silicon micromechanical gyroscope | |
CN111812355B (en) | A low stress sensitivity silicon microresonant accelerometer structure | |
CN104819710B (en) | A kind of resonant micromechanical silicon gyro with temperature compensation structure | |
CN101363731B (en) | Quartz micromechanical gyroscope based on shear stress detection and its manufacturing method | |
CN101298987B (en) | Robustness tuning fork vibrating type micromechanical gyroscope | |
CN220153593U (en) | A decoupled tuning fork silicon micromachined gyroscope that can achieve interference mode isolation | |
CN106441261A (en) | Micro-machine gyroscope | |
CN116124110A (en) | In-plane torsion type four-mass MEMS gyroscope | |
Kou et al. | Analysis and Study of a MEMS Vibrating Ring Gyroscope with High Sensitivity | |
CN101514897A (en) | Improved sonic type micro mechanical scopperil | |
CN101339025B (en) | All-solid-state dual-axis gyroscope with cuboid piezoelectric vibrator with square surface | |
CN105953781A (en) | Tuning-fork micromechanical gyroscope sensor applied to wireless sensor network | |
CN102042829B (en) | All-forward capacitance type micro-machined gyroscope | |
CN106705949A (en) | Force balance type resonant micromechanical gyroscope | |
CN205449087U (en) | Support four quality piece MEMS resonant mode gyroscopes outward | |
Zhao et al. | A micromachined vibrating wheel gyroscope with folded beams | |
Zhang et al. | A novel design of a MEMS resonant accelerometer with adjustable sensitivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101110 Termination date: 20120608 |